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γδ T  lymphocytes are potent effector cells, capable of efficiently killing tumor and 
 leukemia cells. Their activation is mediated by γδ T-cell receptor (TCR) and by activating 
receptors shared with NK cells (e.g., NKG2D and DNAM-1). γδ T-cell triggering occurs 
upon interaction with specific ligands, including phosphoantigens (for Vγ9Vδ2 TCR), 
MICA-B and UL16 binding protein (for NKG2D), and PVR and Nectin-2 (for DNAM-1). 
They also respond to cytokines undergoing proliferation and release of cytokines/chemo-
kines. Although at the genomic level γδ T-cells have the potential of an extraordinary 
TCR diversification, in tissues they display a restricted repertoire. Recent studies have 
identified various γδ TCR rearrangements following either hematopoietic stem cell trans-
plantation (HSCT) or cytomegalovirus infection, accounting for their “adaptive” potential. 
In humans, peripheral blood γδ T-cells are primarily composed of Vγ9Vδ2 chains, while 
a minor proportion express Vδ1. They do not recognize antigens in the context of MHC 
molecules, thus bypassing tumor escape based on MHC class I downregulation. In 
view of their potent antileukemia activity and absence of any relevant graft-versus-host 
disease-inducing effect, γδ T-cells may play an important role in the successful clinical 
outcome of patients undergoing HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ 
B lymphocytes to cure high-risk acute leukemias. In this setting, high numbers of both 
γδ T-cells (Vδ1 and Vδ2) and NK cells are infused together with CD34+ HSC and may 
contribute to rapid control of infections and leukemia relapse. Notably, zoledronic acid 
potentiates the cytolytic activity of γδ T-cells in vitro and its infusion in patients strongly 
promotes γδ T-cell differentiation and cytolytic activity; thus, treatment with this agent 
may contribute to further improve the patient clinical outcome after HLA-haploidentical 
HSCT depleted of TCR αβ T/CD19+ B lymphocytes.

Keywords: γδ T-cells, receptors, hematopoietic stem cells, HLA-haploidentical transplantation, αβ T-cell, B-cell 
depletion

GeneRAL FeATUReS OF HUMAn γδ T-CeLLS

γδ T-cells straddle the innate and adaptive arms of the immune system and are involved in response 
to pathogens [e.g., mycobacteria; cytomegalovirus (CMV)] and tumors. Similar to αβ T-cells, γδ 
T-cells develop in the thymus, but express a rearranged T-cell receptor (TCR) consisting of a TCR-γ 
and a TCR-δ chain (1). Although important information has been obtained by studies in mice, this 
review will be focalized on human γδ T-cells (2). Four human γδ T-cell populations can be identified 
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by the TCR Vδ expression (Vδ1, Vδ2, Vδ3, and Vδ5) (3). Vδ1, 
Vδ2, Vδ3, and Vγ2, Vγ3, Vγ4, Vγ5, Vγ8, Vγ9, and Vγ11 are the 
most frequently gene segments used in rearrangement of δ and 
γ chains, respectively (4). In humans, most peripheral blood γδ 
T-cells express Vδ2 TCR chain paired with Vγ9 chain (5), while γδ 
T-cells expressing Vδ1 or Vδ3 TCR chain can be paired with vari-
ous Vγ chains (6) and they are predominant in epithelial tissues 
of skin, lungs, intestine and reproductive tract (7), liver, spleen, 
and thymus (8). γδ T-cells with Vγ4Vδ5 TCR are able to bind 
the endothelial protein C receptor (9). Moreover, four subsets of 
γδ T-cells were detected (Vδ4, Vδ6, Vδ7, and Vδ8) in peripheral 
blood of patients with B-cell non-Hodgkin lymphoma, but the 
γ chain pairings are still unknown. Although the majority of γδ 
T-cells do not express either CD4 or CD8, there is a small percent-
age of γδ T-cells that are CD8 positive (8). Different mechanisms 
of TCR rearrangement occur in mouse immune system (2).

The major pathways of γδ T-cell activation involve triggering 
of the γδ TCR that, at variance with αβ T-cells, does not recognize 
peptides presented by antigen-presenting cells (APCs) in the 
context of the MHC. The γδ TCR may bind soluble or membrane 
proteins, such as tetanus toxoid (10), bacterial proteins (11), viral 
proteins (2), and heat shock proteins. Moreover, the γδ TCR may 
bind CD1d expressed by professional antigen presenting cells 
(APCs), presenting glycolipids and microbial lipids (12).

In adult human, γδ T-cell population represents 1–5% of 
all CD3+ cells. In peripheral blood of healthy human subjects, 
T-cells expressing Vγ9Vδ2 TCR can account for up 95% of  
γδ T-cells (10) and render between 1 and 10% of all blood T-cells 
(2). Conversely, Vδ1 T-cells represents only 10–30% of γδ T-cells 
in peripheral blood of healthy human (10). In the lymphoid tissue 
and in the gut- and skin- associated lymphoid systems, γδ T-cells 
show a frequency similar to that detected in peripheral blood 
(11). Vγ9Vδ2 T-cells are activated (13, 14) by natural metabolites 
known as phosphoantigens (PhAgs), such as isopentenyl pyroph-
osphate (IPP), produced in eukaryotes through the mevalonate 
pathway involved in cholesterol synthesis and protein prenylation 
(15). A dysregulated mevalonate pathway leading to overproduc-
tion of endogenous IPP occurs in transformed cells (16, 17). The 
endogenous production of IPP and related pyrophosphates and 
the consequent ability of a given cell type to activate γδ T-cells 
can be pharmacologically manipulated. A critical enzyme in the 
mevalonate pathway is farnesyl pyrophosphate synthase (FPPS), 
which acts downstream of IPP production. Targeted knockdown 
of FPPS leads to accumulation of IPP and subsequent activation 
of γδ T-cells (18). Treatment of tumor cells or monocytes with 
the bisphosphonate zoledronic acid (ZOL), which blocks FPPS 
function, leads to increased IPP production, and thereby induces 
selective activation of Vγ9Vδ2 T-cells (17, 19, 20). Until recently, 
it was unclear how the Vγ9Vδ2 TCR could recognize PhAgs. This 
enigma has been clarified by the discovery that butyrophilin 3A1 
(also known as CD277) plays an essential role in the interaction 
of PhAgs with the Vγ9Vδ2 TCR, although the fine mechanisms of 
the phenomenon are still to be fully elucidated (4, 21).

Upon activation, γδ T-cells can produce large amounts of 
Th1 cytokines, such as IFNγ and TNFα, and directly induce 
monocyte-derived dendritic cell maturation and activation, sug-
gesting a potential adjuvant role of this cross-talk in enhancing 

antigen-specific αβ T-cell response (12, 13). In this respect, it has 
been reported that γδ T-cells may take up and process soluble 
proteins inducing proliferation, cytokine production and cyto-
toxicity by CD8+ αβ+ T-cells (22).

The ability of γδ T-cells to kill hematological and solid tumors 
and to release Th1-type cytokines, combined with the possibility 
of growing these cells in culture, has attracted great interest for 
their use as adoptive cell therapy of cancer. Emphasis has been 
placed on Vγ9Vδ2 T-cells, which are easily expanded in vitro by 
PhAg stimulation (induced by exposure of cells to ZOL) and can be 
further boosted in vivo with ZOL or other synthetic PhAgs. Several 
clinical trials of Vγ9Vδ2 T-cell-based immunotherapy for both 
hematological malignancies (23–26) and solid tumors (27–32) have 
been conducted with promising results. A note of caution on the 
efficacy of these approaches comes from the plasticity of γδ T-cells 
controlled by the signals from the microenvironment, which can 
switch the antitumor profile of these cells to a tumor-promoting 
one, for example through induction of IL-17 production (33).

γδ T-CeLLS: ReCePTORS AnD LiGAnDS

A feature typical of NK cells shared by γδ T-cells is the ability to 
kill malignant and infected cells in the absence of any prior expo-
sure. Moreover, γδ T-cells share with NK cells the expression of 
different NK receptors (NKRs), such as the NK activating recep-
tor DNAM-1, the Fc receptor CD16, and the C-type lectin-like 
receptor NKG2D (34). Tumor cell recognition and the associated 
γδ T-cells activation require the engagement of the TCR and/or 
NKRs, mostly NKG2D. NKG2D binds MHC class I polypeptide-
related sequence MICA, MICB, and UL16 binding proteins 
(ULBPs) expressed on stressed and tumor cells. Overexpression of 
the NKG2D ligands ULBP1 and ULBP4 (35) by  hematological and 
epithelial tumors, respectively, drives efficient cytotoxic responses 
by Vγ9Vδ2 T-cells. The proteins that can induce Vδ1 activation 
are incompletely known, although CD1c and CD1d, members 
of CD1 family, can activate Vδ1 T-cells through TCR binding 
(36). Vδ1 T-cells of the human intestinal epithelium are able to 
recognize MICA and MICB ligands, by the synergistic actions of 
TCR and NKG2D. Moreover, in Vδ1 T-cells subset, the interac-
tion of NKp30 with B7-H6, expressed on tumor cells, allows a 
specific antitumor activity (9). Both TCR and NKG2D bound 
overlapping fragments of MICA, with different affinity and kinet-
ics, the affinity of NKG2D being by far superior to that of TCR 
(37). The TCR–MICA complex was particularly stable, suggesting 
a sequential model, whereby the initial binding of NKG2D is fol-
lowed by the formation of the more stable TCR–MICA complex. 
MICA engagement by TCR was found to be indispensable for γδ 
T-cell-mediated cytotoxicity, while NKG2D played a co-stimula-
tory role (38). ULBP molecules may be recognized in a similar 
manner, as it has been shown that ULBP4 engages both NKG2D, 
and Vγ9Vδ2 TCR. DNAM-1, another NKR involved in activation 
of Vγ9Vδ2 T-cells, binds its ligand nectin-like 5 on tumor cells 
rapidly triggering the cytotoxic activity of Vγ9Vδ2 T-cells (39). 
Controversial results have been reported regarding the expression 
and function of NKp44 on a minor subset (less than 10%) of γδ 
T-cells after culture in the presence of IL-15 (40). In addition, 
some γδ T-cells may express the HLA-E-specific CD94/NKG2A 
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FiGURe 1 | Receptor–ligand interactions between γδ T lymphocytes and tumor cells. The major interactions occurring between the activating receptors expressed 
by γδ T lymphocytes and the corresponding ligands either de novo expressed or upregulated by tumor cells are represented in detail.
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inhibitory receptor. Thus, following interaction with HLA-E+ 
cells, the functional activity of these cells may be modulated, as 
reported in the case of γδ T-cells interacting with enterocytes (41). 
The sequential recognition of different targets by γδ T-cells could 
play an important role in immunosurveillance, as it allows the lat-
ter cells to rapidly scan target cells for stress markers indicative of 
possible infection or malignant transformation. The requirement 
for a multicomponent stress context for full γδ T-cell activation 
could then provide fail-safe protection against autoimmunity. The 
apparent co-existence of diverse co-stimulatory axes decreases 
the chances of immune evasion. The main interactions between  
γδ T-cells and tumor cells are shown in Figure 1.

γδ T-CeLLS AnD HeMATOPOieTiC STeM 
CeLL TRAnSPLAnTATiOn (HSCT)

The role of γδ T-cells in HSCT has been the subject of numerous 
studies in the last three decades (Figure 2). After initial reports 
with contrasting results (42–44), it was demonstrated that 5-year 
disease-free and overall survival of leukemia patients who 

received HLA-mismatched allo-HSCT depleted of TCR αβ T-cells 
correlated significantly with high number of γδ T-cells circula ting 
in patient peripheral blood after transplantation (45–47). It was 
proposed that γδ T-cells, recovering after the allograft, play a 
relevant role in the graft-versus-leukemia (GvL) (46), albeit other 
studies have highlighted the prominent GvL activity of NK cells in 
T-cell-depleted HSCT (48, 49). Analysis of the TCR Vδ repertoire 
revealed that circulating Vδ1 cells are predominant in patients 
with high γδ T-cells counts, whereas patients with low γδ T-cells 
counts and healthy individuals display mostly Vδ2 cells (46).

A study carried out at a single institution investigated the clini-
cal impact of γδ T-cell reconstitution in 102 consecutive pediatric 
patients with acute leukemia given allogeneic HSCT from different 
donors and employing different cell sources (50). A major finding 
was that the probability of infections in patients with high counts 
of circulating γδ T-cells after the allograft was significantly lower 
than that in patients with low or normal counts of γδ T-cells. In 
particular, no bacterial infection occurred in the former patient 
group. Furthermore, also event-free survival of patients with high 
numbers of circulating γδ T-cells after HSCT was significantly better 
than that of patients with low or normal numbers of γδ T-cells (50).
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FiGURe 2 | The protocol of T-cell receptor (TCR) αβ T-cell and B-cell depletion recently developed in haplo-HSC transplantation. The protocol for haplo-HSCT 
allows infusion of donor HSC, together with high number of γδ T lymphocytes and NK cells. This novel strategy permits, during the early posttransplant period 
(6–8 weeks), a better control of leukemia cells escaping the preparative regimen, thus preventing disease relapses. In this transplantation setting, in addition to γδ 
T-cells and NK cells developing late from donor HSC, these promptly available effectors transferred with the graft may immediately exert their graft-versus-leukemia 
effect and contribute to the control of infections.
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It is still a matter of debate whether γδ T-cell regeneration 
in HSCT recipients occurs either via the peripheral expansion 
of mature donor T-cells present in the graft or through a dif-
ferentiation process from donor HSC. Using polymerase chain 
reaction-based complementarity-determining region (CDR)3 
spectratyping and DNA sequencing for TCR δ chains, it was 
initially shown that the size distribution patterns of CDR3 were 
recovered a few months after allo-HSCT and that such recovery 
was faster than that of αβ T-cells (51). Clonal predominance of 
TCR Vδ1+ cells occurred after transplantation in a few patients, 
and follow-up of a donor-recipient pair supported the hypothesis 
that peripheral expansion of mature donor T-cells contained in 
the graft was the main pathway of γδ T-cell regeneration after allo-
HSCT (51). More recently, a study has evaluated human γδ T-cell 
reconstitution using an RNA and cDNA-based next generation 
sequencing (NGS) approach that has allowed the investigation 
at the clonal level of TCR γ and δ chain (TRG and TRD) reper-
toires in sorted γδ T-cells before and after allo-HSCT (52). In the 
absence of CMV reactivation, such repertoires developed after 
30–60  days from allo-HSCT and remained stable over at least 
6 months. TRG and TRD repertoires after transplantation were 
qualitatively comparable to those present before transplantation, 
but contained clonotypes different from those found in the donor, 
suggesting that they were generated de novo from donor HSC 
through a process of cell maturation. In addition, reactivation of 
CMV caused massive perturbations of TRG and TRD repertoires, 

being associated with preferential proliferation and expansion of 
a few individual Vδ1 and Vδ3 T-cell clones. Taken together, these 
studies indicate that γδ T-cells are capable of adaptive responses 
generating different TRG and TRD repertoires and different 
clonal expansions (51, 52).

γδ T-CeLLS AnD αβ T-CeLL-DePLeTeD 
HLA-HAPLOiDenTiCAL HSCT

Hematopoietic stem cell transplantation from an HLA-
haploidentical relative (haplo-HSCT) provides most patients 
lacking a suitable matched donor with the chance of undergoing 
transplantation. Clinical development of haplo-HSCT has been 
boosted by the demonstration that extensive T-cell depletion 
from the graft efficiently prevents both acute and chronic graft-
versus-host disease (GvHD), even when the donor and the 
recipient were mismatched for an entire HLA haplotype (53, 54). 
The therapeutic efficacy of T-cell-depleted haplo-HSCT largely 
depends on donor NK cells either generated from HSC or infused 
with the graft mediating a potent GvL effect (55–58). Such effect 
is delayed in patients transplanted with positively selected donor 
CD34+ cells, since the first wave of killer-immunoglobulin-like 
receptor-positive, alloreactive NK  cells, differentiating from 
infused HSC appears after a minimum time interval of 6–8 weeks 
(49, 56, 59, 60). The delayed availability of mature NK  cells, 
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mainly responsible of GvL effect, explains, at least in part, the 
transplant-related mortality and the early leukemic relapses, par-
ticularly in acute myeloid leukemia (AML). To circumvent this 
problem, a novel strategy of graft manipulation has been set up, 
whereby both T-cells bearing the αβ T-cell receptor (TCR) and 
CD19+ B lymphocytes are depleted from the graft before infusion 
(61, 62). This approach abates TCR αβ T-cell-mediated GvHD, 
prevents Epstein–Barr virus-driven B  cell lymphoproliferative 
disorders occurring in immunocompromised patients, and 
allows to transfer to the recipient high numbers of haploidentical 
CD34+ cells and of mature NK cells and TCR γδ T-cells, which 
can readily exert protective functions against leukemia cell re-
growth and life-threatening infections (63–66). Notably, TCR γδ 
T-cells and NK cells share a number of features that are relevant 
in the haplo-HSCT setting. Both cell types: (i) kill tumor cells in 
a MHC-independent manner (34), (ii) are involved in anti-CMV 
immune responses (67), (iii) do not mediate GvHD, since they do 
not recognize peptide antigens presented in the context of MHC 
(12), (iv) interact with each other and with additional immune 
cells, such as αβ T-cells and dendritic cells (12), and (v) following 
activation, are cytotoxic to mesenchymal stromal cells, a major 
component of tumor microenviroment (68).

We have recently investigated γδ T-cell reconstitution after 
haplo-HSCT depleted of TCR αβ+ T/CD19+ B cells (Figure 2) 
in 27 children, 15 of whom had leukemia and 12 primary 
immune-deficiencies or bone marrow failure syndromes (63). 
Immunophenotypic characterization of peripheral blood 
mononuclear cells performed at 1, 3, and 6 months after trans-
plantation showed an initial predominance of γδ over αβ T-cells, 
followed by progressive recovery of the latter cells. γδ T-cells 
included three different populations, i.e., Vδ2, Vδ1 and, at a 
lower extent, Vδ2−, Vδ1− (63). Four subsets of human γδ T-cells 
have been identified based upon the expression of the CD45 and 
CD27 surface markers: naïve (CD45RA+, CD27+), central mem-
ory (CM: CD45RA−, CD27+), effector memory (EM: CD45RA−, 
CD27−), and terminally differentiated (EMRA: CD45RA+, 
CD27−) (69, 70). Similar to the corresponding αβ T-cell subsets, 
naïve and CM γδ T-cells express lymph-node homing receptors 
and are devoid of immediate effector functions. In contrast, 
EM and EMRA γδ T-cells express receptors for migration to 
inflamed tissue where they mediate effector functions, such as 
cytotoxicity and cytokine production (70). Studies carried out 
on Vγ9Vδ2 T-cells have demonstrated that PhAg-stimulated 
naïve cells generate TCM cells, while cytokine-stimulated TCM 
cells differentiate into TEM or TEMRA in the absence of antigen 
(69). Notably, TEMRA Vγ9Vδ2 T-cells are the major subset 
endowed with potent antitumor and antibacterial activity (69). 
Analysis of the differentiation status of γδ T-cells in our patients 
given haplo-HSCT showed that TCM cells were predominant in 
both Vδ2 and Vδ1 cells. The relative proportions of the differ-
ent Vδ2 and Vδ1 subsets remained stable over time and were 
similar to those detected in the donor. Naïve Vδ2 cells increased 
significantly between 20 days and 3 months after haplo-HSCT, 
suggesting that circulating γδ T-cells in transplanted patients 
consisted of not only mature cells derived from the graft, but 
also of cells differentiating from donor HSC (63). Investigation 
of TRG and TRD repertoires in recipients of haplo-HSCT 
depleted of TCRαβ+ T and CD19+ cells using powerful NGS 

techniques will shed new light on the origin of γδ T-cells in this 
setting.

Studies performed in solid organ transplantation and HSCT 
recipients have demonstrated that a remarkable expansion of Vδ2− 
γδ T-cells displaying a TEMRA immunophenotype and exerting 
cytotoxic function takes place in the course of CMV infection 
(67). The investigation of the γδ TCR junctional diversity revealed 
the expansion of Vδ1 and Vδ3 T-cells with a restricted repertoire 
during CMV infection (67). The mechanism whereby Vδ2- γδ 
T-cells recognize CMV-infected cells involves γδ TCR, still 
incompletely defined co-stimulatory molecules including LFA-1, 
and different γδ TCR ligands expressed by virus-infected cells 
(67). One of such ligands is the recently identified MHC-related 
molecule endothelial protein C receptor (71). CMV-induced Vδ2 
γδ T-cells are able to recognize and kill hematological tumor 
cell lines and primary AML blasts (72, 73). Consistently with 
these notions, our patients who experienced CMV reactivation 
displayed a significant expansion of the Vδ1 T-cell subset with 
a cytotoxic TEMRA phenotype, which was absent in patients 
without CMV reactivation. These CMV-driven Vδ1 T-cells killed 
in vitro primary acute lymphoblastic leukemia and AML blasts 
more efficiently than Vδ1 T-cells from patients that did not reac-
tivate CMV infection, suggesting that CMV infection promotes 
both expansion and activation of Vδ1 T-cells (63).

eFFeCT OF ZOLeDROniC ACiD On γδ 
T-CeLLS ReCOveRinG AFTeR αβ T-CeLL-
DePLeTeD HLA-HAPLOiDenTiCAL HSCT

We demonstrated that Vδ2 T-cells from patients who received 
haplo-HSCT depleted of TCRαβ+ and CD19+ cells expanded 
in vitro upon incubation with ZOL, which promoted the acquisi-
tion of an EM phenotype and potentiated the cytotoxic activity 
against primary leukemic blasts. Such activity was dependent 
on the levels of PhAgs expressed by leukemia cells and on TCR 
Vγ9 mediated recognition of the latter cells (63). Indeed, the 
lytic capacity of γδ T-cells was strongly enhanced by sensitizing 
leukemic target cells with ZOL. These in vitro results provided the 
rationale to investigate in a subsequent clinical study the effect of 
ZOL infusion in 43 pediatric recipients of haplo-HSCT depleted 
of TCRαβ+ and CD19+ cells (74). ZOL was infused every 28 days 
at least twice in most patients. Such treatment was safe and well 
tolerated, and, when administered three or more times, reduced 
GvHD occurrence and improved overall survival. The first treat-
ment with ZOL induced the differentiation of Vδ2 T-cells, which 
switched from a CM to an EM/EMRA phenotype. Such matura-
tion correlated with increased Vδ2 cell-mediated cytotoxicity 
against primary leukemia cells irrespective of their PhAg expres-
sion. Proteomic analyses identified an anti-proliferative effect 
of infused ZOL on total γδ T-cells that was consistent with the 
decrease of Vδ2 T-cells starting 3 months after HSCT. Such effect 
was already evident after the first ZOL infusion and it was further 
boosted by the subsequent infusions. In contrast, the percentage 
of Vδ1 T-cells increased during ZOL infusions irrespective of 
CMV reactivation (74). Altogether, these results suggest that 
haplo-HSCT transplanted pediatric patients may benefit from 
ZOL treatment.
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COnCLUSiOn

Similar to NK cells, γδ T-cells are endowed with antileukemia and 
anti-infection potential and do not mediate GvHD. These features 
are particularly useful in the setting of haplo-HSCT depleted of 
TCR αβ+ T and CD19+ B cells, since the graft infused into the 
patient is highly enriched in mature γδ and NK  cells ready to 
exert their effector functions. Both Vδ2 and Vδ1 γδ T-cells are 
cytotoxic toward primary acute leukemia cells, while Vδ1 and 
Vδ3 cells undergo adaptive clonal expansions driven by CMV 
reactivation that are reminiscent of antigen-specific αβ T-cells 
responses. Pharmacological manipulation, for example, through 
ZOL administration, may potentiate the anti-leukemic activity 
of endogenous Vδ2Vγ9 T-cells; if this effect translates into a 
significant benefit for the patients awaits to be definitively proved 
in prospective controlled clinical trials. Future studies aimed at 
deconvoluting the fine mechanisms whereby γδ T-cells recognize 
malignant and virus-infected cells will help improve the thera-
peutic potential of γδ T-cells in the setting of haplo-HSCT.
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