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inTRODUCTiOn

Effective T cell-dependent immune responses require an antigen-specific signal through the T cell 
receptor (TCR) and simultaneous antigen non-specific signaling through a co-stimulatory receptor, 
whereas antigen signals alone induce anergy. Besides the prototype co-stimulatory receptor CD28, 
T cells also express a variety of other co-stimulatory receptors (1). However, although co-stimulation 
is an established crucial mechanism, there are a several generally neglected causes of uncertainty 
about its role. It is thus difficult to reconcile the fact that co-stimulatory signals are completely inde-
pendent of TCR signaling (2–9) with a simple coupled enhancing effect on TCR-induced activation 
and this is reinforced by the abundance of co-stimulatory receptors (1). The uncertainty about the 
role of co-stimulation as simply stimulatory is further reinforced by the fact that T cell activation in 
its absence does not generally cause anergy but development of regulatory T (Treg) cells (10–12), and 
that co-stimulation is not obligatory for T cell activation per se. The immense power and lethality 
of T cell responses induced by certain superagonistic anti-CD28 antibodies and superantigens may 
also seem inconsistent with the concept that co-stimulation simply delivers an immunostimulatory 
signal (13, 14).

A different interpretation is suggested by recent findings that some forms of co-stimulation, 
rather than being stimulatory, inhibits a mechanism preventing TCR-induced activation (15). The 
studies unveiling this role of co-stimulation were initiated by evidence that T cell motility, adhesion, 
and activation depend on the large transmembrane cell surface receptor low-density lipoprotein 
receptor-related protein 1 (LRP1) and its ligand thrombospondin-1 (TSP-1) (16–22). LRP1 consists 
of an α-chain (515  kDa) containing ligand-binding domains, a β-chain (85  kDa) containing the 
transmembrane domain and the cytoplasmic tail (23, 24), and has binding sites for more than 40 
ligands. TSP1 is a 450-kDa glycoprotein composed of three identical disulfide-linked polypeptide 
chains that display binding sites for various cell surface receptors (25). Co-stimulation through 
CD28, integrins, and CXCR4 inhibits a protease mechanism that removes LRP1 from the cell surface 
and antagonizes TCR-induced activation (15).

LRp1 EXpRESSiOn AnD FUnCTiOn in T CELLS

Low-density lipoprotein receptor-related protein 1 deficiency is lethal, which complicates analyses 
of its function and influence on disease development. TSP-1 deficiency in mice results in inflam-
mation in several organs suggesting that TSP-1 has a protective role in inflammation (26, 27).  
LRP1 is poorly expressed on T cells directly from the blood of healthy individuals and on T cells 
cultured in vitro (15). TSP-1 induces cell surface expression of LRP1 and the chemokines CXCL12 
and CCL5 elicit cell surface expression of LRP1 through TSP-1 (17). TSP-1 also binds to LRP1 and  
promotes integrin-dependent T cell adhesion (19, 21). However, the most prominent cell surface 

Abbreviations: LRP1, low-density lipoprotein receptor-related protein 1; TCR, T  cell receptor; Treg, regulatory T; TSP-1, 
thrombospondin-1; JAK STAT, Janus kinase signal transducer and activator of transcription; PI3K, phosphatidylinositol 
3-kinase; TGFβ, transforming growth factor beta, MMP, metalloprotease; ADAMs, disintegrin-type metalloproteinases; 
siRNA, small interfering RNA; TIMP, tissue inhibitor of metalloproteases; mTOR, mammalian target of rapamycin.
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expression and functional impact of LRP1 are unveiled by a 
broad-spectrum metalloprotease (MMP)/disintegrin-type meta-
lloproteinase (ADAM) inhibitor through inhibition of shedding, 
indicating that LRP1 is transported to the cell surface and then 
released by an enzymatic mechanism (15). If cell surface LRP1 
is protected by an MMP/ADAM inhibitor, and TSP-1 transport 
to the cell surface simultaneously is stimulated by cell contact 
with β1 and β2 integrin ligands, TSP-1 associates heavily with 
LRP1 (15). This is accompanied by firm integrin-dependent 
T cell adhesion, which arrests the cells, although not inhibiting 
motility per se, and a potent enhancement of TCR-induced T cell 
activation. The intracellular TSP-1 induced to appear on the cell 
surface consists of preformed full-length 170 kDa TSP-1, and 130 
and 110 kDa TSP-1 fragments that may represent isoforms and 
differentially collaborate with LRP1 in the regulation of T  cell 
motility and formation of adhesive contacts (15, 21). Particularly 
strong evidence on collaboration of LRP1 and TSP-1 in the regu-
lation of T cell adhesion is that adherent cells co-express LRP1 
and TSP-1 on the surface, whereas non-adherent cells do not 
(15, 21). Small interfering RNA (siRNA) silencing experiments 
support the conclusion that LRP1 and TSP-1 collaborate in the 
regulation of T cell motility and TCR-induced activation and that 
TSP-1 induces integrin-dependent adhesion (15). By contrast, 
siRNA silencing experiments seem to suggest that LRP1 alone is 
anti-adhesive (20). However, the increased adhesion after silen-
cing of LRP1 probably reflects upregulated cell surface expression 
of TSP-1 that promotes adhesion (19, 21). One reason for this 
may be that absence of LRP1 triggers a feedback mechanism 
to bring TSP-1 to the cell surface to stimulate LRP1 expression 
(18). Another explanation may be that absence of LRP1 prevents  
loss of TSP-1 through the LRP1-targeted shedding mechanism. 
TSP-1 seems to appear on the cell surface alone and then asso-
ciates with LRP1, and this upregulated TSP-1 expression through 
complexing to LRP1 seems critical for adhesion (15, 20, 21).

Disappearance of LRP1 from the T cell surface hence main-
tains a constant autocrine suppression of integrin-dependent 
adhesion and TCR-induced activation. This may prevent persis-
tent adhesive contacts, excessive and adverse T  cell activation, 
and immune responses in the absence of immune checkpoint 
proteins and Treg cells. The action of these established immuno-
suppressive elements is hence restricted by dependence on previ-
ous activation, capacity of Treg cells to suppress and compete 
with conventional T cells, and on sensitivity of their target cells 
(28–31). The LRP1-targeted immunosuppressive mechanism 
may also prevent adverse activating signals on T cells by LRP1-
binding factors, such as heat-shock proteins (32).

LRp1 AnD TSp-1: TOOLS FOR RECEpTOR 
COMMUniCATiOn in cis, inTEGRATiOn 
OF SiGnALinG pATHWAYS, AnD 
METABOLiC REpROGRAMMinG

A rather plausible explanation why surface-expressed LRP1, in 
collaboration with endogenous TSP-1, can regulate motility, adhe-
sion, and T cell activation (15–22) is that LRP1 controls and inte-
grates multiple signaling molecules and their pathways (23, 24).  

LRP1 and TSP-1 also regulate motility and adhesion through 
receptor communication in cis within the same plasma mem-
brane, which may contribute to integrate cell surface receptors 
and signaling pathways (17, 19, 33). An additional explanation 
for the influence of LRP1 and TSP-1 on multiple functions is  
that metabolic reprogramming plays a key role for T  cell res-
ponses to antigen and other contexts, and LRP1 expression exerts 
a major impact on cells though control of sugar transport and 
lipid metabolism (34–36). Activation-induced upregulation of 
LRP1 and TSP-1 on T cells (22) may thus be important for the 
altered metabolic requirements by activation. The conclusion 
that LRP1 plays a key role for T cell regulation through control 
of cell signaling is supported by the demonstration that motility 
in T lymphocytes depends on the Janus kinase signal transducer 
and activator of transcription and phosphatidylinositol 3-kinase 
(PI3K) pathways (17, 20), the activation of which depends on 
LRP1 (37, 38). The evidence that LRP1 controls motility and 
adhesion in T  cells (15, 18, 20, 21), is consistent with results 
obtained using Schwann cells indicating that LRP1 controls adhe-
sion and motility through Rac1 and RhoA (39), which regulate 
actin polymerization in T cells, and are critical for motility and 
adhesion (40, 41). It is also interesting that several findings sug-
gest a possible involvement of LRP1 and LRP1/TSP-1-dependent 
receptor communication in cis for control of Treg cell functions. 
Accordingly, receptors for transforming growth factor beta 
(TGFβ), which are major regulators of Treg cells, are associated 
with LRP1 and TGFβ is activated by the LRP1 ligand TSP-1  
(24, 27, 42). However, LRP1 can be expressed on virtually all cells 
consistent with its importance for general properties, such as 
motility and adhesion, and suggesting a role for the function of 
naïve as well as effector T cells.

CO-STiMULATiOn THROUGH  
inHiBiTiOn OF LRp1-TARGETED 
iMMUnOSUppRESSiOn

The LRP1-targeted immunosuppression must not prevent pro-
tective immune responses against infectious agents. This requires 
that the T cell activation process inhibits shedding and increases 
cell surface expression of LRP1. It is intriguing that this is a com-
mon consequence of ligation of several co-stimulatory receptors. 
Ligation of CXCR4, β1 and β2 integrins, and CD28, thus inhibits 
shedding and upregulates LRP1 expression on T cells, although 
to a much lesser extent than inhibition of MMP/ADAMs (15).  
This is consistent with the finding that a broad-spectrum MMP/
ADAM inhibitor markedly enhances T cell activation in an allo-
antigen rejection model (43). In support of the conclusion that 
ligation of CD28 inhibits shedding and upregulates cell surface 
expression of LRP1, CTLA-4, which blocks binding of B7 to  
CD28, prevents LRP1 expression on T cells (22). This indicates  
that it is co-stimulation, and not antigen peptide-MHC comp lexes, 
that inhibits the shedding mechanism and upregulates LRP1.  
The CD28 co-stimulation-dependent upregulation of LRP1 is 
independent of TSP-1, whereas co-stimulation through β1 and β2 
integrins, and CXCR4, inhibits shedding and upregulates LRP1  
expression through TSP-1 (15). This different dependence on 
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TSP-1 is logical, since TSP-1 is proadhesive (19, 21), and CD28 
ligation should not be allowed to induce adhesion and arrest of 
naïve T cells searching for their cognate antigen. This assumption 
is supported by results showing that CD28 ligation antagonizes 
adhesive contacts (44).

Inhibition of the LRP1 shedding mechanism through ligation 
of co-stimulatory receptors probably depends on inhibition of 
the protease responsible (15). ADAM10 is a protease candidate 
for this as suggested by the influence of a specific inhibitor. 
Likely protease inhibitor candidates are tissue inhibitor of met-
alloproteases (TIMP)-1 and TIMP-3 that are expressed in T cells 
and inhibit ADAM10. It is interesting, therefore, that TSP-1 upre-
gulates TIMP-1 expression in tumor cells (45) suggesting that  

FiGURE 1 | Behavior of low-density lipoprotein receptor-related protein 1 (LRP1) in the absence (A) and presence (B) of co-stimulation through different receptors 
and its possible impact on cell signaling through the multiple molecular interactions and connections of LRP1 and its ligand thrombospondin-1 (TSP-1). The 
constitutive shedding-dependent low cell surface LRP1 as shown in a favors motility, whereas the upregulated level induced by co-receptor ligation by B7, integrin 
ligands, and CXCL12 also may trigger activating signals through LRP1-dependent expression of signaling and metabolic receptors as well as LRP1-associated TSP-
1. TSP-1 binds to cell surface receptors, components of the extracellular matrix, other matricellular proteins, growth factors, cytokines, and proteases (25). Besides 
its interactions with signaling molecules, as mentioned in the text, LRP1 can interact with multiple different exogenous ligands including α-2-macroglobulin, tissue 
plasminogen activator, plasminogen activator inhibitor, and apolipoprotein E. Apolipoprotein E is involved in fat metabolism and is produced by macrophages 
pointing to a possible influence on antigen presentation. It is conceivable that LRP1 and associated TSP-1 in collaboration can communicate with other cell surface 
receptors besides connecting to or integrating vital pathways for cell signaling or cell metabolism.

the stimulatory effect of TSP-1 on T  cell expression of LRP1 
also is mediated through TIMP-1. As far as I have been able to 
determine, there are no reports that CD28 ligation influences 
TIMP expression. However, a possible relationship between LRP1,  
TIMP-1, and CD28 is suggested by the fact that CD28 co-
stimulation enhances PI3K activity (46), TIMP-1 signals through 
PI3K (47), and LRP1 is a major activator of PI3K (36, 37). It is 
also worthy to note that T cell expression of TIMP-1 is increased 
in experimental inflammatory disease (48), which supports the 
possibility that CD28 co-stimulation contributes to this increase. 
CD28 signals through mTOR, Grb2, PDK1, and NF-κB pathways, 
all of which are dependent on LRP1 (49, 50), and GRB-2 binding 
to CD28 activates NF-κB (9). CD28 co-stimulation may direct 
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the metabolic reprogramming of T cells responding to antigen 
through LRP1, since the glucose transporter GLUT4 is associated 
with LRP1, and glucose transport is a target for CD28 ligation 
(34, 51).

The inhibitory effect of co-stimulation on the LRP1-targeted 
immunosuppressive mechanism, together with the dependence of 
CD28 signaling on LRP1, that LRP1 integrates signaling (23, 24),  
and collaborates with TSP-1 (17, 19, 33), have several important 
implications. Hence, co-stimulation may upregulate cell signal-
ing and receptor communication in cis through upregulated 
cell surface expression of LRP1 and TSP-1 (Figure 1). Antigen 
peptide-MHC complexes alone may be unable to induce effective 
immune responses because they do not inhibit the LRP1-targeted 
immunosuppression. The requirement of co-stimulation for 
effective T cell activation may reflect that co-stimulation inhibits 
this suppression. The LRP1-targeted immunosuppression and 
the antagonistic co-stimulatory pathways may have evolved to 
combine defense against microbial pathogens with protection 
against excessive and adverse immune responses.

Further clues to the role of co-stimulation are provided by the 
fact that direct abrogation of the LRP1-targeted immunosup-
pression with an MMP/ADAM inhibitor is a more powerful 
stimulus for T cell adhesion and activation than co-stimulation. 
This implies that co-stimulatory signals are set not to abrogate 
the full power of the LRP1-targeted immunosuppression. The 
power and constant operation of this mechanism both before and 
after activation suggest that immunosuppression is a prioritized 
condition of fundamental importance for the organism.

It is reasonable to assume that only a certain part of the many 
co-stimulatory receptors (1) inhibit the LRP1-targeted immu-
nosuppression. However, the ones so far demonstrated to share 
this property are molecularly diverse, suggesting that inhibition 
of the LRP1-targeted immunosuppression may be a common 
feature also of other co-stimulatory receptors. The interactions 
of LRP1 and TSP-1 with multiple other molecules may thus 
endow different cell surface receptors with capacity to induce 
co-stimulation.

COnCLUSiOn

Formation of adhesive contacts and TCR-induced activation are 
antagonized by shedding of LRP1. This may prevent persistent 
T  cell adhesion, allowing the search for cognate antigen and 
target cells, and may also prevent excessive and adverse immune 
responses. Some co-stimulatory pathways may have evolved to 
inhibit this suppressive mechanism.
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