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Patients with primary immunodeficiency can be prone to severe Epstein–Barr virus 
(EBV) associated immune dysregulation. Individuals with mutations in the interleukin-2- 
inducible T-cell kinase (ITK) gene experience Hodgkin and non-Hodgkin lymphoma, EBV 
lymphoproliferative disease, hemophagocytic lymphohistiocytosis, and dysgammaglo-
bulinemia. In this review, we give an update on further reported patients. We believe 
that current clinical data advocate early definitive treatment by hematopoietic stem cell 
transplantation, as transplant outcome in primary immunodeficiency disorders in general 
has gradually improved in recent years. Furthermore, we summarize experimental data in 
the murine model to provide further insight of pathophysiology in ITK deficiency.

Keywords: primary immunodeficiency, combined immunodeficiency, interleukin-2-inducible t-cell kinase, 
epstein–Barr virus-related malignancies, lymphoproliferative disorders

iNtrODUctiON

Epstein–Barr virus (EBV) is recognized to cause infectious mononucleosis. More than 90% of the 
global population carries the latent virus life-long and most individuals acquire the gammaherpes-
virus by silent infection at young age. Several malignancies are associated with EBV and in the last 
decades patients with genetic defects of T cell signaling or cytotoxic pathway have demonstrated 
susceptibility to severe immune dysregulation upon EBV infection or reactivation. They usually 
present with fatal infectious mononucleosis, lymphoma and lymphoproliferative disease (LPD), 
hemophagocytic lymphohistiocytosis (HLH), and dysgammaglobulinemia (1, 2).

While many combined immunodeficiencies (e.g., defects of antigen receptor recombination 
RAG1/2) can lead to EBV immune dysregulation beside other infectious complications, there are 
diseases, which confer a higher propensity only of EBV associated disease. Several genes have 
been linked to EBV lymphoproliferation (SH2D1A, STK4, CD27, CD70, LAT, RASGRP1, MAGT1, 
Coronin-1A, and CTPS1) in recent years (2). Our group and others reported alterations in the 
interleukin-2-inducible T-cell kinase (ITK) gene in patients presenting with severe EBV associated 
dysregulation (3, 4). At least one decade earlier, murine studies had already shown that ITK is essen-
tial for various T cell functions, especially during a Th2 response. In this mini review, we update on 
clinical and immunological aspects in reported individuals and highlight the extensively investigated 
murine itk−/− model.
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itK DeFicieNcY—cLiNicAL 
PreseNtAtiON AND DiAGNOsis

The first patients were reported in 2009 by our group. Two sisters 
from consanguineous Turkish parents presented with EBV-
driven lymphoproliferative disease (3). At age of 6  years, one 
developed pneumocystis pneumonitis, severe candida stomatitis, 
cytopenia, progressive hypogammaglobulinemia, and oligoclonal 
polymorphic B cell lymphoproliferation.

Eighteen months later, she presented with Hodgkin lym-
phoma (HL), which was successfully treated with chemotherapy. 
However, T  lymphocytes were further declining and at age 
of 10  years the girl succumbed to pneumocystis pneumonia. 
The younger sister presented with pancytopenia and severely 
impaired hepatic function due to EBV-associated HL. Due to 
rapid clinical deterioration haploidentical peripheral blood stem 
cell transplantation (SCT) was performed as a salvage therapy, 
but unfortunately the patient died due to airway obstruction 
during aplasia. Genome-wide linkage analysis identified ITK, in 
which the causative homozygous R335W mutation was revealed. 
To date, we are aware of ITK mutations in 17 patients originating 
from Greece, India, Italy, Iran, Morocco, Pakistan, Palestine, and 
Turkey (16 patients described in Table 1) (5–12). These patients 
manifested between 2.5 months and 13 years of age and presented 
with fever, hepatosplenomegaly, lymphadenopathy, and EBV 
viremia. One patient was diagnosed at birth due to family history 
of disease in the older brother. Thirteen patients presented either 
with HL or with EBV-driven B cell lymphoproliferative disease 
(in some cases developing to Hodgkin or large B cell lymphoma), 
only two showed a classical non-HL histology. In a few patients, 
other viral infections including CMV and VZV were seen. Given 
the severe immune dysregulation, at least three patients devel-
oped autoimmune phenomena and two patients developed HLH.

The number of ITK patients is too few to deduce valid 
statistics. However, it appears that HLH occurs less frequent in 
ITK deficiency than, e.g., in SLAM-associated protein (SAP) 
deficiency (30%) (13).

As known from other disorders with EBV predisposition, 
pulmonary interstitial nodules were seen in most patients. 
Further more, progressive hypogammaglobulinemia and loss of 
CD4+ T cells was detected, in particular naive CD45RA+ CD4+ 
T cells were decreased. In parallel with other EBV prone disorders 
(e.g., SAP deficiency), peripheral NKT cells [determined as CD3+, 
T cell receptor (TCR) Vbeta11+, TCR Valpha24+] were decreased 
in ITK-deficient patients supporting observations in transformed 
cell lines that NKT cells might be essential for anti EBV immunity 
(14). However, there is some evidence that EBV infection itself 
might decrease the number of NKT  cells in these patients, as 
normal numbers of NKT  cells are demonstrated in EBV-naive 
patients, e.g. in patients with XIAP deficiency (15). Furthermore, 
there are disorders with a global lack of NKT  cells, in which 
individuals are rather susceptible to Mycobacteria, but not to EBV  
infection (16).

Peak EBV viremia in ITK-deficient patients was quite 
heterogeneous in reported patients (104–108 copies/μg DNA). 
Unfortunately, we obtained incomplete information on sero-
logical phenotype at time of manifestation to predict the time 

between infection and clinical exacerbation; EBV-VCA-IgM was 
detected in one patient only. In contrast to one of the most similar 
immunological disorders—SAP deficiency—there is not a single 
reported EBV-VCA-IgG seronegative symptomatic EBV-LPD 
patient highlighting the paramount importance of EBV infec-
tion and maybe specificity in the disease setting. Interestingly 
the spectrum of histopathological diagnosis is quite variable 
in reported patients. Bienemann et al analyzed seven of the 16 
patients presented here. In six events, a classic mixed-cellular 
HL histology was shown, while the other lymphoproliferative 
events were rather heterogeneous (polymorphic: three events, 
borderline polymorphic to monomorphic blast-rich B-cell LPD: 
two events, HL-like B-cell proliferation: two events and large 
B-cell lymphoma like LPD: two events). In contrast to many 
immunocompromised patients (who rather demonstrate latency 
type III), ITK-deficient patients had predominantly EBV latency 
type II and presented often with nodal and extranodal manifesta-
tions simultaneously (6). One patient with ITK deficiency differs 
from the other patients in several points. An 18-year-old male 
Turkish patient suffered from recurrent progressive pulmonary 
infections and bronchiectasis, but no lymphoproliferative disease. 
He remained EBV seronegative although PCR could detect a low 
EBV viral load of 1,000–2,000 copies/μl (11).

MANAGeMeNt AND OUtcOMe

As previously demonstrated in other EBV-LPD cases, a few 
patients with ITK deficiency were treated with Rituximab 
with some improvement. IgG substitution has conferred only 
temporary benefit, especially to partially ameliorate immune 
dysregulation manifesting as lymphoproliferation and autoim-
munity; corticosteroids were not helpful in the reported cases. 
Eight patients died between 1 and 15 years after diagnosis (mostly 
due to malignancies), seven within 2 years from diagnosis. Nine 
patients did not receive definitive treatment. Most had a fatal 
outcome. Six patients died due to lymphoproliferation, while 
only two patients remained in remission after chemotherapy for 
HL. However, eight patients underwent hematopoietic SCT. Two 
patients died after HSCT. While one of the initial patients died 
during aplasia with hemorrhagic acute airway obstruction after 
receiving haploidentical PBSCT, another patient succumbed to 
severe graft-versus-host disease. Recently, three more patients 
have been reported at two different centers (Newcastle, UK and 
Paris, France), which have been presented orally at the Annual 
Meeting of the European Society for Immunodeficiencies in 
Edinburgh, September 2017. All three patients were diagnosed 
with Hodgkin-like lymphoma or diffuse B  cell lymphoma like 
lymphoproliferation and were subject to HSCT. Remarkably, the 
Paris patient was treated with five courses of Rituximab and two 
injections of Brentuximab to achieve clinical remission before 
haploidentical T replete HSCT. We can learn from those cases 
that immunotherapy with Rituximab or Brentuximab can lead to 
partial or even complete remission and at least bridge to definitive 
cure. We strongly suggest that each patient should be carefully 
considered for early HSCT, once the diagnosis of ITK deficiency 
has been established.
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FiGUre 1 | Interleukin-2-inducible T-cell kinase (ITK)—structure and signaling—(A) domain organization of ITK and corresponding protein mutants in patients with 
ITK deficiency. N-terminal pleckstrin homology (PH), Tec homology, Src homology 3 (SH3), Src homology 2 (SH2), and C-terminal catalytic kinase domain. Pattern 
recognition receptors. In one patient, a compound heterozygous mutation is predicted to encode Q17X and A308LfS*24 mutant. (B) Following engagement of the 
T cell receptor (TCR) with an MHC bound foreign antigen, several intracellular signals are activated. Lck is recruited and phosphorylates immunoreceptor tyrosine-
based activation motifs (ITAM) at the zeta chain of the TCR. ZAP70 binds double-phosphorylated ITAM residues and phosphorylates LAT, which is recruited to the 
TCR complex. Phosphorylated LAT recruits SLP76, which together with Itk, activates PLCγ1. Subsequently phosphatidylinositol 4,5-bisphosphate (PIP2) is 
catalyzed into inositol 1,4,5-trisphosphate (IP3), which leads to intracellular calcium release and diacylglycerol (DAG). DAG itself can recruit PKCδ and RASGRP, 
which induce the NFκB and MAPK/ERK pathways.
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iNterLeUKiN-2-iNDUciBLe t-ceLL 
KiNAse

Interleukin-2-inducible T-cell kinase is one of five mammal 
TEC family kinases. All five proteins are involved in lymphocyte 
signaling and development (17). Years before the first patient 
with ITK deficiency was diagnosed, ITK-SYK translocations 
were found in individuals with T cell lymphoma (18). The ITK 
gene on chromosome 5q consists of 17 exons and 112 kbp, the 
protein (71 kDa) is formed by 620 amino acids. ITK is composed 
of an N-terminal pleckstrin homology (PH), a Tec homology 

(TH), an Src homology 3 (SH3), an Src homology 2 (SH2), and 
a C-terminal catalytic kinase domain (Figure  1A) (19). Upon 
activation of the TCR several phosphorylation events recruit ITK 
to the cell membrane (for details, see Figure 1B). ITK activates 
PLCγ1, generating inositol 1,4,5-trisphosphate (IP3), which leads 
to intracellular calcium release and diacylglycerol, which, via 
RASGRP and PKCδ, ultimately results in activation/induction of 
the NFκB, mTOR, and MAPK/ERK pathways.

Mutations were found in the kinase, SH2 and PH domain. 
Most patients demonstrated an autosomal-recessive trait, while 
in one individual a compound-heterozygous inheritance from 

https://www.frontiersin.org/Immunology/
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two different ethnicities (Greek–Italian) was revealed (5). 
Interestingly there are corresponding mutations in residues of 
the “sister” Tec kinase BTK (known to cause X-linked agamma-
globulinemia), which are homologous to the mutations observed 
in our patients (9). Our group transformed Herpesvirus saimiri 
cell lines to reveal functional impairment in corresponding ITK 
mutations.

The alterations did not greatly change the amount of ITK 
mRNA expression, nevertheless immunoblot investigations 
showed several variants of endogenous ITK. Most importantly, 
we analyzed calcium response with flow cytometric flux studies 
and revealed a highly decreased release of calcium ions into the 
cytosol in most patients. With regards to functional complemen-
tation our group restored TCR-mediated calcium flux in murine 
itk−/− thymocytes by means of wild type ITK transduction.

Interestingly since the publication of our last review two new 
EBV prone diseases have been discovered in the proximity of ITK 
(with respect to location in the pathway). Linker for activation 
of T  cells (LAT) is a transmembrane adapter molecule, which 
is phosphorylated after TCR triggering. It contains no intrinsic 
enzymatic activity and couples the TCR to downstream pathways 
as a scaffolding protein. PLCy1 phosphorylation is highly depend-
ent on the assembly of the LAT-SLP76 signalosome. However, the 
two initial reports on two kindreds with LAT deficiency show dif-
ferent phenotypes and ambiguous results (20, 21). One kindred 
presented with a typical (severe) immunodeficiency phenotype 
with failure to thrive and recurrent infections. The other report 
describes a family with infants with increased autoimmunity due 
to combined immunodeficiency with a higher number of residual 
T lymphocytes. All three siblings suffered from CMV and EBV 
infection before autoimmunity developed. Similar to our investi-
gations in ITK-deficient cell lines, both of these new reports dem-
onstrate decreased Ca2+ mobilization and other downstream 
signaling in LAT-deficient Jurkat cell lines (J.CaM2.5, ANJ3), and 
although, ITK phosphorylation of ITK, is reported to be depend-
ent on LAT, it was not affected in J.CaM2.5. However, the same 
group (with the higher number of residual T  lymphocytes and 
autoimmunity) had the opportunity to examine calcium flux in 
CD45RO patient lymphocytes, which was surprisingly within the 
range of healthy controls 21. Interestingly, all these patients had 
infectious (often CMV-relate) and autoimmune problems, rather 
than emerging lymphoproliferation. RASGRP1 is a guanine 
nucleotide exchange factor, which is downstream of the PLCγ1-
mediated cleavage of phosphatidylinositol 4,5-bisphosphate. 
Mutations in RASGRP1 have also been associated with CD4 T 
lymphopenia, EBV-driven B cell lymphoma, and lymphoprolif-
erative disease (22, 23).

Itk−/− MUriNe PHeNOtYPe

The murine itk−/− phenotype has been investigated for more 
than 25 years now, 15 years before the first patients were reported. 
Most studies had focused on Th1 skewing especially in infectious 
models; recent data further suggests that itk−/− CTLs harbor 
defects in expansion, degranulation and thus cytotoxicity. In 
the next chapter we will briefly summarize the itk−/− murine 
phenotype.

Itk−/− mice show an altered development of thymocytes with 
elevated numbers of innate single positive CD8+ (CD8SP) cells. 
These thymocytes parallel antigen-experienced T  cells with a 
CD122+ CD44hiCXCR3+ phenotype and increased production 
of Eomesodermin and IFNγ, if stimulated. Similarly splenocytes 
(having decreased CD4 and CD8 expression in total) resemble 
a more differentiated phenotype (CD44+) mirroring peripheral 
CD8 cells of ITK-deficient patients (24–29). NKT cells have an 
impaired development, are dysfunctional and have a decreased 
survival in the periphery (30). Most studies, addressing the Th1 
and Th2 paradigm suggest that ITK plays a role in a correct Th2 
response (19). Upon TCR stimulation, itk−/− T  cells have an 
impaired proliferation, less intracellular calcium release and a 
reduced production of effector cytokines (31).

Few epidemiological studies have observed asthma predis-
position and variants in the ITK gene (32, 33). Several papers 
investigated the T  lymphocytes dependent airway hyporespon-
siveness in itk−/− mice. Pathophysiology of asthma usually 
involves pulmonary infiltration of Th2 cells. Due to an impaired 
Th2 response itk−/− mice show a reduced airway inflammation 
upon challenge with allergens (32, 34, 35). One group tried to 
administer an ITK inhibitor as a pharmacologic agent to suppress 
inflammation in already ovalbumin-induced hyperresponsive 
airways. Paradoxically, inhibition of ITK induced lymphoid 
hyperplasia, an observation they attributed to impaired cell 
death in the absence of cell death (32). Two studies have further 
focused on the impaired cell death in itk−/− mice, which might 
be at least one explanation for the lymphoproliferation seen in the 
patients. One study found reduced activation-induced cell death, 
evidenced by defective FasL upregulation upon activation and 
elevated T cell proliferation (36).

In recent years, Th17, Treg, and Th9 differentiation have been 
extensively addressed as well (37–39).

Infections show the impact of ITK on T cell differentiation and 
T cell effector function. In one of the first studies itk−/− mice on 
a BALB/c background failed to generate the usual Th2 response 
upon infection with Leishmania major, but rather mounted a Th1 
dependent IFNγ response, which cleared the infection (31). In fur-
ther studies itk−/− mice showed decreased granuloma formation 
after challenge with Schistosoma mansoni eggs or the nematode 
Nippostrongylus brasiliensis. Both helminths usually induce a Th2 
response (31, 40). Upon S. mansoni infection compared to WT 
the size of granuloma and draining lymph nodes was significantly 
decreased and production of the Th2 cytokines IL-4, IL-5 and 
IL-10 was markedly reduced in itk−/− mice. Again, IFNγ levels 
were significantly higher suggesting Th1 skewing. If infected 
with N. brasiliensis, wild type BALB/c mice were able to fight the 
intestinal infection, while itk−/− mice showed a decrease in IL-4 
and were incapable to clear the worm.

Toxoplasma gondii, on the other hand, promotes Th1 mediated-
immunity. Although itk−/− mice do succumb to this infection, 
they are only slightly more susceptible to T. gondii than wild type 
mice (41). Serum IFN-y levels 5 days after infection and splenic 
IFN-y production upon stimulation after 30 days show similar 
values as wild type mice. Only few studies have addressed the 
CD8 T cell response in itk−/− mice. It was reported that, although 
itk−/− mice do mount protective responses to lymphocytic 
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choriomeningitis virus Armstrong, vaccinia virus, and vesicular 
stomatitis virus, viral clearance is delayed, most likely due to 
poor activation of CD8 T lymphocytes (42, 43). Given the clinical 
phenotype of the reported patients, a potential role for ITK in 
CTL function seems highly likely. Recently, the effect of ITK on 
cytotoxicity and degranulation of CTLs was demonstrated. ITK-
deficient CTLs showed decreased expansion and a more naïve 
phenotype after activation. The authors revealed that in murine 
itk−/− deficient lymphocytes, early stages of cytotoxicity were 
intact, while defects in degranulation were the bigger concern 
(44).

As far as we know there has not been any study in which an 
infection model of the murine gammaherpesvirus 68 (MHV-68) has 
been investigated in itk−/− mice, although murine MHV-68 infec-
tion resembles human EBV infection quite a bit. MHV-68 spreads 
naturally by the respiratory route and is genetically related to EBV 
(45). Both EBV and MHV-68 have the ability to cause infectious 
mononucleosis. Following intranasal inoculation the virus causes 
an acute infection in the lungs and remains in a latent form 
within B cells. Depending on CD8 T cell function, MHV-68 can 
further infect other splenic B cells and circulate in other organs. 
MHV-68 infection has already been investigated in SAP deficient 
mice (Sh2d1a−/−) leading to hypogammaglobulinemia and 
organ damage (46, 47). Clinically, patients with SAP deficiency 
have shared features with patients with ITK deficiency, hence we 
decided to explore the natural course of MHV-68 infection in 
itk−/− mice in some preliminary experiments. B6 and itk−/− mice 
were intranasally infected with MHV-68. There was no difference 
in the lytic viral tire in lungs between B6 and itk−/− infected mice; 
furthermore, there was no difference in the splenic genomic viral 
load between B6 and itk−/− mice at day 17. Clinically the mice 
did not behave differently. Similarly to Sh2d1a−/− mice after 
3 months in total itk−/− mice spleens were enlarged, and we could 

verify a Vbeta4 expansion in all infected mice, similar to other 
mouse models after MHV-68 infection. Interestingly, we saw a 
relative decrease in CD4 cells in itk−/− mice; on the other hand, 
CD8 numbers were similar in both groups. Most importantly we 
saw a bigger expansion of Vbeta4 cells within in the itk−/− group 
(own preliminary results). The expansion of this clone is line with 
reports in Sh2d1a−/− deficient mice, and further experiments are 
ongoing to evaluate a potential use of this model to investigate 
ITK deficiency.

sUMMArY

Since our last review the reported patient number with ITK 
deficiency has nearly doubled. All patients with previous EBV 
infection, developed EBV-associated malignancies, like Hodgkin 
and non-HL and lymphoproliferative diseases, while pulmonary 
involvement is one of the extranodal key features. Although 
the number of patients is limited, a curative treatment should 
be considered. In settings in which an HLA-matched donor is 
lacking, a haploidentical donor in conjunction with advanced 
T-depleting and adoptive T cell transfer strategies have improved 
the outcome. Immunotherapy with anti-CD20 or anti-CD30 can 
bridge to definitive cure. EBV-negative patients (without any 
viremia) have not been reported yet, so we are unaware of any 
problems in these individuals. However, an early transplant might 
improve outcome. Prospective data collection on HSCT in ITK 
deficiency and other EBV prone primary immunodeficiencies, as 
CD27 or CD70 deficiency is highly warranted.
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