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Primary immunodeficiencies (PIDs) represent a group of mostly monogenic disorders 
caused by loss- or gain-of-function mutations in over 340 known genes that lead to 
abnormalities in the development and/or the function of the immune system. However, 
mutations in different genes can affect the same cell-signaling pathway and result in 
overlapping clinical phenotypes. In particular, mutations in the genes encoding for 
members of the phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) signaling 
cascade or for molecules interacting with this pathway have been associated with differ-
ent PIDs that are often characterized by the coexistence of both immune deficiency and 
autoimmunity. The serine/threonine kinase mechanistic/mammalian target of rapamycin 
(mTOR), which acts downstream of PI3K and AKT, is emerging as a key regulator of 
immune responses. It integrates a variety of signals from the microenvironment to control 
cell growth, proliferation, and metabolism. mTOR plays therefore a central role in the 
regulation of immune cells’ differentiation and functions. Here, we review the different 
PIDs that share an impairment of the PI3K/AKT/mTOR/S6K pathway and we propose to 
name them “immune TOR-opathies” by analogy with a group of neurological disorders 
that has been originally defined by PB Crino and that are due to aberrant mTOR signaling 
(1). A better understanding of the role played by this complex intracellular cascade in 
the pathophysiology of “immune TOR-opathies” is crucial to develop targeted therapies.
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iNTRODUCTiON

Primary immunodeficiencies (PIDs) comprise more than 350 inherited disorders that affect the 
development and/or the functions of the components of the immune system (2, 3). They are 
individually rare but collectively, they are “more common than thought” (4), particularly due to 
the rapid increase in the number of newly described disorders and of causative genes that have 
been identified. In fact, the study of PIDs has frequently contributed to the discovery of new 
genes that are pivotal in immune cell development, effector functions, or in the maintenance of 
immune homeostasis (5). Susceptibility to severe and recurrent infections is a constant clinical 
manifestation in PID patients. However, an overlap between immune deficiency (infections and/ 
or malignancies) and immune dysregulation (autoimmunity, autoinflammation, and/or allergy) is 
often observed in certain types of PIDs (2, 3, 6). Although PIDs are mostly inherited as monogenic 
disorders, disease penetrance, as well as disease expressivity, may result from interactions between 
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genetic, epigenetic, and/or environmental factors. This contributes 
to the wide phenotypic diversity, even between individuals with 
an identical mutation in the same gene (2, 3, 7). The International 
Union of Immunological Societies (IUIS) PID expert committee 
regularly publishes a classification based on shared pathogenesis 
and/or clinical phenotypes with the latest update in 2017 (2, 3).

The serine/threonine kinase mechanistic/mammalian 
target of rapamycin (mTOR) plays a central role within the  
phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) 
signaling pathway. It acts as a downstream effector of AKT in two 
structural and functional distinct protein complexes named mTOR 
complex 1 and 2 (mTORC1 and mTORC2, respectively) (8). mTOR 
integrates the different cues from the microenvironment to control 
cell growth, proliferation, and metabolism, thereby exerting crucial 
functions in the regulation of immune homeostasis (8, 9).

Defects in the genes encoding for the different members of the 
PI3K/AKT/mTOR/S6K cascade or for molecules interacting with 
this pathway are frequently associated with immune dysfunction. 
We therefore propose here to cluster the different PIDs that share 
an impairment of the PI3K/AKT/mTOR/S6K pathway. Considering 
the central role of mTOR in the signaling cascade, this subgroup of 
PIDs will be referred hereafter as “immune TOR-opathies.” The term 
“mTOR-opathies” was initially coined in 2007 by PB Crino to define 
a wide spectrum of neurological disorders due to abnormal mTOR 
signaling that are characterized by focal malformations of cortical 
development, epilepsy, and neurobehavioral disabilities (1, 10).

In this review, we describe the PI3K/AKT/mTOR/S6K signal-
ing cascade, focusing on the genetic and molecular defects of 
the different “immune TOR-opathies,” and on the impact of this 
pivotal pathway in the development of immune deficiency and 
immune dysregulation, a hallmark of “immune TOR-opathies.”

Pi3K/AKT/mTOR/S6K SiGNALiNG 
PATHwAY PLAYS A CRUCiAL ROLe  
iN iMMUNe HOMeOSTASiS

S6 kinase activation involves a complex signaling cascade that 
connects a number of critical kinases, including PI3Ks, AKT  
(also called PKB for protein kinase B), and mTOR (11) (Figure 1). 
The PI3K/AKT/mTOR/S6K pathway plays a major role in the 

control of cell proliferation (increase in number), cell growth 
(increase in size), survival, and metabolism (12). It is therefore 
crucial in the regulation of immune responses, as well as in the 
promotion of B  cells, T  cells, and myeloid cells differentiation, 
activation, and function (9).

Among the different classes of PI3Ks, class IA molecules 
have the most important function in immune cells (13). Those 
heterodimeric proteins are formed by the association of a cata-
lytic subunit of approximately 110 kDa (p110α, p110β, or p110δ 
encoded by PIK3CA, PIK3CB, and PIK3CD respectively), and a 
Src-homology 2 (SH2) domain-containing regulatory subunit 
(p85, p50, and p55α encoded by PIK3R1; p85β encoded by 
PIK3R2; and p55γ encoded by PIK3R3). The catalytic subunits 
p110α and p110β are widely expressed, whereas the expression 
of p110δ is restricted to leukocytes (13, 14). The regulatory subu-
nit controls the cellular location and the activity of the enzyme 
by recruiting the catalytic subunit to membrane-associated 
proteins that have been phosphorylated on YXXM motifs by 
tyrosine kinases (12, 13). In immune cells, class IA PI3Ks can 
be activated via multiple surface tyrosine-kinase-associated 
receptors, including the T- and B-cell receptors (TCR and 
BCR, respectively), toll-like receptors (TLRs), as well as vari-
ous co-receptors [CD19, inducible T-cell costimulator (ICOS), 
CD28, PD-1, and cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4)], and cytokine receptors (IL-1, IL-2, IL-4, IL-12, and 
IFN-γ) that contain YXXM motifs in their cytoplasmic domain 
(12). After activation, class I PI3Ks catalyze the conversion of 
phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2 or PIP2] 
to phosphatidylinositol-(3,4,5)-trisphosphate [PI(3,4,5)P3 or 
PIP3] (12). PIP3 acts as binding sites for various intracellular 
enzymes harboring pleckstrin-homology (PH) domains, in 
particular for the serine/threonine kinase AKT, which is 
then recruited at the inner leaflet of the cell membrane to be 
phosphorylated. The activity of AKT is positively regulated by 
the binding of PIP3 to its PH domain, but also by the phospho-
rylation at position Thr308 by phosphoinositide-dependent 
kinase-1 (PDK1) and at position Ser473 by mTORC2 (15) 
(Figure 1). Once AKT is activated, it inhibits the tuberous scle-
rosis heterodimeric complex (TSC1/TSC2 complex), inducing 
the release of the GTP-binding protein Ras homolog enriched 

Abbreviations: AMPK, AMP-activated protein kinase; APDS, activated PI3Kδ syndrome; ASCT2, sodium-dependent neutral amino acid trans-
porter type 2; BAD, Bcl-2-associated death promoter; BCL10, B-cell lymphoma/leukemia 10; BCR, B-cell receptor; BDCP, BEACH domain-containing 
protein; BEACH, Beige and Chediak-Higashi; BENTA, B cell expansion with NF-κB and T cell anergy; BTK, Bruton’s tyrosine kinase; CARD11, 
caspase recruitment domain-containing protein 11; CARMIL2, capping protein regulator and myosin 1 linker 2; CBM, CARD11-BCL10-MALT1; CID, combined 
immunodeficiency; CMV, cytomegalovirus; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; CR2, complement receptor 2; CVID, common variable immuno-
deficiency; CWS, Cowden syndrome; DEPTOR, DEP domain-containing mTOR interacting protein; EBV, Epstein-Barr virus; 4E-BP1, eukaryotic translation initia-
tion factor 4E (eIF4E)-binding protein 1; FOXO, Forkhead box protein O; GOF, gain-of-function; ICOS, inducible T-cell costimulator; IPEX, immune dysregulation,  
polyendocrinopathy, enteropathy, X-linked; IUIS, International Union of Immunological Societies; KO, knockout; LOF, loss-of-function; LPS, lipopolysaccharide; LRBA, 
lipopolysaccharide-responsive beige-like anchor protein; MALT1, mucosa-associated lymphoid tissue lymphoma translocation protein 1; mLST8/GβL, mammalian 
lethal with SEC13 protein 8/G protein β subunit-like; mSIN, stress-activated map kinase-interacting protein 1; mTOR, mechanistic/mammalian target of rapamycin; 
mTORC, mTOR complex; NF-κB, nuclear factor-kappa B; PASLI, p110δ activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency; 
PDK1, phosphoinositide-dependent kinase-1; PH, pleckstrin-homology; PHTS, PTEN hamartoma tumor syndrome; PHLPP, PH domain leucine-rich repeat protein 
phosphatase; PID, primary immunodeficiency; PIP2, phosphatidylinositol-(4,5)-bisphosphate; PIP3, phosphatidylinositol-(3,4,5)-trisphosphate; PI3K, phosphoinositide 
3-kinase; PKB, protein kinase B; PRAS40, proline-rich AKT substrate 40 kDa; PROTOR, protein observed with Rictor; PTEN, phosphatase and tensin homolog; RAPTOR, 
regulatory-associated protein of mTOR; RHEB, Ras homolog enriched in brain; RICTOR, rapamycin-insensitive companion of mTOR; RLTPR, RGD, leucine-rich repeat, 
tropomodulin and proline-rich-containing protein; S6K, S6 kinase; SH2, Src-homology 2; TCR, T-cell receptor; TFH, follicular helper T cells; TH, T helper; TLR, toll-like 
receptor; Tregs, regulatory T cells; VZV, varicella zoster virus.
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FiGURe 1 | The PI3K/AKT/mTOR/S6K pathway plays a major role in the control of immune cell homeostasis. Class IA PI3Ks are heterodimeric molecules 
composed of a p110 catalytic subunit (p110α, p110β, or p110δ) and a p85 regulatory subunit. In immune cells, class IA PI3Ks can be activated via multiple surface 
tyrosine kinase-associated receptors [e.g., BCR, TCR, TLR, CD19, ICOS, PD-1, and CTLA-4] that bear YXXM motifs in their cytoplasmic domain. In the absence of 
ligand binding, the TSC1/TSC2 complex negatively regulates mTORC1, and therefore protein synthesis, by converting RHEB into its inactive GDP-bound state. After 
receptor activation, phosphorylated YXXM motifs provide binding sites for the p85 regulatory subunit that brings the p110 catalytic subunit to the membrane, where 
it converts PIP2 to PIP3. PIP3 serves as plasma membrane docking sites for PH-domain containing proteins, such as AKT, and its upstream activator PDK1. The 
activity of AKT is also positively regulated by mTORC2. Once phosphorylated, AKT inhibits the TSC1/TSC2 complex, and allows the release of GTP-bound RHEB, 
thereby enabling mTORC1 activation. Activated mTORC1 triggers biosynthetic pathways (protein synthesis) essential for cell proliferation, survival, and metabolism 
through S6Ks and 4E-BP1 phosphorylation, while inhibiting ULK1, and therefore autophagy. S6K phosphorylate numerous substrate, including ribosomal protein 
S6, eukaryotic translation initiation factor eIF4B, and eukaryotic elongation factor 2 (eEF2) kinase. The phosphorylation of 4E-BP1 prevents its binding to the 
cap-binding protein eIF4E, allowing it to participate in the formation of the eIF4F complex, which is composed of the DEAD-box RNA helicase eIF4A, the cap-
binding protein eIF4E, and the large “scaffold” protein eIF4G, and which is required for the initiation of cap-dependent translation. PTEN is a negative regulator of 
PI3K/AKT/mTOR/S6K signaling pathway that dephosphorylates PIP3 back to PIP2. Red circles: phosphorylation; normal arrows: activation; blunt arrows: inhibition.
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in brain (RHEB) from the inhibition by TSC2, therefore ena-
bling the activation of mTORC1 (16) (Figure 1).

The serine/threonine kinase mTOR was identified while inves-
tigating the mechanism of action of rapamycin (also known as 
sirolimus), an immunosuppressive drug inhibiting mTOR enzy-
matic activity that is currently used to prevent organ transplant 
rejection and to treat lymphoproliferative diseases (17, 18). mTOR 
associates with distinct sets of proteins to form the intracellular 
signaling complexes mTORC1 and mTORC2 (8). Both complexes 
contain mammalian lethal with SEC13 protein 8/G protein β 
subunit-like (mLST8/GβL) and DEP domain-containing mTOR 
interacting protein (DEPTOR). In contrast, the partners regulatory- 
associated protein of mTOR (RAPTOR) and proline-rich AKT 
substrate 40 kDa (PRAS40) define the mTORC1 network, whereas 
rapamycin-insensitive companion of mTOR (RICTOR), stress-
activated map kinase-interacting protein 1 (mSIN1), and protein 
observed with Rictor (PROTOR) are specific to the mTORC2 
complex (8, 19, 20) (Figure 1). The major function of mTORC1 

is to sense nutrients and mitogenic signals (8, 19, 20). Thus, when 
conditions are favorable, mTORC1 triggers biosynthetic pathways 
essential for cell growth and proliferation, mainly through direct 
phosphorylation of ribosomal S6K and eukaryotic translation 
initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) (8, 19, 20). 
mTORC1 also inhibits the serine/threonine kinase ULK1, thereby 
suppressing autophagy, a conserved catabolic process by which 
double-membrane vesicles (autophagosomes) engulf cytoplas-
mic contents for lysosomal degradation. Autophagy allows the 
recycling of cellular components and the generation of nutrients 
under metabolic stress, promoting cell survival (8, 21, 22). It is 
also implicated in more complex functions and participates in the 
regulation of immunity (23). Overall, the phosphorylation of S6Ks 
and 4E-BP1, along with the suppression of autophagy by active 
mTORC1, are essential for cell growth (24). Conversely, in case 
of starvation, AMP-activated protein kinase (AMPK) inactivates 
mTORC1 and phosphorylates the active sites of ULK1, therefore, 
enabling autophagy initiation (8, 21, 22). mTORC2 plays various 
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roles in cell survival, metabolism, proliferation, and cytoskel-
eton organization via the phosphorylation of AKT on Ser473 
(mTORC2-dependent), leading to the phosphorylation, seques-
tration, and further inhibition of Forkhead box protein O (FOXO) 
(9). Negative regulators controlling PI3K/AKT/mTOR/S6K 
pathway include the phosphatase and tensin homolog (PTEN) 
that dephosphorylates PIP3 back to PIP2, thereby downregulating 
AKT signaling (25) (Figure 1).

Together with 4E-BP1, ribosomal S6Ks represent the best 
characterized substrates of mTORC1 (11, 26, 27). Like AKT, 
S6K1 (isoforms p70- and p85-S6K1), and S6K2 (isoforms p54- 
and p60-S6K2) belong to the AGC serine/threonine kinases 
family (26). The S6K activation begins with the phosphorylation 
of serine residues in the C-terminal domain that expose the 
internal region of the protein, allowing mTOR to phosphoryl-
ate Thr389 in S6K1 and Thr388 in S6K2. Indeed, S6K activation 
absolutely requires mTORC1-mediated phosphorylation (28). 
The subsequent phosphorylation by PDK1 at Thr229 in S6K1 and 
at Thr228 in S6K2 leads to their full activation (26) (Figure 1). 
S6K proteins originally gained their name due to their ability 
to phosphorylate ribosomal protein S6, a component of the 40S 
ribosome subunit, and their preferred phosphorylation motif 
has been characterized as RXRXXS/T (26). S6K1 and S6K2 have 
many functional similarities. They regulate several cellular and 
molecular processes, including transcription, protein synthesis, 
metabolism, cell pro liferation, and survival (11, 26, 28). Although 
S6K1 has been more extensively studied, some distinct functions 
of S6K2 have been described (29). For instance, it has been shown 
that S6K2 plays a role in Th17 differentiation through the regula-
tion of the transcription factor RORγ (30) despite a more recent 
study suggesting that this function may be context-specific (31). 
Ribosomal protein S6 was the first discovered substrate of S6Ks. It 
promotes biosynthetic pathways that are important for cell growth 
(27, 28), but the functional significance of its phosphorylation still 
remains not fully understood (28). However, the analysis of the 
phosphorylation status of p70-S6K1 (at Thr 389) and its substrate 
ribosomal protein S6 (at Ser240/244; S6K dependent) is widely 
and routinely used as a readout of mTORC1 activity (32, 33), in 
particular in lymphocytes populations, where other mTOR sign-
aling markers are more difficult to monitor. A number of other 
S6K1 substrates have been involved in the regulation of protein 
synthesis at levels of initiation (eIF4B: eukaryotic translation 
initiation factor 4B), and elongation (eEF2: eukaryotic elongation 
factor 2), but also in RNA splicing (CBC: cap binding complex; 
SKAR: S6K1 Aly/REF-like target) (Figure 1). In addition, S6K1 
plays a role in cell survival by blocking apoptosis through phos-
phorylation of the pro-apoptotic protein Bcl-2-associated death 
promoter (BAD), thereby preventing its interaction with BCL-X 
or BCL-2 (11, 26, 28). Some evidences also indicate that S6K1 
may participate in cytoskeleton dynamics, in particular in F-actin 
reorganization (34).

Studies in animal models have suggested that reduced 
PI3K/AKT/mTOR/S6K signaling (hypoactivation) can lead to 
immune deficiency, whereas uncontrolled PI3K/AKT/mTOR/
S6K signaling (hyperactivation) is associated with autoim-
munity and hematological malignancies (12). Nevertheless, 
this simplistic dichotomous model does not reflect the highly 

complex regulation of this pathway. Indeed, several human PIDs 
that are associated with a hyperactivation of the PI3K/AKT/
mTOR/S6K pathway have features of both immunodeficiency 
and immune dysregulation, suggesting a tight and dynamic 
modulation of the signaling cascade for optimal immune cell 
function.

mTOR plays a central role in the regulation of immune 
responses evidenced in numerous studies showing that mTOR 
or mTORC1 inhibition can have both positive and negative 
effects on lymphocytes, in particular on T-cell development 
and functions [reviewed in Ref. (9)]. The mTOR hypomor-
phic mouse, which is a model of mTORC1/mTORC2 inhibi-
tion [murine Mtor knockout (KO) is lethal and there are no 
reported cases of human loss-of-function (LOF) mutations in 
MTOR] is characterized by an immunodeficient phenotype 
with impaired development, proliferation, and migration of 
lymphocytes, as well as abnormal antibody production (35). 
Reduced mTOR expression results in decreased phosphoryla-
tion of the mTORC1 target p70-S6K1 and of the mTORC2 tar-
get AKT (phosphorylation at Ser473) in fibroblasts and TCR 
stimulated T  cells. However, despite reduction of p70-S6K1 
phosphorylation in murine B cells activates with lipopolysac-
charide (LPS), mTORC2 activity is increased, suggesting that 
AKT regulation may be cell-type specific (35). In addition, 
PI3K/AKT/mTOR pathway seems to play differing roles 
during the differentiation and function of regulatory T  cells 
(Tregs). Tissue tolerance is associated with the upregulation of 
enzymes that consume many of the essential amino acids (36). 
These starvation conditions lead to mTOR inhibition, promot-
ing the expression of FoxP3 in naïve T cells, and therefore the 
generation of CD4+ FoxP3+ Tregs (37). In fact, continued TCR 
signaling and constitutive PI3K/AKT/mTOR activity antago-
nizes Foxp3 induction (9, 37, 38). However, under mTOR 
inhibitory conditions, Tregs are not optimally functional, 
requiring mTOR re-activation or inflammatory conditions 
to acquire their full suppressive potential. Alternate cycles of 
mTOR activity may therefore be needed for optimal functional 
induction of Tregs (37, 39). The mTOR downstream effectors 
S6Ks are essential in controlling the cell size and proliferation 
of certain cell types such as hepatocytes (40, 41). However, in 
contrast to mTOR, the functions of S6K1 and S6K2 in lympho-
cytes still remain controversial (33). Simultaneous deletion of 
S6K1 and S6K2 genes in a murine model was associated with 
a severe reduction in viability due to perinatal lethality, but 
single S6K1 or S6K2 KO mice did not exhibit obvious immune 
defects (although no detailed immunological study was 
performed) (41, 42). In addition, it has been shown in  vitro 
using S6K1/S6K2 double KO T and B  cells that S6K activity 
is dispensable for lymphocytes growth and proliferation after 
antigen receptor engagement (33). Germline deletion of Rps6 
that encodes for ribosomal protein S6 is embryonically lethal 
(43) and T  cell-specific deletion of Rps6 abolishes thymic 
T-cell development (44). By contrast, the role of S6 phospho-
rylation is not well understood. Knockin mice in which all 
serine residues of S6 protein have been mutated to alanine to 
prevent phosphorylation by S6Ks are viable (45) and show 
normal T-cell activation and differentiation (46). All these 
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data clearly demonstrate the complexity of PI3K/AKT/mTOR/
S6K pathway regulation.

GAiN-OF-FUNCTiON (GOF) MUTATiONS 
iN THe GeNeS eNCODiNG CLASS i Pi3K 
CAUSe ACTivATeD Pi3Kδ SYNDROMe 
(APDS)

Hyperactivation of the PI3K/AKT/mTOR/S6K signaling pathway 
in immune cells can be the consequence of heterozygous GOF 
mutations in the genes encoding for PI3Kδ that cause an immune 
dysregulation disorder called activated PI3Kδ syndrome [APDS; 
also known as “p110δ activating mutation causing senescent 
T  cells, lymphadenopathy, and immunodeficiency” (PASLI)] 
(47). Molecularly, APDS encompasses two different disorders: 
APDS1 and APDS2. APDS1 (or PASLI-CD) is the consequence of 
mutations in the PIK3CD gene encoding for p110δ, the catalytic 
subunit of PI3Kδ that result in single-amino-acid substitutions 
leading to p110δ overactivation. APDS2 (or PASLI-R1) results 
from mutations in the PIK3R1 gene encoding for p85α, the regu-
latory subunit of PI3Kδ. These mutations impair the binding of 
p85α to its cognate partner p110δ that is, therefore, inefficiently 
inhibited (47–51). Up to date, more than 150 APDS patients have 
been reported (48–68). They display features of both immune 
deficiency and immune dysregulation, and all of them present 
with early-onset, as well as severe and recurrent sino-pulmonary 
infections, mostly by encapsulated bacteria (47, 58). Benign lym-
phoproliferation (hepatosplenomegaly, lymphadenopathy, focal 
nodular lymphoid hyperplasia), various autoimmune manifesta-
tions, and B cell lymphomas are also frequently observed (47, 54, 
55, 58, 61). Growth retardation is, however, commonly associated 
with APDS2, but not APDS1 (58, 66).

Most APDS patients have elevated transitional B cells, reduced 
class-switched memory B cells, variable immunoglobulin levels 
(mainly reduced IgG and increased IgM levels, hypogammaglob-
ulinemia, or in some cases agammaglobulinemia) associated with 
a poor vaccine response, and an impaired in vitro B cell isotype 
switching (47, 51, 64, 69). Abnormalities in B lymphocytes from 
APDS patients recapitulate the defects of class-switch recombina-
tion that are observed in B  lymphocytes from PTEN-deficient 
mice (70). Although APDS was initially described as a common 
variable immunodeficiency (CVID)-like disease, affected patients 
also suffer from recurrent herpes virus infections (i.e., EBV, CMV, 
and VZV), indicating an impaired T  cell function (47, 52, 54, 
56–58, 65). In addition, the majority of APDS patients show a 
progressive CD4+ T cell lymphopenia with a decreased frequency 
of CD4+ naïve T  cells [in contrast to the lethal CD4+ T  cell 
hyperplasia that is described in mice with a T cell-specific dele-
tion of PTEN (71)], but an excessive accumulation of terminally 
differentiated, senescent CD8+ effector T cells (64). Considering 
the T  cell abnormalities, APDS may be classified as combined 
immunodeficiency (CID) rather than as CVID-like disease.

In T cells, PI3Kδ is activated downstream of CD28, leading to 
enhanced AKT and mTOR signaling, which blocks autophagy but 
stimulates T cell proliferation and terminal differentiation through 
the phosphorylation of S6K (12). Activated AKT also mediates 

the phosphorylation and subsequent degradation of FOXO tran-
scription factors that regulate T cell expansion and memory T cell 
differentiation (72). The analysis of PI3K signaling in T cells from 
APDS patients showed a constitutive hyperphosphorylation of both 
AKT (on Thr308: PI3K/PDK1 dependent and on Ser473: mTORC2 
dependent) and S6 (on Ser235/236 and Ser240/244: mTORC1 
dependent) (50–52, 64, 65, 67). The general overactivation of 
the PI3K/mTOR/S6K signaling pathway promotes the switch to 
an anabolic cellular state with increased aerobic glycolysis that is 
required for the expansion of effector T cells (73). Downregulation 
of mTOR signaling and reversion to a catabolic cellular state by 
autophagy induction, are, however, crucial for memory T cell for-
mation and prolonged survival (73). In APDS patients, the constant 
maintenance of aerobic glycosis restrains the function and survival 
of memory CD8+ T  cells, leading to an abundance of senescent 
effector and short-lived effector memory CD8+ T cells that exhibit 
a poor recall response in vitro and could account for the defective 
antiviral immunity in vivo (64, 65, 74). Similarly, high AKT and S6 
phosphorylation levels were observed in transformed EBV-B cells, 
peripheral blood mononuclear cells, and isolated B  cells (total 
B  cells and isolated B  cell subsets) from APDS patients at basal 
state and after B cell stimulation (48, 51, 52, 65). However, the link 
between the increased PI3K/mTOR/S6K signaling in B cells and 
the observed B cell phenotype is still a focus of research.

The insights into the pathophysiology of APDS allowed 
refining the therapeutic approaches. Indeed, it has been shown 
that in  vitro treatment of unstimulated T  cell blasts with the 
mTOR inhibitor rapamycin (sirolimus) leads to a decrease of S6 
hyperphosphorylation (64). More notably, the administration of 
rapamycin was found to improve the clinical and immunological 
phenotype of two APDS patients with a reduction of hepatosple-
nomegaly and lymphadenopathy, as well as a normalization of T 
cell subpopulations (64, 67). However, PI3Kδ regulates additional 
pathways to mTOR (such as FOXO for example) and mTOR is 
also controlled by PI3K-independent pathways (13). Therefore, 
selective inhibitors of the PI3Kδ subunit, which have already 
shown remarkable success in certain hematologic malignancies, 
should be considered as future therapeutic options in APDS 
patients. Both in vitro and in vivo data support the specific inhibi-
tion of PI3Kδ as a promising therapy. Indeed, the selective p110δ 
inhibitor IC87114 is able to dampen the activity of the mutated 
PI3Kδ in vitro in APDS1 patients’ T cells (52), and both p110δ 
(APDS1) and p85α (APDS2) are strongly inhibited in vitro by the 
PI3Kδ-specific inhibitor idelalisib (GS-1101 or CAL-101), which 
is currently approved by the US-Food and Drug Administration 
for the treatment of chronic lymphocytic leukemia (50, 75). 
In addition, the first clinical trial (#NCT02435173) that has 
been conducted by Novartis with the PI3Kδ-specific inhibitor 
leniolisib (CDZ173) in six APDS patients produced encouraging 
results (76). Oral administration of leniolisib during 12 weeks 
was well tolerated and was associated with an improvement of 
both laboratory and clinical parameters (reduction of peripheral 
transitional B cells, naive B cells, and senescent T cells; decrease 
of IgM and inflammatory cytokines levels; reduction of spleno-
megaly and lymphadenopathy) (76). Another clinical trial for 
an inhaled PI3Kδ inhibitor, sponsored by GlaxoSmithKline, is 
currently ongoing in patients with APDS (#NCT02593539) (47).
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LOF MUTATiONS iN PTEN LeAD TO AN 
ACTivATeD PiK3δ SYNDROMe-LiKe 
DeFiCieNCY (APDS-LiKe)

PTEN encodes a lipid and protein phosphatase that dephosphoryl-
ates PIP3 back to PIP2 (77), thereby inhibiting the PI3K/mTOR/
AKT/S6K signaling cascade (25). Impairment of PTEN activity 
is associated with an overabundance of PIP3 and a constitutive 
downstream activation of AKT, leading to cellular proliferation 
and overgrowth (78).

A complete disruption of Pten in mouse results in early embry-
onic death (79), whereas Pten heterozygous mutant mice display 
hyperplastic-dysplastic features, develop spontaneously tumors 
(80), and present a lethal polyclonal autoimmune disorder 
with a phenotype that is reminiscent of Fas-deficient mice (81). 
Mice carrying a B cell-specific deletion of Pten show abnormal 
B  cell differentiation and function, with increased numbers of 
marginal zone and B1-a B  cells in the spleen, a production of 
serum autoantibodies, an impaired response to T-dependent and 
T-independent immunizations, as well as a defect in immuno-
globulin class-switch recombination (70, 82, 83).

In humans, heterozygous germline mutations in PTEN may 
cause different autosomal dominant disorders including Cowden 
syndrome (CWS; OMIM 158350), Bannayan–Riley–Ruvalcaba 
syndrome (OMIM 153480), and Proteus syndrome (OMIM 
176920), which are characterized by the development of multiple 
benign hamartoma and malignant tumors (84–86). The term 
PTEN hamartoma tumor syndrome (PHTS) is therefore used to 
describe any patient with a germline PTEN mutation regardless 
of the phenotype (78). Browning et al. reported a case of CWS 
associated with CID (87). In line with this observation, recent 
studies indicated that heterozygous LOF mutations in PTEN 
lead to immunodeficiency and immune dysregulation, with a 
clinical and immunological presentation that resembles APDS 
phenotype, including recurrent infections, organomegaly, and 
CD4+ T cell lymphopenia (68, 88). However, immunodeficiency 
seems to occur only in some, but not all, patients with PTEN LOF 
mutations (68). Similarly to patients with heterozygous GOF 
mutations in PIK3CD, PTEN mutations are associated with an 
aberrant hyperactivation of the PI3K/AKT/mTOR/S6K pathway 
with increased phosphorylation of AKT, mTOR, and S6 in T cells 
(68, 87). Driessen et  al. further studied, in a cohort of nine 
PHTS patients, the impact of germline PTEN mutations on the 
peripheral B cell development and the humoral immune response 
(89). They observed decreased counts of switched memory B cells 
associated with a dysregulated T-dependent B  cell response, 
abnormalities in class-switch recombination, and decreased 
somatic hypermutation, resulting in hypogammaglobulinemia in 
about one-third of the patients (89). In mice, it has been shown 
that the level of activation-induced cytidine deaminase, the main 
regulator of somatic hypermutation and class-switch recombina-
tion, is regulated by the PI3K/AKT signaling cascade (70, 83, 90). 
This could explain, at least in part, the dysregulated humoral 
immune response observed in human PTEN deficiency (89).

Surprisingly, despite PTEN dysfunction, PHTS patients display  
a normal frequency and phenotype of CD4+ FoxP3+ Tregs, as 
well as a normal activation of the downstream signaling pathway 

with similar percentages of S6-phosphorylated Tregs in PHTS 
patients and controls subjects (88). In this cell subset, the enzyme 
PH domain leucine-rich repeat protein phosphatase (PHLPP), 
located downstream of PTEN and highly expressed in normal 
Tregs, provides a complementary phosphatase activity that is 
important for limiting PI3K hyperactivation (88). PTEN hap-
loinsufficiency leads to APDS-like immune dysregulation, but 
the compensatory activity of the phosphatase PHLPP may help 
to maintain checkpoint control at the immunological synapse 
in human Tregs (88), possibly preventing the development of 
autoimmune manifestations.

LiPOPOLYSACCHARiDe-ReSPONSive 
BeiGe-LiKe ANCHOR PROTeiN (LRBA) 
DeFiCieNCY iS ASSOCiATeD wiTH 
iMPAiReD mTOR/S6K SiGNALiNG  
iN T CeLLS

Lipopolysaccharide-responsive beige-like anchor protein 
(LRBA) belongs to the Beige and Chediak-Higashi (BEACH) 
domain-containing protein (BDCP) family together with eight 
other human proteins (91, 92). Although the exact functions of 
BDCPs remain unclear, they are considered to act as scaffolding 
molecules forming multiprotein complexes involved in vesicle 
trafficking and receptor signaling (92). Biallelic mutations in 
LRBA cause a PID and immune dysregulation disorder known 
as LRBA deficiency (93). LRBA-deficient patients show an 
early-onset broad spectrum of clinical and immunological 
manifestations, including recurrent infections, organomegaly, 
inflammatory bowel-like disease, hypogammaglobulinemia, and 
autoimmunity (94, 95). Several LRBA-deficient patients present 
with an immune dysregulation, polyendocrinopathy, enteropa-
thy, X-linked (IPEX)-like syndrome, indicating Treg cells impair-
ment, that might contribute to the development of the various 
autoimmune manifestations (96). In fact, nearly two-thirds of 
LRBA-deficient patients have reduced Tregs frequency (95) with 
decreased expression of the canonical Treg markers (FOXP3, 
CD25, Helios, CTLA-4) and impaired Treg cell-mediated sup-
pression (96). Additional perturbations observed in the T  cell 
compartment such as increased proportion of circulating folli-
cular helper T cells (TFH) and decreased proportion of circulating 
follicular Tregs suggest an ineffective regulation of autoantibod-
ies’ production (96). Although the frequency of recent thymic 
emigrants seems to be normal, conventional T  cells and Tregs 
from LRBA-deficient patients exhibit an increased apoptosis 
(96). In mice, Treg-specific disruption of mTORC1 (through the 
deletion of Raptor) leads to a profound loss of Treg suppressive 
activity with early development of a lethal autoimmunity and 
lymphoproliferation (39). Mechanistically, mTORC1 signaling 
promotes the cholesterol/lipid metabolism that is crucial for cell 
proliferation and for CTLA-4 upregulation, thereby establishing 
functional Treg competency (39). CTLA-4 belongs to the T cell 
co-stimulatory molecule family, including CD28, ICOS, and PD1. 
It is a critical negative regulator of T cell proliferation that serves 
as a “checkpoint” of immune responses (97). Interestingly, the role 
of LRBA in CTLA-4 post-transcriptional regulation is currently 
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the only proven cellular function for LRBA (98). Specifically, 
LRBA binds through its BEACH domain to the cytoplasmic tail of 
CTLA-4, allowing its vesicular transport to the plasma membrane 
of Tregs, and activated conventional T cells (98). CTLA-4 is then 
able to remove, via transendocytosis, the CD80 and CD86 co-
stimulatory molecules from the cell surface of antigen-presenting 
cells, thereby controlling T cell activation (99). However, when 
LRBA is absent, the adaptor protein AP-1 binds to CTLA-4, 
leading to its lysosomal degradation (98). Decreased CTLA-4 
expression might therefore contribute to the high frequency of 
autoimmune manifestations observed in patients with LRBA 
deficiency (94, 95). Indeed, patients with heterozygous LOF muta-
tions in CTLA-4 develop an immune dysregulation syndrome 
with an LRBA-deficiency-like clinical phenotype (100–102) 
known since 2014 as CTLA-4 deficiency. Surprisingly, CTLA-4 
was assessed to bind to PI3K with the same avidity as CD28, pos-
sibly leading to the activation of PDK1 that phosphorylates AKT 
at position Thr308 (103, 104), thereby activating mTORC1 signal-
ing cascade. Moreover, in T cells, CTLA-4 dependent activation 
of PI3K and AKT was shown to sustain T  cell anergy without 
cell death (105). However, the intracellular signaling capacity of 
CTLA-4 was recently questioned (106). In contrast, it has been 
reported that activated LRBA-deficient CD4+ and CD8+ T  cell 
subsets show an impaired mTORC1 and mTORC2 activity with 
a reduced phosphorylation of downstream mTORC1 (S6 and 
4E-BP1) and mTORC2 (AKT at position Ser473) substrates (96). 
Therefore, the PI3K/mTOR/S6K signaling pathway should also 
be investigated in patients with CTLA-4 deficiency.

Besides Tregs dysfunction, patients with LRBA deficiency 
present defects in the B cell compartment with reduced num-
bers of switched memory B  cells and plasmablasts, impaired 
immunoglobulin secretion, low proliferative responses, and 
a high susceptibility to apoptosis (95, 96). In addition, LRBA-
deficient B cells show an impairment of the autophagic flux with 
an abnormal accumulation of autophagosomes (93). Pengo et al. 
have shown that autophagy is required for plasma cell homeosta-
sis and long-lived humoral immunity by limiting endoplasmic 
reticulum stress and immunoglobulin synthesis, while sustaining 
energy metabolism and plasma cell viability (107). The impaired 
B cell differentiation and hypogammaglobulinemia observed in 
LRBA-deficient individuals may therefore be attributable to an 
increased B cell apoptosis and a reduced plasma cell survival due 
to defective autophagy. In fact, autophagy is also essential for the 
survival of memory B cells, and for the maintenance of protec-
tive antibody responses required to control viral infections in 
mice (108). In addition, the accumulation of apoptotic cells may 
trigger as well the development of autoimmunity (109). mTOR 
plays a key role at the interface of the pathways controlling cell 
growth and autophagy. Under nutrient starvation, reduced 
growth factor signaling, or stress conditions, mTOR is inhibited, 
and autophagy is therefore promoted. Conversely, the activation 
of the PI3K/AKT pathway negatively regulates autophagy induc-
tion (22). It has been previously suggested that LRBA might act 
as a scaffold protein, coordinating the assembly and activation 
of mTOR complexes or of protein networks involved in the 
autophagic process, as well as the recruitment of downstream 
molecules (96). Future studies addressing mTOR/S6K signaling 

in the B cell compartment of LRBA-deficient patients may help 
to further clarify the links between LRBA, autophagy, and B cell 
homeostasis.

MUTATiONS AFFeCTiNG THe CARD11-
BCL10-MALT1 (CBM) SiGNALOSOMe 
COMPLeX ARe ReSPONSiBLe FOR 
NOveL PiD PHeNOTYPeS wiTH AN 
ABNORMAL ACTivATiON OF THe mTOR/
S6K SiGNALiNG PATHwAY

Upon TCR and CD28 activation, the adapter protein caspase 
recruitment domain-containing protein 11 (CARD11, also called 
CARMA1), which is specifically expressed in hematopoietic 
cells, becomes phosphorylated by protein kinase C and other 
kinases including AKT (110). Phosphorylated CARD11 recruits 
B-cell lymphoma/leukemia 10 (BCL10) and mucosa-associated 
lymphoid tissue lymphoma translocation protein 1 (MALT1) 
to form a scaffold called the CBM (CARD11-BCL10-MALT1) 
signalosome complex that is necessary for optimal activation 
of the canonical nuclear factorp-κB (NF-κB) pathway (111). 
Recently, it has been shown that CARD11 and the paracaspase 
MALT1, but not BCL10, are also required for an optimal activa-
tion of the mTOR/S6K pathway in T cells in response to TCR and 
CD28 co-receptor stimulation (112).

LOF autosomal recessive mutations in CARD11, MALT1, 
and BCL10 are the cause of a new group of CIDs character-
ized by recurrent sinopulmonary infections, dysregulated 
B  cell development, and abnormal T  cell proliferation despite 
normal lymphocytes counts, due to a defective canonical NF-κB  
activation after antigen receptor stimulation (113–118). How-
ever, these recently described disorders have a distinct pheno-
type from other known PIDs affecting the NF-κB axis (113). 
In addition, there are notable differences between the clinical 
presentation of CARD11, MALT1, and BCL10 deficiencies 
(113). For instance, CARD11-deficient patients display variable 
immunoglobulin levels and Tregs numbers, a predominance of 
Pneumocystis jirovecii infections, but no gastrointestinal inflam-
mation, whereas BCL10 deficiency has an impact on lympho-
cytes (low memory T cells) and fibroblasts but not on myeloid 
cells. CARD11 and BCL10 deficiencies are both characterized 
by the lack of autoimmune manifestations despite reduced 
Treg numbers, possibly reflecting the individual nuanced and 
independent functions of the CBM proteins (113). CARD11-
deficient and MALT1-knockdown cells are characterized by a 
reduced phosphorylation of S6K and S6, emphasizing the role 
of CARD11 and MALT1 in the mTOR/S6K signaling pathway 
(112). In addition, the metabolic reprogramming and the pro-
liferation of CD4+ T cells that are also mTORC1 dependent are 
impaired after MALT1 inhibition (112).

Very recently, Ma et  al. have described rare heterozygous 
hypomorphic CARD11 mutations in eight individuals from 
four unrelated families with severe atopic dermatitis (119). The 
phenotype also included variable cutaneous and respiratory 
infections (88%), eosinophilia (86%), B cell lymphopenia (29%) 
with low IgM, but normal or elevated IgA (43%), and hyper-IgE 
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(71%) (119). Transfection of mutant CARD11 constructs into 
T  cell lines demonstrated both LOF and a dominant-negative 
effect on mTORC1 (indicated by reduced S6 phosphorylation), 
but also on NF-κB signaling, at basal state and after antigen-
receptor-induced stimulation. Similarly, mTORC1 activity was 
also attenuated in T cells, and to a lesser extent in B cells, from 
patients with heterozygous hypomorphic mutations in CARD11, 
whereas AKT phosphorylation on Ser473 (mTORC2-dependent) 
was normal (119). mTOR activity is known to be crucial for T 
helper (TH) cell differentiation (120). Patients’ T cells were char-
acterized by an impaired TH1 cytokine production (low IFN-γ) 
and a TH2-skewed phenotype, consistent with their atopic predis-
position. The reduced CARD11-dependent mTORC1 activation 
could contribute to impaired TH1 differentiation in these patients, 
allowing mTORC2-dependent TH2 response to dominate (119). 
The role of CARD11 in the regulation of mTORC1 activation 
depends on its ability to facilitate TCR-induced upregulation, 
but also on its capacity to activate sodium-dependent neutral 
amino acid transporter type 2 (ASCT2, also known as SLC1A5), 
an essential amino acid transporter required for extracellular 
glutamine import during T cell activation (121). Indeed, T cells 
from patients with germline hypomorphic CARD11 mutations 
showed reduced ASCT2 upregulation after TCR activation (119). 
However, the addition of exogenous glutamine in T cell culture 
medium was able to boost mTORC1 activation with increased 
S6 phosphorylation, and to partially correct the TH1 cell defect 
including proliferation and IFN-γ production (119). Further 
studies are required to evaluate whether glutamine supplementa-
tion, a very simple therapeutic intervention, could ameliorate 
atopic dermatitis in patients with CARD11 mutations (119). This 
clearly illustrates that a fine comprehension of the mechanisms 
regulating the mTOR/S6K signaling pathway is an essential pre-
requisite for a proper improvement of the patients’ therapeutic  
management.

Germline heterozygous GOF mutations in CARD11 have 
been linked to a novel congenital B cell lymphoproliferative dis-
order called BENTA for “B cell Expansion with NF-κB and T cell 
Anergy” (122, 123). Five different GOF CARD11 mutations in 16 
patients have been described so far (74, 122–124). They abrogate 
the requirement for antigen receptor engagement in CARD11 
activation, resulting in spontaneous CBM signalosome forma-
tion, and constitutive NF-κB activation that is responsible for 
an excessive accumulation of both immature transitional B cells, 
and polyclonal mature naive B cells (122, 125). BENTA patients 
develop massive B cell lymphocytosis early in life accompanied by 
splenomegaly and lymphadenopathy, but without obvious signs 
of autoimmunity (122, 123). Moreover, GOF CARD11 mutations 
can potentially predispose to B cell malignancies (74, 122, 126). 
Despite excessive B cell accumulation, BENTA disease is associ-
ated with an underlying immunodeficiency characterized by low 
frequencies of circulating memory and class-switched B  cells, 
poor humoral response to T cell-independent polysaccharide-
based vaccines, impaired plasma cell differentiation, and low IgM 
as well as variable IgA/IgG secretion. Recurrent sinopulmonary 
infections are common, and opportunistic viral infections have 
been noted in some patients (74). Although circulating T cells 
are present at normal numbers, they are hyporesponsive upon 

in vitro stimulation, suggesting that they may be anergic (74, 113, 
122–124). GOF mutations in CARD11 affect B and T cells dif-
ferently, promoting proliferation and survival of B lymphocytes 
versus anergy in T lymphocytes, but the underlying mechanisms 
remain poorly understood (74). Similarly to LOF CARD11 muta-
tions, BENTA-associated mutations may therefore perturb other 
CARD11-dependent downstream signaling cascades including 
the mTOR/S6K pathway (74). However, to our knowledge, there 
are currently no published data on mTOR and S6K phosphoryla-
tion in the context of BENTA disease.

FUTURe STUDieS SHOULD eXPLORe 
mTOR/S6K SiGNALiNG PATHwAY iN  
T CeLLS FROM CARMiL2-DeFiCieNT 
PATieNTS

Biallelic LOF mutations in the gene encoding for the cell 
membrane-cytoskeleton-associated protein RLTPR (RGD, 
leucine-rich repeat, tropomodulin and proline-rich-containing 
protein), also known as CARMIL2 (capping protein regulator 
and myosin 1 linker 2), have been shown to be responsible for a 
novel PID disorder characterized by cutaneous and pulmonary 
allergy, by various bacterial, fungal, and mycobacterial infections, 
as well as by EBV lymphoproliferation (EBV+ smooth muscle 
tumors) (127, 128). In addition to its involvement in cell polar-
ity and migration (129), CARMIL2 plays an important role in 
T cells by acting as a scaffold protein, bridging CD28 to CARD11 
and therefore to the NF-κB signaling axis (130). Mutations in 
CARMIL2 prevent the association of CARMIL2 with CARD11 
(130). CARMIL2-deficient T  cells have a perturbed cytoskel-
etal organization leading to abnormalities in T cell polarity and 
migration, but also an impaired CD28-mediated co-signaling 
with a defective activation of the canonical NF-κB pathway 
(127,  128,  130). CARMIL2-deficient patients have a normal 
production of TH2 cytokines, but a reduced secretion of TH1, 
as well as TH17 effector cytokines, and therefore the strong 
decrease in Treg numbers does not result in the development 
of autoimmunity (127, 130). This phenotype is reminiscent 
of CARD11-deficient patients (119). Considering the newly 
described role of CARD11 in the mTOR/S6K pathway activation 
following TCR and CD28 stimulation, future studies should also 
address this signaling cascade in T cells from CARMIL2-deficient  
patients.

MUTATiONS iN GeNeS eNCODiNG  
FOR THe CD19-COMPLeX COULD  
Be ASSOCiATeD wiTH A DiSTURBeD 
Pi3K/mTOR/S6K SiGNALiNG

CD19 is a B cell lineage-specific transmembrane protein expressed 
from the pro B cell stage until plasma cell differentiation (131). It 
forms the CD19-complex together with CD21, CD81, and CD225 
on the membrane of mature B cells. This complex is recruited to 
the BCR after ligation by complement (C3d) opsonized antigen 
via the complement receptor 2 (CR2, also known as CD21). This 
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increases the BCR-mediated signal into B cells, as the BCR itself only 
delivers a weak tonic signal. CD19, with its many tyrosine residues, 
amplifies this signal to properly activate B cells (131–133). Biallelic 
mutations in CD19, leading to loss of CD19 membrane expression, 
to concomitant reduction of CD21 levels, and hence B cell activa-
tion, have been described in CVID patients (134–137). Affected 
patients have recurrent bacterial infections, hypogammaglobu-
linemia, decreased memory B  cell numbers, defective antibody 
response after vaccination, as well as impaired somatic hypermuta-
tion, class-switch recombination, and immunoglobulin repertoire 
selection (134–138). As expected, they show neither T cell defects 
nor signs of lymphoproliferation (134–137). However, autoim-
mune manifestations (thrombocytopenia, glomerulonephritis) and 
auto antibody production have been reported (134, 135, 137, 139). 
Since CD81 is required for CD19 expression on the plasma mem-
brane, patients with CD81 deficiency display a phenotype that is 
highly similar to CD19-deficient patients (140, 141). Upon BCR 
ligation, CD19 is rapidly phosphorylated at multiple tyrosine resi-
dues, leading to the recruitment of various downstream signaling 
intermediates. A prominent feature of CD19 signaling is the bind-
ing of the p85α regulatory subunit and the subsequent activation 
of class IA PI3K, thereby promoting AKT phosphorylation (132).  
In the absence of CD19, AKT activity is reduced in B cells (142). 
However, CD19 amplifies not only BCR signaling, but also plays a 
crucial role in the regulation of TLR9 responses in human B cells 
(143). It recruits PI3K and mediates AKT as well as Bruton’s 
tyrosine kinase (BTK) phosphorylation after ligation of nucleic 
acids, controlling both early B  cell activation and proliferation 
(143). In fact, although AKT phosphorylation at position Ser473 
is still induced after BCR triggering in CD19-deficient B cells, it is 
strongly reduced after CpG stimulation. In addition, inhibition of 
PI3K and AKT results in TLR9-induced B cell activation defects 
that are similar to those observed in CD19-deficient B cells (143). 
Therefore, CD19 deficiency may also be associated with abnormal 
mTOR/S6K signaling in B cells, but no data are currently available 
in the literature. However, since the phenotype of p85α-deficient 
mice is much more severe than the one of CD19-deficient mice, 
other signaling components might compensate for the loss of 
CD19 (142, 144–146).

Pi3K/mTOR/S6K SiGNALiNG SHOULD  
Be iNveSTiGATeD iN iCOS-DeFiCieNT 
PATieNTS

Inducible T-cell costimulator (ICOS, also known as CD278) is 
another member of the CD28 T cell co-stimulatory molecules 
family (147). CD28 is expressed in resting and activated T cells, 
whereas ICOS expression is induced only upon T cell activation. 
Like CD28, ICOS delivers a positive signal that sustains T cell 
responses, and it is crucial for cell proliferation as well as cytokine 
production (148). CD28 and ICOS share a common signaling 
pathway, including PI3K recruitment (149, 150). In addition, 
ICOS plays an essential role in TFH differentiation as well as in 
germinal center formation, and hence in isotype switching and in 
the development of memory B cells (151, 152). ICOS deficiency 
was the first monogenic defect reported to cause CVID (153). 

To date, homozygous mutations (deletions) in ICOS have been 
identified in 16 patients, resulting in the absence of ICOS protein 
on T cells (153–158). ICOS deficiency was initially considered as 
a “predominantly antibody deficiency” by the IUIS PID expert  
committee (159), but following published patients with more 
complex phenotypes [reviewed by Ref. (154)], allowed a reclas-
sification of the disease as a CID (2, 3). Besides hypogamma-
globulinemia (93% of the cases) associated with an increased 
susceptibility to bacterial infections, more than two-thirds of 
the patients presented with autoimmunity and immune dys-
regulation (mainly enteropathy and psoriasis). Viral and oppor-
tunistic infections were frequently observed, and two patients 
developed malignancies (154). ICOS deficiency is associated 
with several immunological abnormalities including decreased 
numbers of switched memory B cells and circulating CXCR5+ 
TFH that coincide with an impaired germinal center formation 
(151, 154). B cell counts seem to decline progressively during 
the course of the disease, possibly as a consequence of a bone 
marrow production failure. IL-17 levels are markedly decreased 
in all patients who have been assessed for cytokine production, 
but without being associated with an increased susceptibility 
to Candida infection (154). ICOS is responsible for a greater 
PI3K activity than CD28, leading to a strong subsequent phos-
phorylation of AKT (150, 160). It bears a unique YMFM motif 
in its cytoplasmic tail that binds to the p85α regulatory subunit 
of PI3K (149).

In addition, ICOS interaction with its ligand ICOSL induces 
the recruitment of the PI3K regulatory subunit p50α at the 
synapse of T  cell/antigen-presenting cells conjugates (160). 
ICOS deficiency should therefore be associated with impaired 
PI3K signaling. The activity of PI3K, as well as of downstream 
effector signaling molecules including mTOR and S6K, should be 
explored in T cells from ICOS-deficient individuals.

Regarding CD28, no PID has been associated so far with muta-
tions in the gene encoding for this other T cell co-stimulatory 
receptor.

CONCLUSiON

There are several lines of evidence that link the PI3K/AKT/mTOR/
S6K signaling pathway to PIDs. Further studies are nevertheless 
required to characterize more deeply the crosstalk between the 
PI3K/AKT/mTOR/S6K cascade and other signaling molecules, 
as well as the disease-specific defects. Understanding the genetics 
and mechanisms behind the “immune TOR-opathies” is crucial 
to improve the management of the patients. The use of inhibitors 
such as mTOR and PI3K inhibitors that specifically target this 
signaling pathway and could restore properly the immune func-
tion represent very promising ther apeutic approaches. Selective 
PI3K inhibitors should be considered as future treatment options, 
in particular in APDS patients, with encouraging preliminary 
results in ongoing clinical trials.
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