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Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic 
kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferenti-
ation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we 
investigated the role of complement in inducing PMT after transplantation. Using a swine 
model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 
24 h of I/R injury as demonstrated by reduction of PDGFRβ+/NG2+ cells with increase in 
myofibroblasts marker αSMA. In addition, PMT was associated with significant reduction 
in peritubular capillary luminal diameter. Treatment by C1-inhibitor (C1-INH) significantly 
preserved the phenotype of pericytes maintaining microvascular density and capillary 
lumen area at tubulointerstitial level. In vitro, C5a transdifferentiated human pericytes in 
myofibroblasts, with increased αSMA expression in stress fibers, collagen I production, 
and decreased antifibrotic protein Id2. The C5a-induced PMT was driven by extracellular 
signal-regulated kinases phosphorylation leading to increase in collagen I release that 
required both non-canonical and canonical TGFβ pathways. These results showed that 
pericytes are a pivotal target of complement activation leading to a profibrotic maladap-
tive cellular response. Our studies suggest that C1-INH may be a potential therapeutic 
strategy to counteract the development of PMT and capillary lumen reduction in I/R injury.

Keywords: complement system, pericytes, ischemia–reperfusion, tubulointerstitial fibrosis, capillary rarefaction, 
c1-inhibitor, c5a

Abbreviations: I/R, ischemia/reperfusion; PMT, pericyte-to-myofibroblast transdifferentiation; C1-INH, C1-inhibitor; CTRL, 
control group; TGF-β1, transforming growth factor beta 1; PDGFRβ, beta-type platelet-derived growth factor receptor; NG2, 
neuronal glial antigen 2; Id2, inhibitor of DNA binding 2; ERK, extracellular signal-regulated kinases; SMAD, small mother 
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inTrODUcTiOn

Ischemia/reperfusion (I/R) injury remains an unavoid-
able consequence after renal transplantation and the principal 
cause of delay graft function (DGF) (1). After brain death, 
the decreased blood flow induces a persistent rarefaction in 
peritubular capillaries (2, 3), whereas the following reperfusion 
exacerbates the pro-inflammatory response by activation of 
complement and coagulation (4). Pharmacologic treatments 
to prevent graft deterioration after I/R are currently lack-
ing. Recently, genetic fate-mapping studies have identified 
pericytes as the major source of scar-forming myofibroblasts 
during progressive chronic kidney disease (5–8). Pericytes are 
mesenchymal-derived cells embedded in the capillary base-
ment membrane and in direct contact with endothelial cells 
(9). Pericytes contribute to microvessel stability and show 
regeneration potential; renal pericytes regulate cortical and 
medullary flow by contracting or dilating in response to vari-
ous stimuli released by the neighboring endothelial and tubular 
cells (10). Interestingly, data on cerebral ischemia showed that 
pericytes died “in rigor,” causing an irreversible constriction of 
capillaries that exacerbates the hypoxia (11, 12). Renal pericytes 
are PDGFRβ+/NG2+ cells that during their abnormal transdif-
ferentiation in myofibroblasts upregulated the pro-fibrotic 
marker αSMA. The physiological role of the receptor tyrosin 
kinase PDGFRβ is to bind the platelet-derived growth factor  
B (PDGF-B) released by endothelial cells. The PDGFRβ sign-
aling promoted the pericytes activation, migration, and the 
recruitment to the vascular wall of newly formed blood vessels. 
Nerve/glial antigen 2 (NG2) is a proteoglycan associated with 
pericytes during vascular morphogenesis (13).

Complement plays a pivotal role in renal I/R injury mediat-
ing tissue damage and amplifying innate and adaptive immune 
response (14–17). C1-esterase Inhibitor (C1-INH) blocks 
complement activation of the classical, lectin (14, 18, 19), and 
alternative pathways (20–22). Currently, C1-INH is used as 
treatment for hereditary angioedema (23), but several studies 
are evaluating the therapeutic potential in renal transplantation 
(24–26). In previous studies, we demonstrated that C1-INH is 
able to prevent the C5b-9 deposition along peritubular capillar-
ies, limiting endothelial dysfunction and renal fibrosis during 
I/R (18, 27). The aim of our study was to investigate the involve-
ment of complement in pericyte activation in the early phase of 
I/R injury.

MaTerials anD MeThODs

animal Models
Animal studies were carried out under protocol approved by 
Ethical Committee of the Italian Ministry of Health. Briefly, 
I/R was induced in pig by clamping the renal artery for 30 min 
followed by reperfusion, as described previously (18). A biopsy 
was performed before ischemia (T0). Pigs were divided into two 
groups: control (CTRL, n = 5, vehicle infused) and C1 Inhibitor 
treated group (C1-INH, n = 5). Five minutes before the begin-
ning of the reperfusion, rhC1-INH was injected in the ear vein 

(500 U/kg). Biopsies were performed at 15, 30, and 60 min and 
24 h after reperfusion. All animals were sacrificed 24 h after the 
procedure. Controlateral kidney was not removed for ethical 
concerns. A mouse model of renal bilateral I/R was performed 
in C5aR1−/− mouse with C57BL/6 backgrounds, as previously 
described (28).

immunohistochemistry
Renal sections underwent deparaffination and heat-mediated 
antigen retrieval (citrate buffer, pH  =  6.00) as previously 
described (18). For caspase3 and Ki67 detection, sections were 
permeabilized with Triton 0.25% for 5  min, then blocked by 
Protein Block Solution (DakoCytomation, USA) for 10  min. 
Incubation was performed with antibodies against: Caspase-3 
(Novus Biologicals, Abingdon Science Park, UK), PDGFRβ 
(Abcam, Cambridge UK), Ki-67 (Novus Biologicals), and 
detected by the Peroxidase/DAB Dako Real EnVision Detection 
System (Dako, Glostrup, Denmark). The peroxidase reaction 
was shown by a brown precipitate, counterstained with Mayers 
hematoxylin (blue). Negative controls were prepared by incuba-
tion with a control irrelevant antibody. Images were scanned by 
Aperio ScanScope CS2 device and signals were analyzed with 
the ImageScope V12.1.0.5029 (Aperio Technologies, Vista,  
CA, USA).

analysis of Peritubular capillaries area
The peritubular capillaries area was calculated by Image J soft-
ware. The cortical area of the entire biopsy acquired by Aperio 
ScanScope was analyzed in a stepwise fashion as a series of 10 
consecutive fields, avoiding the arterioles, venules, and capil-
laries, which has a diameter upper than 50 µm. Values from all 
consecutive images for each biopsy were averaged.

cell culture
Human placental-derived pericytes (PromoCell, Heidelberg, 
Germany) were grown in Serum Free Pericyte Growth Medium 
(PromoCell) at 5% CO2 and 37°C. Once they have reached the 
70%, confluence cells were stimulated with human recombinant 
C5a (Biovision, San Francisco, CA, USA) at 10−7 M and human 
recombinant TGFβ-1 (10  ng/ml, Biovision). All experiments 
were performed at early P3–P5 passages. For pERK inhibi-
tion, cells were pretreated with SC1 (Pluripotin, Abcam) at 
1–3–5  µM for 6–24  h, the cells were stimulated by C5a for 
indicated times. For C5aR inhibition assay, mouse monoclonal 
anti-C5aR (Abcam) was preincubated (1:10) for 1 h before the 
C5a exposition.

confocal laser scanning Microscopy
Renal sections and cultured pericytes were stained or double 
stained for αSMA (Santa Cruz Biotechnologies), PDGFRβ, 
NG2 (Abcam), C3 (HycultBiotech), and C5b-9 (Dako). For C3 
and C5b-9 stainings, frozen kidney slides were used. For each 
experiment, 5 × 104 cells were seeded on a cover slip, grown to 
70% confluence, and fixed in 3.7% paraformaldehyde for 5 min. 
After blocking, slides were incubated with primary antibodies, 
overnight at 4°C and with secondary antibodies (Alexa Fluor, 
Molecular Probes, Eugene, OR, USA). TO-PRO-3 was used to 
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Table 1 | List of primers used for qPCR.

gene sequence 5′ → 3′

Connective tissue growth factor (CCN2) F-TTGGCCCAGACCCAACTA
R-GCAGGAGGCGTTGTCATT

C5aR1 F-GAGCCCAGGAGACCAGAACATG
R-TACATGTTGAGCAGGATGAGGGA

ADAMTS1 F-GCACTGCAAGGCGTAGGAC
R-AAGCATGGTTTCCACATAGCG

GAPDH F-GAAGGTGAAGGTCGGAGTCA
R-CATGGGTGGAATCATATTGGA
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counterstain nuclei. Negative controls were prepared by isotype 
control antibody. Image acquisition was performed with confocal 
microscope Leica TCS SP2 (Leica, Wetzlar, Germany).

Facs analysis
After incubations, cells were washed, detached by ice cold PBS-
EDTA, permeabilized by Intraprep reagents (Instrumentation 
Lab), then incubated with FCR blocking reagent (Miltenyi 
Biotec) for 10 min at RT and with APC-conjugated anti-PDGFRβ 
(LSBio), FITC-conjugated anti-collagen I (Millipore, Millimarck) 
or mouse monoclonal anti-C5aR unconjugated (Abcam) for 
20 min at RT in the dark. After washing, cells were re-suspended 
in FACS buffer. For apoptosis analysis, 5  ×  105  cells for each 
condition were washed with cold PBS 1× and double-stained 
with FITC-conjugated Annexin V/Propidium Iodide. Data were 
obtained using a FC500 flow cytometer (Beckmann Coulter) and 
analyzed by Kaluza software. Three independent experiments 
were performed. The area of positivity was determined using an 
isotype-matched mAb.

MTT assay
Cultured pericytes proliferation was measured by MTT Cell 
Proliferation Assay Kit, according the manufacturer instruc-
tions (Sigma-Aldrich). Briefly, 2  ×  104  cells/well were seeded 
in a 96-well plate, and then cells were treated with C5a, TGFβ1  
(as indicated), PDGFBB (10 ng/ml) for 24 h.

rna extraction and qPcr analysis
RNA from pericytes was extracted using the miRNeasy 
Kit (Qiagen), 500  ng of total RNA was retrotranscribed 
with QuantiTect Kit (Qiagen). qPCR was carried out with 
SsoAdvanced™ Universal SYBR® Green Supermix (Biorad) and 
the Light Cycler@96 (Roche). Primer list sequence in Table 1.

Western blot
Protein lysates were homogenized by RIPA buffer with phos-
phatase and protease inhibitors. Proteins (30 µg) were separated 
in 4–15% polyacrylamide gel and then transferred to PVDF 
membrane (0.2  mM) by Trans-Blot Turbo (BioRad, Hercules, 
CA, USA). After blocking in BSA at 5%, the membranes were 
incubated overnight with the following primary antibodies: 
pSMAD2/3 (Abcam), SMAD 2/3, pERK, extracellular signal-
regulated kinases (ERK), Id2, matrix metallopeptidase (MMP9) 
(Santa Cruz Biotechnology, Inc.) and then with secondary 

antibody (hrp-conjugated, Santa Cruz). The same membrane was 
probed with mouse monoclonal anti-βactin antibody (1:20,000; 
Sigma). The electrochemiluminescence system was used to detect 
the antibody binding (Amersham, UK). The chemiluminescent 
signal was acquired by Chemidoc and quantified using Image J 
software.

statistical analysis
Graphs were displayed using GraphPad Prism Software 5. Data 
were expressed as median  ±  interquartile range (IQR) and 
compared with a Mann–Whitney test for tissue immunostain-
ings. For FACS, qPCR, MTT, and WB data were expressed as 
the mean ± SD. Statistical analysis was assessed using unpaired 
Student’s t-test. A p-value of <0.05 was considered significant.

resUlTs

c1-inh Treatment Preserved Pericytes 
Phenotype after renal i/r injury
To investigate the possible dysfunction of renal pericytes during 
I/R injury, biopsies were analyzed for the expression of PDGFRβ, 
a marker of pericyte (Figure  1). Under normal condition (T0, 
Figure 1A), PDGFRβ+ cells were detected in interstitial peritu-
bular capillaries (Figure  1A, zoom1), in arterioles (Figure  1A, 
zoom2), mesangial cells, and Bowman’s capsule (Figure  1A, 
zoom3). I/R injury caused a significant decrease in PDGFRβ 
expression of pericytes in peritubular capillaries, a process that 
in the CTRL group began after 30 min and persisted until 24 h 
after reperfusion (Figures 1B,D,F). Treatment with C1-INH was 
unable to prevent early PDGFRβ downregulation (Figures 1C,E) 
but gave a significant preservation of peritubular PDGFRβ 
expression at 24  h after I/R injury (Figure  1G compared to 
Figure 1F). Notably, the PDGFRβ expression of mesangial cells 
was not significantly down regulated.

Next, we used PDGFRβ and NG2 co-expression to spe-
cifically label pericytes (Figure 2). In swine kidney, pericytes 
markers were localized in the interstitial peritubular capillaries 
(Figure  2A). We found that all the perivascular NG2+ cells 
were PDGFRβ+; on the contrary, we found that mesangial 
cells were PDGFRβ+/NG2−. After 24 h of I/R, the total num-
ber of PDGFRβ/NG2 double positive pericytes significantly 
decreased; in accordance with Figure  1F, PDGFRβ+/NG2+ 
cells were barely detectable in the interstitial peritubular capil-
laries after I/R (Figures  2B,E). In contrast, C1-INH treated 
pigs were protected in pericytes phenotype as shown by a 
significant recovery in the number of PDGFRβ+/NG2+ cells 
in the interstitial peritubular capillaries regions. Interestingly, 
after 24 h from the C1-INH treatment, other PDGFRβ+/NG2− 
cells (i.e., vascular smooth muscle cells) were protected from 
the PDGFRβ downregulation.

To further confirm the complement deposition at peritubular 
capillary level, we investigated the co-localization of PDGFRβ 
with C3 and C5b-9 after 30  min of reperfusion (Figures S1 
and S4 in Supplementary Material) on frozen renal tissue. We 
found C3 and C5b-9 deposition around peritubular regions after 
30  min; interestingly, C1-INH significantly counteracted this 
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FigUre 1 | C1-INH treatment prevented PDGFRβ downregulation after I/R injury. PDGFRβ expression on paraffin sections at T0 (before ischemia) [(a), zoomed in 1, 
2, 3 at right], at 30 min (b,c), 60 min (D,e), and 24 h (F,g) after reperfusion. The groups analyzed were the CTRL (b,D,F) and C1-INH-treated pigs (c,e,g). In the 
normal kidney (a), PDGFRβ+ cells were localized in peritubular capillaries (1), in arterioles (2), in mesangial cells, and Bowman capsule (3). (b–F) Stainings showing 
that I/R injury induced the PDGFRβ downregulation in the peritubular areas, whereas 24 h of C1-INH treatment protected from pericytes loss. Arrowheads point to 
representative peritubular capillaries PDGFRβ+ cells. (h) Isotype control for PDGFRβ staining. Magnification 630×, scale bar = 50μm. (i) PDGFRβ+ staining area was 
expressed as the median ± interquartile range of five independent pigs for each group. (F) *p < 0.05.
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complement activation (Figures S1C–E and S4 in Supplementary 
Material).

i/r injury Did not affect Pericytes  
Viability In Vivo
To study the possible occurrence of pericyte apoptosis during I/R 
injury as observed in cerebral ischemia (12), we stained 30 min, 
60 min, and 24 h serial sections for PDGFRβ and for the active 
form of Caspase 3 (Casp3) (Figure  3). After 30 and 60  min 
from reperfusion, no PDGRFβ/Casp3 double positive cells were 
detected in peritubular capillaries (Figures  3A,B arrowheads). 
As previously shown (18), apoptosis occurred predominantly in 
tubular epithelial cells (Figures 3A,B right, brown nuclei) (Figure 
S1A in Supplementary Material), and not in pericytes that were 
PDGFRβ+/Casp3−. In addition, we investigated whether renal 
pericytes proliferation could be detected, labeling serial sections 
for PDGFRβ and Ki-67, an antigen that marked nuclei in G1, S, 
and G2 cell cycle phases (29). Remarkably, 24 h after I/R injury, 
no Ki-67 positive cells could be found in interstitial peritubular 
capillaries (Figures 3C,D). In conclusion, in our model, cellular 
apoptosis and proliferation occurred at the level of tubular epi-
thelial cells and not within cells of peritubular capillaries (Figure 
S1B in Supplementary Material).

complement Modulation abrogated i/r 
injury-induced PMT and attenuated 
capillary lumen reduction
Next, we investigated the possible occurrence of PMT after I/R. 
Normal kidney showed αSMA expression predominately in 
smooth muscle cells (wall of renal arteries, Figures 4A,D, dotted 
arrow). Before ischemia, we found PDGFRβ+/αSMA− pericytes 
in interstitial peritubular capillaries (Figures 4A,B). After 24 h 
from I/R injury, perivascular cells upregulated αSMA together 
with an intense reduction in PDGFRβ expression, indicating 
PMT (Figures 4C,D). The co-localization of these two markers 
was more evident in arterioles and peritubular capillaries as 
shown in Figure 4D. Mesangial cells, which originate from the 
same FOXD1+ embryonic mesenchymal precursors of pericytes, 
expressed PDGFRβ (30, 31). However, PDGFRβ expression 
by mesangial cells remained unaffected and no increase of 
PDGFRβ+/αSMA+ was detected in glomerular cells (Figure 4H). 
C1-INH treatment significantly reduced the number of 
PDGFRβ+/αSMA+ cells in the peritubular capillaries, preserving 
the physiological pericytes phenotype (Figures  4E–G). These 
data demonstrate that that inhibition of C1 activity is associated 
with decreased PMT. Interestingly, we assessed the occurrence of 
PMT in a mouse model of renal I/R injury. In the Wtype sham, we 
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FigUre 2 | C1-INH preserved phenotype of double-positive PDGFRβ/NG2 pericytes after I/R injury. Renal tissues were double stained for the pericyte markers 
PDGFRβ (green) and NG2 (red). (a,D) Normal kidney, before ischemia (T0) showed the colocalization of the two signals in peritubular capillaries [arrowhead in  
(a,D) in merged images shown the overlap between PDGFRβ and NG2]. The number of peritubular capillaries-pericytes was reduced after 24 h of I/R (b,e), in 
contrast, 24 h of C1-INH treated pigs showed PDGFRβ/NG2 marker restoration (c,F). (h) Results are expressed as median ± interquartile range of the numbers  
of PDGFRβ+/NG2+ cells/high power fields (HPF) of five independent pigs for each group, *p < 0.05. Magnification, 630×, scale bar = 50 μm. (g) Isotype control 
staining for NG2.
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detected the PDGFRβ expression at level of peritubular capillaries, 
where PDGFRβ+/αSMA− cells were detected (Figure 5A). One 
day after reperfusion, a significant reduction of PDGFRβ and an 
increase of aSMA in the peritubular capillaries were observed in 
the Wtype (Figure 5B). On the contrary, C5aR1−/− mice showed 
significantly lower number of PDGFRβ+/αSMA+ cells compared 
with the Wtype (Figures 5C,I).

To investigate the possibility that the occurrence of PMT might 
influence microvessel luminal diameter, capillaries lumen area 
was measured in PDGFRβ-stained renal sections (Figure  5G). 
Compared to T0 (Figure  5D), we found that PDGFRβ down-
regulation was evident in the interstitial capillaries characterized 
by lumen reduction (Figure  5E; % area fraction: T24CTRL 

3.95 ± 2.36% versus T0 11.30 ± 2.6%). Interestingly, the treatment 
with C1-INH restored basal capillary area fraction (Figure 5F; 
T24 C1-INH 12.06  ±  3.8% versus T24 CTRL). We found that 
the restoration of capillary lumen was statistically significant 
(Figure 5H).

c5a induced PMT Without affecting 
Pericytes Viability In Vitro
To validate our findings in vitro, we next evaluated the PDGFRβ 
expression in pericytes culture stimulated with the comple-
ment anaphylotoxin C5a and TGFβ, a classic mediator of PMT 
(7, 32). After C5a stimulation, we found that the number of 
PDGFRβ+-pericytes significantly decreased indicating the 
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FigUre 3 | Ischemia/reperfusion injury did not induce pericytes apoptosis in vivo. IHC analysis of CTRL group serial sections labeled for PDGFRβ and Casp3  
(a,b) and for PDGFRβ and Ki-67 (c,D). PDGRβ+ peritubular capillaries-cells were detected by brown cytoplasmic staining. Apoptotic Casp3+-cells shown nuclear 
brown signal, while Casp3− cells had blue nuclei. Double positive PDGFRβ+/Casp3+ peritubular pericytes were barely detected at early time after reperfusion [T30  
in (a) and T60 in (b)], boxed area was enlarged at right. Magnification 20×, scale bar = 50 μm. Arrowheads indicate representative PDGFRβ+-pericytes (brown 
cytoplasmic cells) that showed negative Casp3 in the right panel. Immunohistochemical split diagram showing PDGFRβ+/Ki-67− peritubular cells at T0 and T24h 
(c,D). Arrowheads indicate representative PDGFRβ+-pericytes that did not show positivity for Ki-67 staining (blue nuclei) [(c), right]; arrowheads indicate not 
proliferating perivascular cells [(D), right]; asterisk indicates Ki-67+ tubular cells. G, glomeruli; T, tubuli; V, vessel.
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phenotypic occurrence of PMT (Figures 6A,B PDGFRβ+ peri-
cytes: C5a 48.32 ± 7.89 versus basal 79.98 ± 10.45%, p < 0.05). 
This activation persisted even after 48 h from stimulation (data 
not shown). By using the AnnexinV/Propidium Iodide and MTT 
test, we also found that pericytes did not undergo to early and 
late apoptosis upon C5a activation (Figure 6C, early apoptosis: 
C5a 14.57  ±  0.82% versus Bas 11.19  ±  1.52%, ns, Figure S2A 
in Supplementary Material) nor downregulated their prolifera-
tive response (Figure  6D). On the contrary, TGFβ stimulation 
upregulated the percentage of early apoptotic cells during peri-
cytes activation.

We also observed that C5a-stimulated pericytes acquired 
spindle-like shape morphology similar to fibroblasts. Performing 
immunofluorescence analysis, we found an increased expression 
of αSMA in stress fibers (PDGFRβ/αSMA, Figure 7A), indicat-
ing the acquirement of a contractile phenotype. Moreover, the 
morphologic changes were accompanied by increased collagen 
I protein synthesis (Figure 7B, C5a 24 h: 63.17 ± 8.22% versus 
basal: 19.86  ±  15.07%, p  <  0.05) as well as connective tissue 
growth factor mRNA expression (Figure 7C). Interestingly, C5a 
increased metalloproteinase MMP9 protein level and ADAMTS1 
gene expression, which are usually involved in pericytes 
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FigUre 4 | C1-INH significantly modulate the occurrence of PMT in Vivo. Confocal images showing interstitial peritubular capillaries pericytes co-labeled with 
PDGFRβ (green) and αSMA (red). In T0, PDGFRβ+/αSMA+ perivascular cells were barely detectable [(a), boxed area was zoomed in (b)], and αSMA was localized  
in the wall of arteries [dotted arrows (a,D)]. After 24 h of ischemia/reperfusion injury [(c), rectangle area was zoomed in (D)], the number of PDGFRβ+/αSMA+ cells 
increased predominately at peritubular capillaries level [(D), arrowhead]. C1-INH treatment limited the αSMA increase (e,F). The PDGFRβ decrease occurred at 
peritubular capillary level and did not affect the PDGFRβ+-mesangial cells [T24 CTRL in (h)]. Results are expressed as median ± interquartile range of the numbers 
of PDGFRβ+/αSMA+ cells/high power fields (HPF) of five independent pigs for each group (g). Magnification, 630×.
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FigUre 5 | Continued
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FigUre 6 | C5a induced PDGRFβ downregulation without affecting pericyte viability. (a) Immunofluorescence analysis showed the downregulation of PDGRβ  
after 24 h of treatment with C5a compared to basal. Magnification, 630×. (b) For FACS analysis; permeabilized cells were incubated with APC-conjugated  
PDGFRβ antibody. (c) After stimulation, pericytes were double stained with Annexin V-FITC and propidium iodide and analyzed to detect early, late apoptosis,  
and necrosis. The number of apoptotic cells was not increased. H2O2 100 µM for 24 h was used as positive control (not showed). (D) Pericytes treated with C5a, 
TGFβ1, PDGF-BB (10 ng/ml), or medium alone were plated in 96-well plate and MTT assay was performed. Data represent the mean ± SD; n = 3.

FigUre 5 | PMT is modulated by C5aR1 and associated with capillary lumen reduction 1 day after ischemia/reperfusion (I/R) injury. Renal I/R injury was performed 
for 24 h in C5aR1-deficient mice as showed in (a–c,i) and in a swine model treated with C1-INH as showed in (D–h). (a) Confocal images showing interstitial 
peritubular capillaries pericytes in a mouse model of I/R injury co-labeled with PDGFRβ (green) and αSMA (red). In the Wtype sham, PDGFRβ+/αSMA+ perivascular 
cells were barely detectable. After 24 h of I/R injury (b), the number of PDGFRβ+/αSMA+ cells increased predominately at peritubular capillaries level. (c) C5aR1−/− 
mice were protected from PDGFRβ loss and αSMA increase. Results are expressed as median ± interquartile range (IQR) of the numbers of PDGFRβ+/αSMA+ cells/
high power fields (HPF) of five independent mouse for each group (i). Magnification, 50×. Representative IHC images of PDGFRβ-stained renal biopsies used to 
measure the peritubular capillaries area (D,g). After 24 h of I/R injury (e), microvessels appeared constricted with a significant decrease in luminal diameter. (F) The 
treatment with C1-INH restored basal capillary area fraction. Scale bar, 100 µM. (g) Schematic panel showing the calculation of capillary lumen area using Image J 
Software. (h) Graph indicating the mean of capillary lumen area. Results are expressed as median ± IQR of the capillary area fraction (%), n = 3 for each group.
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detachment during PMT in experimental UUO (Figures S2B,C 
in Supplementary Material) (33).

Finally, we evaluated the modulation of Id2, a critical DNA-
binding protein implicated in the regulation of the profibrotic/
mesenchymal terminal differentiation (34–36). As expected, Id2 
was highly expressed in normal cultured pericytes. By 6 h from 
C5a stimulation, we found a significant downregulation of Id2 in 
pericytes undergoing PMT; the downregulation was still detect-
able at 18 h and was comparable to the effects of TGFβ, a negative 
modulator of Id2 (Figure 7D).

c5a signaling induces PMT by canonical 
and non-canonical TgFβ Pathway via 
perK
To identify the intracellular signaling involved in the C5a-induced 
PMT, cultured pericytes were incubated with complement 

anaphylotoxin and TGF-β1 (Figures 8 and 9). TGFβ contributes 
to renal fibrosis by the activation of canonical (SMAD 2/3) 
pathway and non-canonical [mitogen-activated protein kinase 
(MAPK)] pathways (37) (Figure S3 in Supplementary Material). 
Since also C5a, by interaction with the C5aR, induces the activa-
tion of ERK/MAPK pathway (38–40), we evaluated pERK protein 
modulation, as a possible common mediator of TGFβ and C5a 
signaling. We found by FACS analysis that pericytes expressed 
the C5aR at cytoplasmic and membrane level (Figure  8A).  
In addition, pericytes significantly upregulated the C5aR1 mRNA, 
which increased after 18 h of stimulation (Figure 8B). As shown 
in Figure 8C, C5a increased ERK phosphorylation after 15 and 
30 min.

Next, we investigated whether the C5aR-induced signaling 
could play a role in promoting the PMT. We used anti-C5aR 
specific neutralizing antibody to inhibit the C5a binding to 
C5aR. Anti-C5aR prevented the increase of collagen I induced 
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FigUre 7 | C5a induced PMT in vitro. Pericytes were incubated with C5a and TGFβ1 for 24 h. (a) Immunofluorescence showed a drastic remodeling of αSMA-
stress fibers (b) FACS analysis showed increased collagen I expression in permeabilized cells, after C5a exposition. (c) mRNA expression levels of connective tissue 
growth factor (CTGF) (CCN2) were determined by qPCR. C5a stimulated pericytes showed a significant increase after 3 and 6 h of incubation. The fold change of 
CTGF expression was normalized to GAPDH. The histograms represent the mean ± SD, n = 3. (D) Western Blot showed a significant reduction of Id2 protein 
compared to basal condition, β-actin protein expression was used for normalization (*p < 0.05, **p < 0.01).
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by C5a exposition (Figure  8D, bottom right). These results 
indicate that pericytes expressed the C5aR and that C5aR 
activation via pERK (non-canonical TGFβ pathway) might 
promote PMT. To further validate that pERK pathway was also 
pivotal in TGFβ-canonical signaling, we evaluated the effect 
of C5a stimulation on SMAD2/3 phosphorylation. First, we 
found the C5a increased the amount of pSMAD2/3 at 15 and 
30 min (Figure 9A). Further time course at 6 and 18 h revealed 
that C5a led to a persistent increase of total SMAD2/3 complex 
(Figure 9B). Finally, we tested the effect of SC1 (Pluripotin) 
on C5a-induced PMT. SC1 is a dual kinase (ERK1, MAPK3) 
inhibitor that blocks ERK1/2 phosphorylation of at Thr-202/
Tyr-204 (41). Analysis of ERK phosphorylation showed an 

inhibition at the concentration of 1 µM for 24 h (0.26 ± 0.18-
fold compared to untreated cells 2.4 ± 1.18); higher concen-
trations (3–5  µM) interfered with cellular viability and were 
not considered. Pretreatment of pericytes with 1 µM SC1 for 
24  h reduced ERK phosphorylation (Figure  8C), blocked 
C5a-induced SMAD3 phosphorylation at 15 min (SC1 1 µM 
SC1 for 24  h  +  C5a 15  min: 0.69  ±  0.32 compared to C5a 
15  min: 1.32  ±  0.25) (Figure  8D) and significantly reduced 
the C5a-induced collagen I production at 12 h (SC1 1 µM SC1 
for 24  h  +  C5a 12  h: 33.10  ±  12.15 compared to C5a 12  h: 
8.34 ± 4.39) (Figure 8D, left bottom). These data support the 
role of C5a in promoting PMT by the activation of both TGFβ-
canonical and non-canonical pathway.
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FigUre 8 | C5aR pathway activation contributes to PMT in human pericytes by extracellular signal-regulated kinases (ERK) phosphorylation. (a) Human pericytes 
expressed C5aR. Pericytes were assessed for presence of C5aR. FACS analysis showed both intracellular and extracellular C5aR expression in permeabilized 
(intracellular) and not permeabilized pericytes (extracellular) in basal condition. n = 3, MFI, mean fluorescence intensity. (b) qPCR analysis showed an increased 
expression of C5aR1 gene transcripts in pericytes after 18 h of C5a incubation. Expression levels were normalized by GAPDH. The histograms represent the 
mean ± SD, n = 3 (**p < 0.01, *p < 0.05, unpaired t-test versus basal for each time point). (c) Western blot of pericytes stimulated by C5a and TGFβ for 15 and 
30 min. C5a increased the phosphorylation of ERK. Expression levels of pERK were normalized by total ERK (n = 3, *p < 0.05 versus basal). (D) FACS analysis of 
pericytes after C5aR blocking showing reduced collagen I production (in bottom right). Anti-C5aR (mouse monoclonal) was used to inhibit the binding of C5a to 
C5aR, before the C5a exposition. Basal (in top, right), C5a 12 h (in bottom left) n = 3, p < 0.05.
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DiscUssiOn

In the present study, we demonstrated that inhibition of the 
complement system in I/R injury prevents the occurrence of 

PMT and the reduction of peritubular capillaries lumen areas. 
In particular, C5a had a pro-fibrotic activity driving pericytes 
toward a maladaptive dysfunctional phenotype by modulation of 
pERK activation.
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FigUre 9 | TGFβ canonical pathway is activated by C5a and modulated by pERK. (a) Western blot of pericytes stimulated by C5a and TGFβ. C5a increased the 
phosphorylation of SMAD 2/3 complexes after15 and 30 min (b) and upregulated the total SMAD 2/3 expression after 6 and 18 h. pSMAD2/3 and total SMAD 
2/3-protein expression was normalized by β-actin. (c) Pericytes were cultured with or without SC1 (Pluripotin) pretreatment to inhibit extracellular signal-regulated 
kinases (ERK) phosphorylation. Time course of ERK phosphorylation at 6 and 24 h using increasing SC1 concentrations (1–3–6 µM) was performed. The relative 
density of the bands was normalized to total ERK. Pretreatment with SC1 1 µM for 24 h blocked C5a-induced SMAD3 phosphorylation after 15 min of incubation 
and the C5a-induced collagen I production after 12 h. (D,e). Expression levels of pSMAD 3 were normalized by total SMAD. Graphs show mean ± SD, n = 3.
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Pericytes are mesenchymal-derived cells that interact with 
endothelial cells, releasing trophic factors such as VEGF and 
PDGF-BB (42). Recently, several studies demonstrated that 
pericytes are one of the myofibroblast precursors during 

development of tissue fibrosis (6, 43–45). Our results showed 
that complement is involved in transdifferentiation of pericytes 
in the early phases after kidney transplantation. Complement 
system is a key player in renal I/R injury (17, 46, 47), and C1-INH,  
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a serine protease inhibitor used for the therapy of hereditary 
angioedema (23) might offer a new strategy for the preven-
tion of I/R injury (25, 48, 49). Previously, it has been shown 
C1-INH treatment significantly prevents fibrosis, improves 
early and long-term renal function (26) and protected from 
TGFβ pathway activation (49). In our swine model of I/R, we 
found at early time after reperfusion (30 min) the deposition 
of complement components (i. e C4d, C3c, and C5b-9), along 
the peritubular capillaries (18), the areas where pericytes niche 
are localized. We also found the co-localization of PDGFRβ 
together with C3 (Figure S1 in Supplementary Material) and 
C5b-9 (Figure S4 in Supplementary Material). In accordance, 
starting from 30 min, the downregulation of PDGFRβ in our 
model began exactly along peritubular capillaries, without 
involvement of PDGFRβ expression in mesangial cells and 
larger arteries. The treatment with C1-INH, reduced the C4d 
peritubular deposition (18), and significantly restored pericytes 
markers expression, thereby accelerating the pericytes recovery. 
Even if pericytes identification requires transmission electron 
microscopy and fate-tracing analysis (5) several studies sug-
gested that a PDGFRβ+ perivascular cell population is involved 
in collagen release, since specific PDGFRβ blocking reduced 
fibrosis development (32). Additionally, NG2 (50–52) was used 
to specifically label pericytes. We demonstrated a significant 
reduction in PDGFRβ/NG2 double positive cells after 24 h of 
I/R. Interestingly, our data are in line with Hosaka and col-
leagues (53) showing that in the PMT occurring during the 
tumor growth and metastasis, the loss of PDGFRβ and NG2 
is not due to pericytes death nor proliferation. We found that 
renal I/R injury did not induce apoptosis of pericytes but 
their activation characterized by a maladaptive response not 
leading to cellular death but transdifferentiation toward a 
myofibroblast phenotype. In accordance, complement system 
did not affect pericytes viability in  vitro. Furthermore, our 
data on renal pericytes are different compared with a model 
of cerebral ischemia in vivo, were pericytes died by apoptosis  
in rigor mortis and induced an irreversible constriction of 
micro vessel (12). Another difference in our data regarded the 
pericyte proliferation in the early stage of I/R. Using a rat model 
of I/R (54) and a transgenic reporter mice to determine the 
contribution of pericytes to fibrosis, previous reports described 
the increased proliferation of pericytes, starting from 48 to 
72 h after injury (5). This difference might be explained by the 
fact that our analysis was conducted at 24  h; in addition, we 
analyzed a swine model.

Several studies revealed the importance of kidney pericytes for 
peritubular capillary integrity (55) and the microvascular rarefac-
tion following ischemic acute kidney injury (AKI) (56, 57). After 
I/R, microvessels showed CD31 reduction and αSMA increase 
indicating the occurrence of endothelial-to-mesenchymal transi-
tion, which also contributes to kidney fibrosis (2, 27, 53); in this 
contest, αSMA, a marker of activated myofibroblasts, amplifies 
cell contractility with reorganization of stress fibers(9, 58). Here, 
we demonstrated that αSMA increase is also associated to micro-
vascular pericytes. In accordance with Gomez and colleagues 
(59), we hypothesized that PMT might lead to direct constriction 

of vessels with reduction of capillaries density and lumen area. 
This process has been described in cerebral I/R injury where 
pericytes led to irreversible constriction of capillaries, exacerbat-
ing tissue hypoxia (11, 12). Interestingly, we found that treatment 
with C1-INH was capable to maintain the capillary lumen area 
by counteracting PMT. We recognized that C1-INH, beyond 
targeting classical and lectin pathway can inhibit the contact, 
coagulation, and fibrinolytic pathway involved in blood flow 
dysfunction (24). This can result in a reduced thrombi forma-
tion and a systemic improvement of vascular stability. However, 
PMT inhibition by C1-INH could provide a new mechanism to 
preserve graft from capillary rarefaction and reduction of lumen 
area.

Ischemia/reperfusion injury is primarily mediated by 
complement activation, with C5a playing a pivotal role also 
in inflammation response and allograft rejection (14, 15, 17, 
60, 61). In this paper, we demonstrated for the first time that 
C5a can induce PMT with important pro-fibrotic effects. We 
stimulated cells with C5a because represents the most potent 
pro-inflammatory and chemotactic mediator (62) with specific 
receptors demonstrated at the level of renal resident cells. 
Nevertheless, despite the C5a pivotal pathogenic role, in clinical 
trials, the C5 inhibition by the human monoclonal antibody 
Eculizumab has been shown not to be sufficient to prevent DGF 
as well as antibody-mediated rejection (63, 64). Specifically, 
even after Eculizumab treatment, a residual C5 activity has 
been demonstrated (65). This could explain why not all patients 
benefit of an anti-C5 therapy in C3-mediated kidney diseases 
or during strong complement activation (24). Therefore, strate-
gies that act upstream of C5 activation to prevent opsonization 
and generation of C3 activated products (i.e., C3a, iC3b, C3b, 
and later C5a) have been evaluated (24). As endogenous serine 
protease inhibitor, C1-INH has an excellent safety compared to 
Eculizumab (66, 67) and indirectly inhibits the release of the 
reactive late component C5a (68).

The C5a/C5aR pathway has extensively shown to cause 
recruitment of neutrophils and macrophages and exacerbate 
tubular injury in acute kidney injury. C5aR deficiency on renal 
cells or circulating leukocytes can significantly ameliorate renal 
injury (14, 16, 28, 39, 69).

The C5a-induced PMT was characterized by: the acquirement 
of αSMA stress fibers, the production of extracellular matrix 
proteins as collagen I, the downregulation of the antifibrotic 
BMP7-Id2 signaling (70–72), and finally by the activation of 
TGFβ canonical and non-canonical pathway (70–77). Our data 
connecting complement activation with fibrosis are in accordance 
with other disease model such as lung fibrosis where complement 
might lead to SMAD2/3 dependent and independent pathway 
activation, shifting the initial acute inflammatory response in a 
chronic profibrotic state (77).

We also analyzed ERK activation at early times after C5a 
stimulation, since ERK is a common downstream mediator of 
C5aR, TGFβ non-canonical signaling, and a possible inducer of 
TGFβ canonical pathway (73, 75) (Figure S3 in Supplementary 
Material). First, we showed that human pericytes expressed the 
C5aR, both at cytoplasmic level and on membrane surface. Second, 
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by blocking the C5aR, we demonstrated that C5aR signaling is 
involved in collagen I release. As observed by other group (77), 
C5a can activate SMADs proteins, independently from TGFβ. In 
this signaling, ERK could act as bifurcation point to induce both 
the non-canonical and the canonical TGFβ pathways (78). After 
ERK phosphorylation blockade by SC1 (pluripotin), a dual kinase 
(ERK1, MAPK3) inhibitor (41), we found a significant reduction 
of C5a-induced SMAD3 activation and of C5a-induced collagen 
production. In accordance with recent evidences (79, 80), these 
results suggest that ERK might regulate TGF-β/Smad signaling. 
Therefore, next to TGFβ (81), also innate immune signaling (59) 
(i.e., anaphylotoxins) might lead to an amplification of interstitial 
extracellular matrix accumulation by generating myofibroblast 
via PMT after AKI (82). In accordance with our in vitro findings, 
the in vivo C5aR1 deficiency protected from PMT, indicating that 
C5a/C5aR1 is involved in tubulointerstitial fibrosis as shown by 
Martin et al. (83).

In conclusion, our data suggest that in the early phase of I/R 
injury, renal pericytes are a major target of complement activa-
tion resulting in maladaptive response and PMT. Considering the 
pivotal role of renal pericytes in preserving vascular homeostasis 
and maintaining blood perfusion, our data offer new insight 
into the pathogenic mechanisms regulating vascular capillary 
reduction and fibrosis development in AKI with potential future 
therapeutic application.
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FigUre s1 | Ischemia/reperfusion (I/R) injury did not induce apoptosis  
or proliferation within perivascular compartment. Quantification of Casp3+  
(a) and Ki-67+ (b) cells by IHC after I/R injury with distinction between tubular 
and perivascular cells. At different times from reperfusion, the Casp3+ and 
Ki-67+ were detected predominately at tubular level. Results are expressed  
as mean ± SD of Casp3+ or Ki-67+ cells/high power fields (HPF). 
Immunofluorescence images showing interstitial peritubular capillaries  
pericytes co-labeled with PDGFRβ (green) and C3 (red). In T0, PDGFRβ+/C3+ 
perivascular cells were barely detectable (c). After 30 min of I/R injury  
[(D), rectangle area was zoomed in (g)], the number of PDGFRβ+/C3+ cells 
increased predominately at peritubular capillaries level [(D), arrowheads]. 
C1-INH treatment limited the C3 deposition (e). Isotype control staining was 
used as negative control (F). Results are expressed as median ± interquartile 
range of the numbers of PDGFRβ+/C3+ cells/HPF of five independent pigs for 
each group (h). Magnification, 50×.

FigUre s2 | C5a did not trigger apoptosis and activated expression of matrix 
metallopeptidase (MMP9) and ADAMTS1 in pericytes. Human pericytes were 
treated with C5a and TGFβ for 6, 18, and 24 h. (a) Cell apoptosis or necrosis 
was analyzed by flow cytometry after Annexin V/propidium iodide (PI) staining. 
The units of the Y and X axes are fluorescence intensity. Early apoptotic cells are 
Annexin-V+/PI−; late apoptotic cells are both Annexin-V + 7/PI+; and necrotic 
cells were Annexin-V−/PI+. Data are expressed as apoptosis (early and late %) 
or necrosis (%) (as indicated in Figure 5c). (b) Western blotting demonstrated 
the increased expression of active form (85 kDa) of MMP9. (c) qPCR 
demonstrated the upregulation of ADAMTS1 mRNA after C5a and TGFβ 
exposition. p < 0.05 versus basal.

FigUre s3 | Schematic pathway showing the possible cross-talk between 
C5aR and TGFβ canonical and non-canonical pathway. C5aR, a G protein-
coupled receptor for C5a anaphylotoxin, promotes the MAPK signaling 
activation (Ras/Raf/MEK), inducing the extracellular signal-regulated kinases 
(ERK) phosphorylation and transcription of pro-inflammatory and pro-fibrotic 
genes. pERK activation is also one of the final effector factors of SMAD-
independent TGFβ pathway (non-canonical pathway) that include various 
branches of MAP kinase pathways, Rho-like GTPase signaling pathways  
and phosphatidylinositol-3-kinase/AKT pathways (not showed). Independently 
from TGFβ presence, C5a could activate SMAD-independent signaling leading 
to activation of profibrotic pathway. In addition, pERK could be involved in the 
activation of SMAD-dependent TGFβ pathway (canonical pathway, green arrow 
and factors) inducing the SMAD2/3 phosphorylation (red dotted arrow). As 
common downstream mechanisms, the C5a exposition led to transcription  
of profibrotic gene and proteinase for detachment. Blocking of pERK, by SC1 
(Pluripotin) a dual kinase (ERK1, MAPK3) inhibitor of Thr-202/Tyr-204 
phosphorylation could interferes with C5a-induced transcription of pro-
inflammatory and with SMAD3 phosphorylation. This could lead to the decrease 
of extracellular matrix protein accumulation by perivascular pericytes (C5aR, 
complement component C5a Receptor 1; MAPK, mitogen-activated protein 
kinase, ERK, extracellular signal-regulated kinases; SMAD, small mother against 
decapentaplegic).

FigUre s4 | C5b-9 deposition occurred at peritubular capillary level and is 
modulated by C1-INH after 30 min of ischemia/reperfusion (I/R) injury. 
Immunofluorescence images showing interstitial peritubular capillaries pericytes 
co-labeled with PDGFRβ (green) and C5b-9 (red). In T0, PDGFRβ+/C5b-9+ 
perivascular cells were barely detectable (a). After 30 min of I/R injury, the 
number of PDGFRβ+/C5b9+ cells increased predominately at peritubular 
capillaries level and glomerular level (b). C1-INH treatment limited the C5b-9 
deposition (c). Results are expressed as media ± SEM of the numbers of 
PDGFRβ+/C5b-9+ cells/high power fields of five independent pigs for each  
group (g). Scale bar in (a–c): 100 µm. Boxed area was enlarged in  
(D–F) (scale bar: 50 µm).
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