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Acute graft-versus-host disease (GvHD) is still a major cause of treatment-related mor-
tality after allogeneic stem cell transplantation. Allo-antigen recognition of donor T cells 
after transplantation account for the onset and persistence of this disease. MicroRNAs 
(miRNAs) are molecular regulators involved in numerous processes during T-cell devel-
opment, homeostasis, and activation. Thus, miRNAs also contribute to pathological 
T-cell function during GvHD. Given their capacity of fine-tuning T-cell function, miRNAs 
have emerged as promising therapeutic targets to curtail acute GvHD, but simultane-
ously maintain T-cell-mediated graft-versus-tumor effects. Here, we review the role of 
key miRNAs contributing to the pathophysiology of GvHD. We focus on those miRNAs 
acting in T cells and for which a role in GvHD has been established in preclinical models. 
Finally, we provide an outlook for clinical application of this new therapeutic target for 
GvHD prevention and treatment.
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inTRODUCTiOn

Acute graft-versus-host disease (GvHD) is still a major complication after allogeneic hematopoietic 
stem cell or bone marrow transplantation (alloSCT). Allogeneic donor T cells are the main inducers 
of this too often lethal disease. Donor T cells recognize and respond to allo-antigen, use chemokine 
receptors and integrins to home to epithelial organs, such as the liver, the intestine, or the skin 
and orchestrate a significant immune response, which frequently results in severe organ damage. 
Unspecific prophylactic and therapeutic immunosuppressive treatment is the current clinical prac-
tice to improve patients’ outcome. However, the repertory of therapeutic and preventive options is 
limited and, therefore, new targets to control acute GvHD are urgently needed (1).

Since T cells orchestrate this disease, they are first choice to be targeted. Only naïve donor CD4 
and CD8 T cells respond to allo-antigen via the T-cell receptor (TCR) in alloSCT, whereas central 
and/or memory T cells are not able to induce acute GvHD (2). Depending on several signals from 
the microenvironment, naïve T  cells respond to allo-antigens in different ways. TCR signals are 
usually provided by antigen-presenting cells (APCs) via MHC class I or II molecules to CD8 and 
CD4 T cells, respectively. Recipient and donor APCs have differential impact on GvHD-induction 
by donor T cells (3–9). Furthermore, additional signals via cytokines are provided by the inflamed 
microenvironment and lead to onset and/or acceleration of this immune response (10). Whereas the 
plasticity of donor CD8 T cells seem to be limited, CD4 T cells develop into different subtypes during 
activation. T helper (Th) subtypes, such as Th1, Th2, Th17, and regulatory T cells (Treg) have distinct 
functions in the course of GvHD. The main drivers of acute GvHD, at least in rodents, are Th1 and 
Th17 cells (11–14). The cytokine release of such subtypes ultimately leads to tissue damage, which 
defines the clinical outcome of the disease. However, Th2 responses with cytokines such as IL-4, IL-5, 
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IL-9, and IL-13 contribute to acute GvHD as well (15–17). It is 
believed that the impact on the pathophysiology of such cytokines 
depends on the timing and location of cytokines released by CD4 
subsets. This is especially true for the Th1 cytokine IFN-γ, which 
is involved in inflammatory processes but can also facilitate 
immunosuppressive effects (18, 19). Further Th1 type cytokines 
TNFα and IL-2 have been tested for the prevention and treatment 
of GvHD not only in experimental models but also in patients 
with heterogeneous results (20). Th17  cells produce cytokines 
such as IL-17A, IL-17F, and IL-22 under the influence of IL-23 
(21). A role for Th17 and associated cytokines such as IL-17A 
and IL-22 during acute GvHD has been shown, however, with 
controversial results. In one study, IL-17A deficiency leads to dis-
ease reduction (22), whereas another study shows that absence of 
Th17 cells exacerbates acute GvHD (23). IL-22 has been shown to 
be protective during GvHD by protection of recipients’ intestinal 
stem cells (24). A critical role in the pathophysiology of acute 
GvHD is attributed to Treg cells (25–27). It has been demonstrated 
in preclinical animal models that thymic-derived CD4+CD25+ 
natural Treg cells prevent the development of severe acute GvHD 
while preserving graft-versus-tumor (GvT) effects (28). Clinical 
studies are currently underway to test the therapeutic potential of 
natural Treg cells as a cellular therapy (29). However, the role of 
induced Treg cells in the context of GvHD is less clear (30), and 
it is controversially discussed whether such cells are suitable for 
therapeutic usage. Other CD4 T cell subsets, such as T follicular 
helper (Tfh) cells seem to have a role in chronic GvHD, but not 
acute GvHD (31). Furthermore, there is some evidence that also 
NK cells, natural killer T cell and invariant natural killer (iNK) 
T cells contribute to acute GvHD pathophysiology (25).

MicroRnAs (miRnAs) COnTROLLinG 
T-CeLL DeveLOPMenT AnD FUnCTiOn

MicroRNAs act as post-transcriptional regulators predominantly 
by facilitating mRNA degradation or inhibiting translation. For 
most miRNAs, multiple, even hundreds, of target mRNAs have 
been predicted in silico, and many of those have been validated 
experimentally at least in some cell types (32). Conversely, 
mRNAs frequently contain binding sites for multiple miRNAs. 
Thus, miRNAs are likely to play diverse roles in controlling gene 
expression in different contexts dependent on both miRNA and 
mRNA concentration and their binding affinity. Of note, many 
mRNAs display a limited degree of repression through the action 
of an individual miRNA (33, 34). Accordingly, a major function 
of miRNAs might lie in controlling noise in protein expression of 
lowly expressed genes (35, 36) or in generating expression switches 
(37). In addition, it has been suggested that individual miRNAs 
co-target multiple mRNAs within the same pathway, thus being 
able to functionally control biological processes despite low levels 
of repression of individual mRNAs (38). In turn, some mRNAs 
appear to be key targets of a wide variety of miRNAs. One  example 
constitutes the negative regulator of PI3K signaling, Pten. In 
addition, a pseudogene homologous to Pten has been described 
to act as negative regulator of miRNA-mediated regulation of 
Pten via competition for miRNA binding (39–41). Although the 

hypothesis that miRNA function is regulated via the abundance 
of corresponding miRNA-binding sites in competing mRNAs is 
compelling, quantitative analysis of miRNA copies and abundance 
of miRNA response elements suggested that individual competing 
RNAs are unlikely to significantly contribute to target derepres-
sion (42–45). Recently, Heissmeyer and colleagues demonstrated 
that the RNA binding Protein Roquin blocks miRNA-mediated 
regulation by occupying a binding site for miR-17–92 in the 3′ 
untranslated region (UTR) of Pten mRNA, thus adding another 
level of complexity to the system (46).

Despite the described complexity in miRNA–mRNA inter-
dependence, functionally relevant regulatory one miRNA—one 
mRNA relationships have been demonstrated using targeted 
deletion of defined miRNA-binding sites in individual genes. For 
instance, some, but not all, functions of miR-155 in the immune 
system could be ascribed to its repression of Socs-1 (47). On 
the other hand, targeted deletion of a miR-142-binding site in 
Cdkn1b did not phenocopy aberrant proliferation of thymocytes 
observed in miR-142-deficient mice (48).

Unsurprisingly, miRNAs also play a fundamental role in 
T-cell development and differentiation. Thus, T-lineage specific 
ablation of genes essential for processing of the vast majority 
of miRNAs, such as Dicer, Drosha, or Dgcr8 results in aberrant 
T-cell development and function. Loss of virtually all miRNAs 
early during T-cell development results in increased levels of 
apoptosis of thymocytes and, concomitantly, reduced thymocyte 
numbers (49, 50). Deletion of Dicer at later developmental stages 
showed that miRNAs are critical for maintenance of peripheral 
T cells, most notably, the CD8 T cell compartment (51). Within 
the CD4 T cell compartment, loss of virtually all miRNAs resulted 
in a bias toward a Th1 differentiation program and against 
differentiation toward the Th2 and Th17 lineages (51, 52). In 
addition, generation of Tfh cells is dependent on miRNA (53). 
Furthermore, miRNAs are critical for intrathymic development 
as well as peripheral induction of Treg cells (54). Treg-cell specific 
deletion of all miRNAs resulted in fatal autoimmunity due to 
defective peripheral Treg-cell homeostasis (55–57).

In both T-cell development and differentiation, individual 
miRNAs have been extensively characterized [reviewed in  
Ref. (58–60)]. Here, we focus mainly on describing physiological 
roles of miRNAs that have been directly linked to GvHD in pre-
clinical models or may affect critical T-cell function in the context 
of GvHD (Figure 1; Table 1). By comparing consequences of 
deletion of individual miRNAs versus deletion of the total pool 
of miRNAs, Dooley and colleagues identified those individual 
miRNAs as dominant, deletion of which helps to explain the 
consequences of loss of the complete miRNAome (59). In con-
trast, loss of individual miRNAs that does not mirror complete 
miRNA deficiency rather indicates functions in line with the role 
of miRNAs to fine-tune biological processes.

A cluster of six related miRNAs, miR-17–92, confers com-
petitive fitness to the earliest T-cell progenitors in the thymus 
and pre-thymic progenitors by regulating IL-7 receptor levels and 
IL-7 signaling (85). Conversely, miR-142 curtails numbers of early 
T-lineage progenitors, although loss of this miRNA inhibits pro-
liferation and ultimately results in peripheral lymphopenia (48). 
Together, miR-17–92 and miR-142 help to explain the majority 
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TAbLe 1 | MicroRNAs (miRNAs) acting in T cells, for which a role in graft- 
versus-host disease (GvHD) has been established in preclinical models.

miRnA Physiologic function Role in GvHD Reference

miR-17–92 •	 Promotes early T-cell development
•	 Promotes activation-dependent  

T-cell proliferation
•	 Regulates regulatory T cell  

(Treg) cell suppressive function

Pathogenic (60–65)

miR-142 •	 Curtails T-cell progenitor numbers
•	 Promotes T-cell proliferation

Pathogenic (47, 66)

miR-146a •	 Promotes Treg-cell homeostasis Beneficial (67–69)

miR-146b •	 n.d. Pathogenic (70)

miR-153-3p •	 Prevents immunosuppression through 
indoleamine-2,3-dioxygenase

Pathogenic (71, 72)

miR-155 •	 Promotes Treg cell homeostasis Pathogenic (73, 74)

miR-181a •	 Rheostat for T-cell receptor signaling
•	 Promotes development of invariant 

natural killer T cells

Beneficial (75–84)

FiGURe 1 | Pathophysiologically relevant microRNAs (miRNAs) in graft-
versus-host disease with a functional role in T-cell development, homeostasis, 
and differentiation. miRNAs adjacent to arrows indicate those miRNAs that 
positively contribute to intrathymic development (left), proliferation and/or 
homeostasis (center), or differentiation of T cell subsets. miRNAs highlighted 
in green mirror exert major functions. Loss of these miRNAs partially mirrors 
depletion of all miRNAs in mice. miRNAs highlighted in red indicate miRNAs 
with non-dominant functions. For details, see text. Abbreviations: NKT, natural 
killer T cell; Treg, regulatory T cell; Tconv, conventional T cell; Th, T helper cell.
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of T-lineage developmental defects observed upon early deple-
tion of all miRNAs. Members of the miR-181 family are among 
the most prominently expressed miRNA species in thymocytes 
preceding and/or undergoing selection (75, 86). miR-181a targets 
a group of phosphatases, all of which act as negative regulators 
of TCR signaling (76). Accordingly, miR-181a sensitizes cells 
toward TCR signaling and may serve as a rheostat during positive 
selection (76,  77). Conversely, loss of miR-181a-1 and miR-181b-1 
dampens TCR signaling in double-positive thymocytes (78, 79). 
Nevertheless, the effect of loss of miR-181a/b-1 on selection of 
conventional T cells (Tconv) is comparatively mild. In an HY-TCR 
transgenic model, loss of miR-181a/b-1 results in an increase in 
positively selected TCR-transgenic T cells (79). In contrast, miR-
181a/b-1 is critical for development of agonist-selected iNK T cells 
(78, 80, 81). Although control of agonist-selected populations by 
miR-181 can be plausibly explained by regulation of TCR signal 
strength and elevated TCR expression was able to completely 

restore iNKT cell development, alternative mechanisms of actions, 
such as via regulation of Pten, cannot be fully ruled out (66, 78, 80).

Once outside the thymus miRNAs are critical for peripheral 
maintenance and proliferation of T cells. Thus, T cells deficient 
in miR-142 fail to expand after egress from the thymus and do 
not efficiently proliferate upon TCR triggering (48, 61). Similarly, 
T cells lacking miR-17–92 proliferate inefficiently after stimula-
tion in  vitro and after infection, a defect that can be partially 
restored by re-introduction of miR-17 and miR-92a (62, 63, 82). 
Despite its low levels of expression when compared to thymo-
cytes, miR-181a has been proposed to regulate responsiveness in 
peripheral CD4 T  cells, especially in humans. Notably, expres-
sion of miR-181a progressively declines with age, resulting high 
sensitivity toward TCR signals in cord blood T cells and impaired 
sensitivity in naive T cells from aged individuals (83, 87).

Loss of miR-29 results in a bias toward Th1 differentiation similar 
to that observed in pan-miRNA-deficient T cells via derepression 
of key transcription factors T-bet and Eomes as well as IFN-γ (62, 
67). Restoration of miR-29 expression in these mice can partially 
overcome this defect (62). miR-146a and miR-155 constitute 
critical miRNAs for function and homeostasis of Treg cells. Loss of 
miR-146a derepressed transcription factor Stat1 and, consequently, 
resulted in dysregulated expression of IFN-γ and accompanying 
immunopathology (73). The Foxp3-dependent miR-155 promotes 
Treg-cell homeostasis by controlling responsiveness to IL-2 signals 
via repression of Socs-1 (64). Combined these data place Socs-1 
in a central miRNA-controlled hub of Treg cell function, because 
both effector signals, such as Stat1/IFN-γ as well as homeostatic 
signals via Stat5/IL-2 are regulated by Socs-1. Of note, disrup-
tion of the miR-155/Socs-1 axis by introducing mutations into 
miR-155-binding sites in the Socs1 3′UTR perturbed Treg-cell 
homeostasis under competitive conditions, but not at steady state, 
highlighting the complexity of miRNA-dependent gene regulation 
(47). Interestingly, although miR-17–92 contributes to regulat-
ing suppressive function via regulating production of IL-10, this 
cluster does not control proliferation or survival of Treg cells (88). 
Specific induction of miR-181a in differentiating Th17  cells can 
selectively sensitize these cells toward TCR-mediated signals, thus 
contributing to controlled memory T cell formation (89).

miRnA FUnCTiOn in T CeLLS in  
THe COnTeXT OF ACUTe GvHD

For a number of miRNAs, a role in the pathophysiology of acute 
GvHD has been described. miR-155 is important for Treg cell 
homeostasis and was also linked to differentiation of Tconv in 
autoimmune responses such as in experimental autoimmune 
encephalomyelitis (74, 90). miR-155 expression is upregulated in 
donor T cells in an experimental GvHD model and also in intes-
tinal tissue of GvHD patients. Furthermore, donor T cells lacking 
miR-155 induce reduced GvHD, whereas miR-155 overexpres-
sion accelerates the course of the disease in experimental alloSCT. 
Consistently, blocking miR-155 by locked-nucleic-acid-modified 
(LNA−) anti-miR-155 oligonucelotides diminishes GvHD. In 
addition to alterations in T cell differentiation, impaired homing 
to GvHD target organs due to decreased expression of homing 
receptors CCR5, CXCR4, and S1P1 on effector T cells, has been 
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proposed as the underlying molecular mechanism of blocking 
miR-155 (65).

Since miR-142 and miR-17–92 constitute important mediators 
of T cell proliferation, their contribution to GvHD pathophysio-
logy was not unexpected. Donor T  cells deficient for miR-142 
show impaired cell cycle progression and simultaneously reduced 
proliferation, which in turn leads to reduced GvHD severity and 
mortality in multiple experimental alloSCT models. Mir-142 
deficiency in T cells leads to upregulation of atypical E2F tran-
scription factors E2f7 and E2f8, which are both known targets 
of this miRNA. Thus, targeting the interaction between miR-142 
and E2F transcription factors, might serve as a potential thera-
peutic approach (61). T cells deficient in miR-17–92 proliferate 
inefficiently after stimulation in vitro and after infection (63, 82). 
In line with these data, miR-17–92-deficient donor T cells were 
unable to induce lethal acute GvHD, which could be mostly 
ascribed to miR-17 and miR-19b (68). Interestingly, in this 
model, the GvT effect was preserved, which might be due to the 
fact that proliferation, survival, and cytotoxic functions of CD8 
T cells are at least partially maintained in the context of GvHD, 
when miR-17–92 is targeted. These data highlight the capacity 
even of broadly acting miRNAs to fine tune T cell function in a 
context-dependent manner.

The miR-146 family includes two members, miR-146a and 
miR-146b, which are both involved in acute GvHD pathophysio-
logy. miR-146a overexpression in donor T cells reduces GvHD 
and in turn lack of this miRNA leads to increased GvHD severity 
with high levels of TNFα. In line with these experimental data, 
the occurrence of the SNP rs2910164 in alloSCT donors, which 
reduces miR-146a expression, is associated with higher incidence 
of severe GvHD in a patient cohort (69). One target of miR-146a 
in T cells is the TNF-receptor-associated factor 6 (TRAF6) (70). 
TRAF6 regulates transcription of TNFα via NF-κB and high lev-
els of miR-146a reduces TNFα transcription in donor T cells and 
thereby reduces GvHD. TRAF6 is also a target of miR-146b and 
antagomir-mediated knockdown of miR-146b leads to enhanced 
TRAF6 expression. Increased TRAF6, in turn, activates NF-κB 
and leads to enhanced survival, proliferation, and suppressive 
activity of natural Treg cells. Hence, miR-146b antagomir-treated 
human Treg cells decrease mortality in a xenogenic GvHD-model 
and might, therefore, improve the adoptive Treg cell therapy (91). 
The opposing functions of the closely related miR-146a and miR-
146b shed light on the complexity of miRNA-based intervention 
to treat GvHD.

Indoleamine-2,3-dioxygenase (IDO) is a critical enzyme 
in providing essential amino acids for T  cell proliferation and 
exerts immunosuppressive effects. Increased levels of IDO levels 
prevent acute GvHD (72). IDO is directly targeted by miR-153-3p 
and miR-153-3p. Antagomir for miR-153-3p and miR-153-3p led 
to higher IDO expression in experimental GvHD and delayed the 
course of disease (84).

miR-181a acts as a rheostat for T cell sensitivity to antigen 
by downregulation of several phosphatases downstream of the 
TCR (76). Primary T  cells overexpressing miR-181a failed to 
induce experimental GvHD, whereas, conversely, donor T cells 
lacking miR-181a/b-1 accelerated acute GvHD in the same 
model (92). Overexpression of miR-181a resulted in decreased 

T  cell survival, most likely because of reduced expression of 
anti-apoptotic BCL-2 protein expression. Repression of BCL-2 
protein in this context likely results from a combination of it 
being a direct target of miR-181a as well as a consequence of 
apoptosis regulation dependent on TCR signal strength. This 
study points toward BCL-2 inhibition as a novel therapeutic 
strategy in prevention of allo-reactivity and highlights miRNAs 
as titrable therapeutic targets in order to prevent GvHD while 
preserving GvT effects.

FUTURe DiReCTiOnS

Understanding the role of miRNAs in physiological T cell func-
tion and in the context of disease has the potential to open up 
new avenues for therapy. Most of this knowledge is derived 
from the analysis of rodent models and is only beginning to be 
complemented by studies in human primary T cells (93). To a 
large extent, miRNAs and their mRNA target sites are evolution-
ary conserved. However, some notable exceptions have been 
described. Thus, miR-125b controls human T cell differentiation 
via a number of mRNA targets lacking corresponding miR-125b 
binding sites in mouse, including the genes encoding IFN-γ 
and IL-10RA (93). In terms of therapeutic delivery, alloSCT has 
the distinct advantage that cells might already be manipulated 
prior to transplantation ex vivo. Recently, methods for efficient 
CRISPR/Cas9-mediated genome engineering of primary human 
T cells have been reported (94). In addition, highly potent chemi-
cally modified miRNA analogs or antagonists are beginning to 
emerge that can be directly delivered in  vivo (95, 96), some of 
which have already been employed experimentally in rodent 
models of GvHD (65, 69). In order to prevent off-target effects in 
case of systemic delivery such miRNAs can be further modified 
to generate compounds that can be selectively activated through 
light in typical GvHD target organs, such as skin and gut (97).

Our knowledge of miRNA action is far from complete and a 
number of miRNAs with a role in T cell function, for instance, 
miR-148a, miR-182, and miR-326, may ultimately also play a role 
in GvHD (98–100). Similarly, a number of miRNAs have been 
identified as putative biomarkers for GvHD, such as miR-194, but 
a functional role in pathogenesis remains to be established (101). 
Finally, miRNAs also play a role in non-T cells during GvHD. For 
instance, miR-100 has been reported to limit neovascularization 
in the intestine and miR-155, which functions as a key regulator 
of Treg cells as well as Tconv, negatively impacts upon dendritic 
cell function during GvHD (102, 103).

COnCLUSiOn

MicroRNAs play critical role in many biological processes includ-
ing T-cell development and differentiation. Given that GvHD is 
a predominantly T-cell driven disease, miRNAs have emerged 
as attractive therapeutic targets for ex vivo and potentially even 
in vivo modulation. A better understanding of miRNAs controlling 
physiologic T-cell function has resulted in efficient translation of 
manipulation of miRNAs in preclinical models of GvHD. However, 
despite the generally broad interspecies conservation of miRNAs, 
translation into clinical treatment of GvHD remains a challenge.
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