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Vaccination is an increasingly important alternative approach to control Helicobacter 
pylori infection, since H. pylori resistance to previously efficacious antibiotic regimens 
is increased, and H. pylori eradication treatment for upper gastrointestinal diseases is 
becoming less successful. Fortunately, an efficient oral monovalent H. pylori vaccine has 
been developed. However, compared with monovalent vaccines, multivalent  vaccines 
have the potential to induce more effective and comprehensive protection against  
H. pylori infection. In this study, we designed and produced a multivalent epitope-based 
vaccine cholera toxin B subunit (CTB)-HUUC with the intramucosal adjuvant CTB and tan-
dem copies of B-cell epitopes (HpaA132-141, UreA183-203, and UreB321-339) and T-cell 
epitopes (HpaA88-100, UreA27-53, UreB229-251, UreB317-329, UreB373-385, UreB438-
452, UreB546-561, CagA149-164, and CagA196-217) from H. pylori adhesion A subunit 
(HpaA), urease A subunit (UreA), urease B subunit (UreB), and cytotoxin-associated antigen 
(CagA). Serum IgG, stomach, and intestine mucosal sIgA from mice after CTB-HUUC 
vaccination neutralized H. pylori urease activity in vitro. CTB-HUUC vaccination promoted 
H. pylori-specific lymphocyte responses and a mixed CD4+ T  cell immune response as 
indicated by IFN-γ, interleukin-4, and interleukin-17 production in mice. Both oral prophy-
lactic and therapeutic CTB-HUUC vaccinations reduced gastric urease activity and H. pylori 
infection and protected stomachs in mice. Taken together, CTB-HUUC is a promising potent 
and safe multivalent vaccine in controlling H. pylori infection in BALB/c mouse model.

Keywords: Helicobacter pylori, multivalent vaccine, urease, H. pylori adhesion a subunit, cytotoxin-associated 
antigen, cholera toxin B subunit

inTrODUcTiOn

Helicobacter pylori is the most important etiologic factor for upper gastrointestinal diseases including 
gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue lymphoma, and gastric 
carcinoma (1, 2). Eradication of H. pylori can result in resolution of gastritis and restore a healthy 
microbiome in the stomach and intestines (3). However, H. pylori eradication treatment is becoming 
less successful for years, and H. pylori resistance to previously efficacious antibiotic regimens is 
increased (4, 5). Therefore, vaccination is an increasingly important alternative approach to control 
H. pylori infection.
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The first step for H. pylori to colonize in the acidic mammalian 
stomach is attachment to the gastric mucosa, where adhesins 
play a critical role in the binding (6, 7). H. pylori adhesion A 
subunit (HpaA) and urease are H. pylori adhesins and have been 
identified as wonderful candidate antigens to develop vaccine 
against H. pylori (8). HpaA has been detected on the surface of 
H. pylori, and it is highly conserved among H. pylori strains (9). 
In addition, genomic studies showed that HpaA conferred with 
limited sequence homology with other proteins and may act as an 
H. pylori-specific protein (10). Immunization with full length of 
HpaA or a truncated form of HpaA has shown potent immuno-
genicity including the ability to protect against H. pylori infection 
in mice (11, 12). H. pylori produces large amounts of urease which 
is composed of two subunits, urease A subunit (UreA) and urease 
B subunit (UreB) (13). The urease of H. pylori can hydrolyze 
urea to ammonia, thereby neutralizing gastric acid, forming a 
neutral microenvironment around the bacterium, and facilitat-
ing H. pylori survival and colonization in human stomach (14). 
UreA and UreB have been widely used as potential antigens for 
the development of vaccines against H. pylori infection in mice, 
Mongolian gerbils, nonhuman primates, and humans (15–17).  
An H. pylori vaccine candidate with urease and heat-labile 
enterotoxin (LT) was assessed in H. pylori-free volunteers and 
had a good immunogenicity profile (18). Cytotoxin-associated 
antigen (CagA) gene is carried in virulent type I strains of  
H. pylori. CagA+ H. pylori use a type IV secretion system to transfer 
CagA into host intestinal epithelial cells, leading to severe gastritis 
and gastric carcinoma, and CagA was selected as a good vaccine 
candidate in many studies (19–21). The multivalent H. pylori vac-
cine composed of LT plus vacuolating cytotoxin A (VacA), CagA, 
and neutrophil-activating protein (NAP) has been found to be 
immunogenic in H. pylori negative volunteers (22). Another study 
reported that the attenuated Salmonella vector vaccine, which 
expressed the fused protein CagA–VacA–UreB can significantly 
decrease H. pylori colonization in mice; and the protection was 
related to serum IgG and mucosal sIgA antibody responses and 
specific CD4+ T cell T-helper 1 (Th1) type responses (20).

Compared with monovalent vaccines, multivalent vaccines 
may induce more effective and comprehensive protection against 
H. pylori infection. Guo et al. (23) found that oral immunization 
with the multivalent vaccine cholera toxin B subunit (CTB)–
NAP–UreA–HpaA–HSP60–UreB (CWAE) could induce high 
levels of antibodies against H. pylori antigens, and significantly 
reduced H. pylori colonization in Mongolian gerbils, compared 
with CTB–UreA–UreB (CTB–UE) or Urease. Flach et al. (12) also 
found that HpaAtrunc (a truncated form of HpaA) is a promising, 
readily produced, non-toxic antigen for inclusion in a mucosal 
vaccine against H. pylori infection, which may preferably be given 
together with UreB.

Cholera toxin B subunit is the non-toxic subunit of cholera 
toxin and can bind cells through GM1 (monosialotetrahexosyl-
ganglioside, a glycolipid that is expressed in various cell types such 
as epithelial cells, neurons, and immune cells) receptors, which 
then mediates antigen entry into the cell (24). Because of the broad 
distribution of GM1 ganglioside on various cell types (especially 
on the luminal surface of intestinal epithelial cells and antigen 
presenting cells in the gut), CTB has been widely used as a mucosal 

immunomodulatory agent, and now CTB is also used in the vac-
cine Dukoral® (a WHO pre-qualified oral cholera vaccine) (25).

The above findings suggested that HpaA, UreA, UreB, and 
CagA are excellent and promising antigens for vaccine against 
H. pylori. Furthermore, a recent study shows that a multivalent 
vaccine, which targeted multiple adhesions (urease, Lpp20, 
HpaA, and CagL) in adherence of H. pylori to the gastric mucosa 
significantly decreased H. pylori colonization compared with 
immunization with urease only, indicated that adhesions which 
are on the surface of H. pylori may be a promising candidate 
vaccine against H. pylori infection (26). The results also suggest 
that multivalent vaccination may provide better protection than 
monovalent vaccination. Given the established association of 
CagA with gastric cancer, a vaccine aimed at preventing this 
disease should contain CagA (21). In addition, CTB is a safe 
and efficient mucosal adjuvant and has been exploited in chol-
era prevention and mucosal vaccine development for decades 
(25). Therefore, in this study, we formulated and produced a 
multivalent epitope-based vaccine CTB-HUUC based on three 
H. pylori adhesions (HpaA, UreA, and UreB), one key H. pylori 
virulence factor CagA, and a non-toxic mucosal adjuvant CTB. 
We evaluated its immunogenicity, immunoreactivity, specificity, 
prophylactic, and therapeutic efficacy in BALB/c mouse model.

MaTerials anD MeThODs

animals and Bacteria
Specific pathogen-free (SPF) BALB/c mice, female, 5–6 weeks of 
age, 14  ±  2  g, were purchased from the Experimental Animal 
Center of Hubei University of Medicine. This study was approved 
by the Animal Ethical and Experimental Committee of Hubei 
University of Medicine.

The mouse-adapted H. pylori strain SS1 was obtained from the 
National Center for Disease Control and Prevention. H. pylori 
was cultured on Columbia blood agar plates enriched with 10% 
defibrinated horse blood, polymyxin B (161.5 µg/mL), vancomy-
cin (10  µg/mL), trimethoprim (5  µg/mL), and amphotericin B 
(2.5 µg/mL) under microaerobic conditions (5% O2, 10% CO2, 
and 85% N2) at 37°C for 3–5 days.

Helicobacter pylori lysate preparation: H. pylori SS1 were 
harvested from the plates and suspended in 0.01  M PBS. The 
suspension mixture was then pulse sonicated (Sonics, USA) for 
5 min at 20% capacity while kept in an ice bath. H. pylori lysate 
was snap frozen in liquid nitrogen and kept at −80°C until use.

Vaccine Design and Production
Four key candidate antigens of H. pylori (HpaA, UreA, UreB, and 
CagA) were selected to construct the multivalent epitope-based 
vaccine CTB-HUUC. HpaA, UreA, UreB, and CagA sequences 
were screened for B-cell epitopes and CD4+ T-cell epitopes 
using online B-cell epitope prediction tools (IEDB Analysis 
Resource1) and T-cell epitope prediction tools (IEDB Analysis 
Resource2). Three B-cell epitopes (HpaA132-141, UreA183-203, 

1 http://tools.iedb.org/main/bcell/ (Accessed: June 22, 2017).
2 http://tools.iedb.org/main/tcell/ (Accessed: June 22, 2017).
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FigUre 1 | Construction, purification, and verification of cholera toxin B subunit (CTB)-HUUC. (a) Composition of the CTB-HUUC construct. (B) Visualization 
of the purified CTB and CTB-HUUC peptides. CTB and CTB-HUUC peptides purified from Escherichia coli BL21(DE3) transformed with pET28a(+)/ctB-huuc, 
pET28a(+)/ctB were resolved in 12% SDS-PAGE gel and stained with Coomassie Blue. (c) Identity verification of CTB and CTB-HUUC using Western blotting. 
CTB and CTB-HUUC peptides resolved in 12% SDS-PAGE gels were probed with rabbit anti-Helicobacter pylori polyclonal antibody, rabbit anti-urease B subunit 
monoclonal antibody, or mouse anti-CTB monoclonal antibody. (D) The adjuvanticity of CTB-HUUC peptide was evaluated using GM1-ELISA. ***p < 0.001, 
compared with the BSA group, *p < 0.05, compared between the CTB and CTB-HUUC groups.
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and UreB321-339) and nine CD4+ T-cell epitopes (HpaA88-
100, UreA27-53, UreB229-251, UreB317-329, UreB373-385, 
UreB438-452, UreB546-561, CagA149-164, and CagA196-217) 
were selected to construct the CTB-HUUC vaccine. GS and KK 
were selected to link the epitopes in the sequence. Additional 
sequences of mucosal adjuvant CTB was added to the N-terminus 
of HUUC. The structure diagram of CTB-HUUC is shown in 
Figure 1A and Table S2 in Supplementary Material.

The DNA sequences of CTB-HUUC and other vaccines 
were cloned into respective vectors as the following, pET28a 
(+)/ctB-huuc, pET28a(+)/ctB, pSUMO/hpaA, pSUMO/ureA, 
pET28a(+)/ureB, or pET28a(+)/cagA see Table S1 in 
Supplementary Material. All vaccine proteins CTB-HUUC, CTB, 
HpaA, UreA, UreB, and CagA were purified by Ni2+-charged 
column chromatography and gel filtration chromatography (GE 
Healthcare, USA) from Escherichia coli BL21(DE3) transformed 
with the respective recombinant vectors. After purification, the 
samples were dialyzed against 0.2 M sodium hydrogen carbonate 
buffer and snap frozen in liquid nitrogen and kept at −80°C until 
use. The purity of the proteins was assessed by 12% SDS-PAGE.

Western Blotting
Purified CTB-HUUC and CTB as well as H. pylori antigens 
(HpaA, UreA, UreB, and CagA) were resolved in 12% SDS-PAGE 
gels and transferred onto polyvinylidene difluoride membrane 
(PVDF, Millipore, USA). These proteins were probed using 
primary antibodies including rabbit anti-H. pylori polyclonal 

antibody (prepared by our laboratory), mouse anti-H. pylori 
urease B monoclonal antibody (Sigma, USA), mouse anti-CTB 
monoclonal antibody (prepared by our laboratory) (27), mouse 
anti-CTB-HUUC serum, mouse anti-CTB serum, or mouse nor-
mal serum. HRP-conjugated goat anti-rabbit IgG (Cell Signaling 
Technology, USA) or HRP-conjugated goat anti-mouse IgG (Cell 
Signaling Technology, USA) was used as the secondary antibod-
ies. The results were visualized with ECL chemiluminescence 
reagents (Millipore, USA).

Mouse anti-CTB-HUUC serum, mouse anti-CTB serum, 
and mouse normal serum preparation: SPF BALB/c mice were 
randomized into three groups (n  =  3 mice, female) and were, 
respectively, administered orally with 200  µg of antigen (CTB-
HUUC, CTB or PBS) in 0.2  M sodium hydrogen carbonate 
buffer (200 µL) for four times at 1-week interval (at first, second, 
third, and fourth week), serum samples were collected from the 
submandibular vein in each groups at second, third, fourth, fifth, 
and seventh week.

gM1-elisa
ELISA plates (Wuhan Fine Biotech Co., Ltd., China) were coated 
with GM1 ganglioside or BSA (1 μg/well) at 4°C for 12 h. After 
washing with PBST buffer, ELISA plates were incubated with 
5% skim milk at 37°C for 1 h. The CTB-HUUC, CTB, or BSA 
proteins (10 μg/well) were then added to ELISA plates and incu-
bated at 37°C for 2 h. After that, a proper dilution of anti-CTB 
monoclonal antibody was added to the plates and incubated at 

https://www.frontiersin.org/Immunology/
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37°C for 1 h. After washing with PBST buffer, HRP-conjugated 
goat anti-mouse IgG was added to the plate and incubated at 
37°C for 1  h. Substrate tetramethylbenzidine (TMB) (Sigma, 
USA) was then added and incubated at 37°C for 15  min. The 
absorbance was measured at 450 nm using a microplate reader 
(PerkinElmer, USA).

Prophylactic and Therapeutic Vaccination
Prophylactic vaccination (Figure  5A): mice were randomly 
divided into three groups (n = 11 mice, female) and were respec-
tively vaccinated intragastrically with 200  µg of antigen (CTB-
HUUC, CTB, or PBS) in 0.2 M sodium hydrogen carbonate buffer 
(200 µL) for four times at 1-week interval (at sixth, seventh, eighth, 
and ninth week). Two weeks after the final immunization (at 11th 
week), mice were infected with H. pylori SS1 [109 colony-forming 
units (CFU) once, 50 µL, four times at 1-day interval]. Mice were 
sacrificed at 14th week.

Therapeutic vaccination (Figure 6A): mice were randomized 
into three groups (n  =  11 mice, female), and infected with  
H. pylori SS1 (109 CFU once, 50 µL, four times at 1-day interval) 
at sixth week. From the 11th to 14th week, H. pylori SS1 infected 
mice were, respectively, vaccinated intragastrically with 200 µg of 
antigen (CTB-HUUC, CTB or PBS) in 0.2 M sodium hydrogen 
carbonate buffer (200 µL) for four times at 1-week interval. Two 
weeks after the final immunization (at 16th week), mice were 
sacrificed and examined.

Determination of specific igg or iga 
levels in serum, stomach, and intestine 
Mucosa
ELISA plates were coated with CTB-HUUC (2 μg/well), H. pylori  
urease (Creative Enzymes, USA) (2  μg/well), CTB (2  μg/well), 
HpaA (2 μg/well), UreA (2 μg/well), UreB (2 μg/well), or CagA 
(2  μg/well) at 4°C overnight and were blocked with 5% BSA. 
Each sample was added to the antigens coated plate, and HRP-
conjugated goat anti-mouse IgG or IgA antibodies was added 
and incubated at 37°C for 1  h. Finally, TMB was added and 
incubated at 37°C for 10  min. The reaction was then stopped 
with 2 M H2SO4. The absorbance was measured at 450 nm using 
a microplate reader.

Sample preparation: 2 weeks after the final immunization, the 
serum samples were collected from the submandibular vein and 
diluted 1:1,000 before assay, after that, mice were sacrificed. To 
determine specific stomach and intestine mucosal secretory IgA 
(sIgA) levels, one-fourth of stomach tissue or half of intestine 
tissue (dodecadactylon) was homogenized in 1 mL PBS contain-
ing a protease inhibitor mixture (Roche, Germany) and 0.05 M 
ethylenediaminetetraacetic acid. The supernatant was collected 
and diluted 1:10 for assay.

Determination of the antibody levels 
according to neutralization of H. pylori 
Urease activities
Serum, stomach mucus, and intestine mucus were collected 
from mice immunized with CTB-HUUC, CTB, or PBS. Serum 
IgG antibodies [anti-(CTB-HUUC) or anti-CTB] were purified 

by protein G column chromatography (GE Healthcare, USA). 
Serum, stomach mucus, and intestine mucus, or purified IgG 
antibodies were incubated the purified H. pylori urease (Creative 
Enzymes, USA) in 100  µL PBS (50  mM, pH 6.8) containing 
0.5 M urea, 0.1 mM dithiothreitol (DTT) overnight at 4°C, and 
0.02% phenol red was added to each well. The absorbance was 
measured at 550 nm using a microplate reader. Percentage inhibi-
tion = [(activity without antibodies − activity with antibodies)/
(activity without antibodies)] × 100%.

Determination of specific T lymphocyte 
response and iFn-γ, il-4, and il-17 
Production
Lymphocyte suspensions were prepared from the mice spleen 
and cultured with the antigen Concanavalin A (ConA) (Sigma, 
USA), H. pylori lysates (prepared by our laboratory), H. pylori 
urease, or CTB in RPMI-1640 for 72 h. After that, 10 µL CCK-8 
solution (Cell Counting Kit-8) (Beijing Solarbio Science & 
Technology Co., Ltd., China) was added into plates and incu-
bated for 4 h. The absorbance was measured at 450 nm using a 
microplate reader. The results are expressed as SI. SI = Stimulated 
cultures (OD 450 nm)/Negative control cultures (OD 450 nm).

To measure interferon gamma (IFN-γ), interleukin-4 (IL-4), 
and interleukin-17 (IL-17) production, lymphocytes (2  ×  105 
cells/well) were cultured with the H. pylori lysates in RPMI-1640 
for 96 h. The culture supernatants were collected for determina-
tion of IFN-γ, IL-4, and IL-17 levels using ELISA Kits (Thermo 
Fisher Scientific, USA).

examination of H. pylori colonization 
in stomachs
To examine the H. pylori colonization in the stomachs, mice were 
sacrificed after the final prophylactic vaccination (at 14th week) 
or therapeutic vaccination (at 16th week). One-fourth of stomach 
tissue samples were homogenized in 1 mL PBS and prepared for 
a serial 10-fold dilutions. These diluted homogenates were spread 
on the H. pylori selective plates. After culture for 3–5 days, bacte-
rium colonies were counted, and the number of CFU per stomach 
was calculated.

The levels of H. pylori colonization in mice stomachs were also 
evaluated by rapid urease test. Briefly, one-fourth of stomach tis-
sue samples were immediately put in 500 µL of sodium phosphate 
buffer containing 0.5  M urea, 0.02% phenol red and 0.1  mM 
DTT, incubated at 37°C for 3 h. The absorbance was measured at 
550 nm using a microplate reader.

histological analysis
One-fourth of stomach tissue samples were fixed with formalin, 
embedded in paraffin and cut to 4 µm slices. Hematoxylin and 
eosin staining was then performed according to the standard 
procedure.

statistical analysis
All independent experiments carried out in this study and indi-
cated in the figure legends were biological replicates. The statisti-
cal analysis was performed using SPSS 17.0 software. One-way 
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ANOVA was used to compare the differences between groups. 
P < 0.05 was considered as statistically significant.

resUlTs

Production and antigenic characterization 
of cTB-hUUc Peptide
To obtain pure peptides as vaccine, we transformed E. coli 
BL21(DE3) with the recombinant vector pET28a(+)/ctB-huuc 
(Figure  1A), pET28a(+)/ctB, pSUMO/hpaA, pSUMO/ureA, 
pET28a(+)/ureB, or pET28a(+)/cagA and purified CTB-
HUUC, CTB, HpaA, UreA, UreB, and CagA peptides. We 
analyzed the purity and identity of these peptides with SDS-
PAGE and Western blotting. The results showed that the purity 
of CTB-HUUC was 97.6% and CTB was 98.3% (Figure  1B). 
CTB-HUUC protein was recognized by rabbit anti-H. pylori 
polyclonal antibody and mouse anti-H. pylori UreB monoclo-
nal antibody (Figure  1C). We analyzed the adjuvanticity of 
CTB component in CTB-HUUC Western blotting and GM1-
ELISA and found that CTB-HUUC can bind GM1 in  vitro 
(Figures 1C,D).

We further evaluated specific IgG or IgA levels in the serum, 
and gastric mucus and intestinal mucus in mice immunized 
with CTB-HUUC, CTB, or PBS using ELISA. The results 
showed that oral immunization with CTB-HUUC significantly 
increased levels of specific serum IgG, stomach mucosal 
secretory IgA (sIgA) and intestine mucosal sIgA antibodies 
compared with the PBS group (P < 0.001) (Figures 2A,B). We 
also examined the specificity of serum from mice immunized 
with CTB-HUUC using purified CTB, HpaA, UreA, UreB, 
and CagA peptides and Western blotting (Figures 2C–F) and 
ELISA (Figure  2G). The results found that serum from mice 
immunized with CTB-HUUC recognized CTB, HpaA, UreA, 
UreB, and CagA peptides, serum from mice immunized with 
CTB only recognized CTB, and serum from mice immunized 
with PBS did not recognize any of CTB, HpaA, UreA, UreB, 
and CagA (Figures 2D–G). These results indicated that CTB, 
HpaA, UreA, UreB, and CagA in CTB-HUUC have good 
immunogenicity and immunoreactivity, and CTB-HUUC is a 
multivalent vaccine.

cTB-hUUc Vaccination generated serum 
igg, stomach, and intestine Mucosal siga 
inhibited H. pylori Urease activity
To further evaluate the effects of CTB-HUUC induced antibodies 
on H. pylori urease activity, we performed a urease neutraliza-
tion assay. The results showed that only serum or supernatants 
of homogenized stomachs or intestines from mice immunized 
with CTB-HUUC but not from mice immunized with CTB or 
PBS inhibited H. pylori urease activity (Figures 3A–C). After that, 
mouse anti-(CTB-HUUC) IgG and mouse anti-CTB IgG in the 
antiserum were purified by protein G column chromatography 
(Figure  3D). Using purified antibodies, we found that mouse 
anti-(CTB-HUUC) IgG inhibited the urease activity in a dose-
dependent manner, while mouse anti-CTB IgG did not inhibit 
the urease activity (Figure 3E).

cTB-hUUc Vaccination Promoted  
H. pylori-specific lymphocyte responses 
and iFn-γ, il-4, and il-17 Production 
in Mice
To evaluate the potential capacity of CTB-HUUC to stimulate 
lymphocyte-specific responses for H. pylori, we isolated splenic 
lymphocytes from mice immunized with CTB-HUUC, CTB, or 
PBS, stimulated them with ConA (a lectin extracted from the jack-
bean and well known for its ability to stimulate T cells prolifera-
tion), H. pylori urease, H. pylori lysates, or CTB and performed a 
cell proliferation assay (CCK-8 assay). The results were expressed 
as SI which represents the ratio between the proliferation rates of 
cells stimulated with antigens and those with the vehicle control. 
The data showed that ConA significantly increased proliferation 
of splenic lymphocytes from mice orally immunized with CTB-
HUUC, CTB, or PBS, as expected (Figure 4A). Both H. pylori 
lysates and H. pylori urease significantly increased proliferation 
of splenic lymphocytes from mice orally immunized with CTB-
HUUC, but not those with CTB or PBS (Figure 4A). CTB also 
increased proliferation of splenic lymphocytes from mice immu-
nized with CTB-HUUC or CTB, compared with PBS vaccina-
tion. These results indicated that CTB-HUUC induced specific 
lymphocyte responses against CTB and H. pylori.

We further determined the concentrations of IFN-γ, IL-4, 
and IL-17 in the supernatants of cultured and H. pylori lysate 
stimulated lymphocytes from mice immunized with CTB-
HUUC, CTB, or PBS using ELISA. The results showed that  
H. pylori lysate significantly induced high levels of IFN-γ, IL-4, 
and IL-17 in splenic lymphocytes from mice orally immunized 
with CTB-HUUC, but not those with CTB or PBS (Figure 4B).

Prophylactic or Therapeutic cTB-hUUc 
Vaccination reduced gastric H. pylori 
infection and Protected stomachs in 
BaBl/c Mouse Model
Since the CTB-HUUC antigen showed good immunogenic-
ity, immunoreactivity, and specificity, we further investigated 
whether oral vaccination with CTB-HUUC reduces the bac-
terium load in the stomachs of BABL/c mouse model infected 
with H. pylori SS1 and shows better prophylactic or therapeutic 
effect than CTB or PBS. The results found that prophylactic 
CTB-HUUC vaccination significantly decreased urease activity 
and reduced the bacterium load in the stomachs, compared 
with CTB or PBS vaccination (P < 0.001) (Figures 5B–D), and 
prophylactic CTB-HUUC vaccination also provided a better 
protection for stomachs than CTB did according to the gastric 
histological examination (Figure 5E).

Therapeutic effect of the CTB-HUUC vaccine was also analyzed 
by bacterium quantitative culture, rapid urease test and gastric 
histological analysis. The results showed that therapeutic CTB-
HUUC vaccination significantly decreased urease activity and 
reduced the H. pylori SS1 colonization in the stomachs, compared 
with CTB or PBS vaccination (P < 0.001) (Figures 6B–D). High 
levels of leukocytes and neutrophils were found in the stomachs 
from H. pylori SS1 infected BABL/c mouse model immunized 
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FigUre 2 | Specific IgG or IgA levels in immunized mice serum, gastric mucus, and intestinal mucus. Serum, stomach, and intestine tissue samples were collected 
from mice immunized with cholera toxin B subunit (CTB)-HUUC, CTB, or PBS. The levels of serum IgG, and stomach and intestine mucosal IgA against CTB-HUUC 
(a) or Helicobacter pylori urease (B) were determined by ELISA. ***p < 0.001, compared with the PBS group, *p < 0.05, compared between the CTB-HUUC and 
CTB groups. (c) Visualization of the adjuvant CTB and the H. pylori antigens [H. pylori adhesion A subunit (HpaA), urease A subunit (UreA), urease B subunit (UreB), 
and cytotoxin-associated antigen (CagA)] purified from Escherichia coli BL21(DE3) transformed with pET28a(+)/ctB, pSUMO/hpaA, pSUMO/ureA, pET28a(+)/ureB, 
or pET28a(+)/cagA. These purified peptides were resolved in 12% SDS-PAGE gel and stained with Coomassie Blue. The resolved peptides in 12% SDS-PAGE gels 
were also probed by antiserum collected from mice immunized with CTB-HUUC (D), CTB (e), or PBS (F). (g) The specificity of serum from mice immunized with 
CTB-HUUC was analyzed by ELISA. ***p < 0.001 and *p < 0.05 compared with the PBS group or between the CTB-HUUC and the CTB groups.

6

Pan et al. Protection Against H. pylori Infection by Multivalent Vaccine

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1003

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 3 | Inhibition of Helicobacter pylori urease activity by IgG or IgA from mice immunized with cholera toxin B subunit (CTB)-HUUC, CTB, or PBS. Serum  
(a), stomach mucus (B), and intestine mucus (c) from mice immunized with CTB-HUUC, CTB, or PBS were incubated with H. pylori urease. The H. pylori urease 
activity determined using neutralization assay. ***p < 0.001, compared with the PBS group or between the CTB-HUUC and the CTB groups. (D) Visualization  
of IgG purified from serum of mice immunized by CTB-HUUC or CTB. The purified IgG was resolved in 12% SDS-PAGE gel and stained with Coomassie Blue.  
(e) Neutralization of urease activity by IgG purified from serum of mice immunized by CTB-HUUC or CTB. H. pylori urease was pre-incubated with the purified 
serum IgG (0, 1, 2, 4, 8, 16, and 32 μg/well). The optical density of the mixture was determined at 550 nm. The data are expressed as percentage inhibition. 
***p < 0.001, compared with the PBS group or between the CTB-HUUC and the CTB groups.

FigUre 4 | Helicobacter pylori-specific lymphocyte responses and IFN-γ, interleukin-4 (IL-4), and interleukin-17 (IL-17) production in mice immunized with cholera 
toxin B subunit (CTB)-HUUC or CTB. (a) Assessment on proliferation of specific lymphocytes in mice after immunization with CTB-HUUC, CTB, or PBS. Splenic 
lymphocytes from mice immunized with CTB-HUUC, CTB, or PBS were stimulated with Concanavalin A (ConA), H. pylori lysates, H. pylori urease, or CTB. Cell 
proliferation was determined using CCK-8 assay. The results were expressed as stimulation indices (SI) which represents the ratio between the proliferation rates of 
cells stimulated with antigens and those with the vehicle control. *p < 0.05, **p < 0.01, and ***p < 0.001, compared with the PBS group or between the CTB-HUUC 
and CTB groups. (B) The concentrations of IFN-γ, IL-4, and IL-17 in the supernatants of lymphocytes cultures. Splenic lymphocytes from mice immunized with 
CTB-HUUC, CTB, or PBS were stimulated with H. pylori lysates and the supernatants were collected for determination of IFN-γ, IL-4, and IL-17 concentrations 
by ELISA. ***p < 0.001, compared with the PBS group or between the CTB-HUUC and CTB groups.
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FigUre 5 | The effects of prophylactic vaccination with cholera toxin B subunit (CTB)-HUUC or CTB on Helicobacter pylori infection. (a) The prophylactic 
vaccination procedure. (B) The relative levels of urease activity in the stomach of mice infected by H. pylori after prophylactic oral immunization. ***p < 0.001, 
compared with the PBS group or between the CTB-HUUC and CTB groups. (c) Representative view of the H. pylori culture for colony formation assay.  
(D) The colony-forming units (CFUs) of H. pylori infection in the stomach of mice after prophylactic oral immunization. H. pylori infection was determined  
using quantitative culture. Abbreviation: CFU, colony-forming unit. ***p < 0.001, compared with the PBS group or between the CTB-HUUC and CTB groups.  
(e) Gastric histological examination of mice infected by H. pylori after prophylactic oral immunization. The gastric tissue samples stained with hematoxylin and 
eosin were examined under a microscope (200×).
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with CTB or PBS. By contrast, inflammation was significantly 
weakened in the stomachs from H. pylori SS1 infected mice 
immunized with CTB-HUUC (Figure 6E).

DiscUssiOn

Urease, HapA, CagA, and some other H. pylori proteins have 
been demonstrated to be excellent candidate antigens in animal 

models and even in human volunteers. A recent study reported 
that therapeutic immunization with a multivalent epitope-based 
vaccine (CFAdE) against four H. pylori adhesions (urease, Lpp20, 
HpaA, and CagL) could decrease the colonization of H. pylori 
by about four orders of magnitude (26). Interestingly, CFAdE, 
H. pylori lysate, and urease vaccinations induced comparable 
production of IFN-γ, IL-4, and IL-17, while CFAdE and H. pylori 
lysate had better protective efficacy compared with urease. The 
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FigUre 6 | The effects of therapeutic vaccination with cholera toxin B subunit (CTB)-HUUC or CTB on H. pylori infection. (a) The therapeutic vaccination 
procedure. (B) The relative levels of urease activity in the stomach of mice immunized with oral administration of CTB-HUUC or CTB after H. pylori infection. 
***p < 0.001, compared with the PBS group or between the CTB-HUUC and CTB groups. (c) Representative view of the H. pylori culture for colony formation 
assay. (D) The colony-forming units (CFUs) of H. pylori infection in the stomach of mice immunized with oral administration of CTB-HUUC or CTB after H. pylori 
infection. H. pylori infection was determined using quantitative culture. ***p < 0.001, compared with the PBS group or between the CTB-HUUC and CTB groups. 
(e) Gastric histological examination of mice immunized with oral administration of CTB-HUUC or CTB after H. pylori infection. The gastric tissue samples stained 
with hematoxylin and eosin were examined under a microscope (200×).
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reason for this may be that oral vaccination with CFAdE and  
H. pylori lysate markedly elevated the level of serum IgG, 
stomach, and intestine mucosal sIgA against H. pylori compared 
with oral vaccination with urease. Zhou et al. (28) also showed 
that a multi-epitope vaccine LTB-HpaA-UreB (HUepi-LTB), 
containing three Th epitopes from UreB and two B cell epitopes 
from UreB and HpaA, oral therapeutic immunization with 

HUepi-LTB significantly decreased H. pylori colonization (about 
two orders of magnitude) compared with the PBS group, and 
the protection was correlated with mixed Th1–T-helper 2 (Th2) 
responses and IgG and mucosal IgA antibody responses. Given 
that the relationships between CagA and gastric cancer are well 
confirmed, an effective vaccine would be specifically targeting 
this toxin. Such a vaccine should be aimed at preventing H. 
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pylori-induced serious illness rather than bacterial colonization 
(21). In a clinical trial (22), a multivalent vaccine, containing 
recombinant CagA, VacA, and NAP proteins, was immunogenic 
and safe. In our study, CagA149-164 and CagA196-217 were 
selected to construct the CTB-HUUC vaccine, and the results 
displayed that CagA in CTB-HUUC have good immunogenicity 
and immunoreactivity.

Despite vaccine efficacy against H. pylori infection has been 
shown in various animal models, the precise mechanisms of 
bacterial clearance remain relatively poorly understood (29, 30). 
A number of studies support the view that antibody production 
is not required to elicit immune protection, but some studies 
showed that humoral immune response is critical for clearing  
H. pylori (31, 32). Recently, an oral monovalent H. pylori vaccine 
using UreB fused with mucosal adjuvant heat-labile enterotoxin 
B subunit (LTA2B) has been found to be safe, immunogenic, and 
effective (71.8% protection rate) in H. pylori naive children aged 
between 6 and 15 years, in a randomized, double-blind, placebo-
controlled, phase 3 clinical trial (33). Notably, they showed that 
1-month serum anti-UreB IgG of 1:200 and salivary anti-UreB 
sIgA of 1:8 seemed to be optimum markers for a protection against 
H. pylori infection in volunteers. In addition, several previous 
studies have discovered that polyclonal antibodies produced by 
H. pylori urease immunization cannot inhibit urease enzymatic 
activity, whereas a number of monoclonal antibodies against  
H. pylori urease can (34–36). For example, L2 or HpU-2 
monoclonal antibody recognized UreB327-334 or UreA183-
203, respectively, and inhibited urease enzymatic activity 
(34, 36). Guo et  al. (37) found that oral immunization with 
CTB–UreA183–203 (CTB–UA) could induce high levels of specific 
neutralizing antibodies which showed effectively inhibitory effect 
on the enzymatic activity of H. pylori urease, and significantly 
reduced H. pylori colonization in BABL/c mouse model. This 
group constructed another epitope vaccine named CTB–
UreB321–339 (CtUBE), prophylactic or therapeutic vaccination 
with CtUBE significantly decreased H. pylori colonization, and 
the protection was correlated with antigen-specific IgG, IgA, 
and mucosal sIgA antibody responses (38). We speculated that 
humoral and local mucosal immune response might exhibit a 
certain protection against H. pylori infection, especially neutral-
izing antibodies against H. pylori urease, and the inhibition of 
bacterial adhesion may also contribute to clearance of the H. 
pylori infection. In our study, we formulated and constructed a 
multivalent vaccine named CTB-HUUC with three well know 
B-cell epitopes (HpaA132-141, UreA183-203, and UreB321-
339) (Figure 1A). Oral vaccination with CTB-HUUC markedly 
elevated the level of serum IgG, stomach, and intestine mucosal 
sIgA against H. pylori compared with oral vaccination with CTB 
or PBS (Figures 2A,B), and purified mouse anti-(CTB-HUUC) 
IgG inhibited the urease activity in a dose-dependent manner 
(Figure 3E).

Whereas antibodies are dispensable for H. pylori protection, 
it is now clear that CD4+ T  cells are critical for control of H. 
pylori infection (39). However, whether Th1, Th2, and T-helper 
17 (Th17) polarized T cell subsets responses play dominant role 
in the protective immunity against H. pylori remains controver-
sial. Earlier studies have demonstrated that Th2-cell responses 

are required for protective immunity against H. pylori infection, 
and Th1-cell responses are mainly involved in the pathogenesis 
of H. pylori (40, 41). However, some other studies showed that 
protective immunity against H. pylori involves specific CD4+ 
T cell Th1 type response (20, 42, 43). Meanwhile, a study reported 
that oral vaccination with HUepi-LTB significantly reduced  
H. pylori colonization in BABL/c mouse model, and the pro-
tection was correlated with a mixed Th1–Th2 phenotype (28). 
Moreover, some researchers have proposed that mixed Th1–
Th17 cell responses are important for proper control of H. pylori 
infection (44, 45). In our opinion, the type of CD4+ T cell response 
may be controlled by choosing the corresponding type of antigen 
epitope. In this study, nine CD4+ T-cell epitopes (HpaA88-100,  
UreA27-53, UreB229-251, UreB317-329, UreB373-385, 
UreB438-452, UreB546-561, CagA149-164, and CagA196-
217) were selected to construct the CTB-HUUC vaccine 
(Figure 1A). The lymphocyte proliferation results showed that 
splenic lymphocytes from mice immunized with CTB-HUUC 
proliferated significantly after stimulation with H. pylori lysate 
(Figure 4A). Furthermore, analysis of the cytokine production 
showed that IFN-γ (Th1 cells secrete), IL-4 (Th2 cells secrete), 
and IL-17 (Th17 cells secrete) were all significantly induced by 
CTB-HUUC (Figure 4B). Since CD4+ T cells were developed 
to Th1, Th2, and Th17  cells on the basis of their immune 
regulatory function and cytokine secretion profiles, Th1  cells 
predominantly produce IFN-γ and IL-2, Th2 cells secrete IL-4, 
IL-5, and IL-10, and Th17 cells secrete IL-17, IL-17F, and IL-22 
(46). It is likely that the CTB-HUUC vaccine stimulated a mixed 
Th-cell response.

In conclusion, we produced a multivalent epitope-based 
vaccine CTB-HUUC with the intramucosal adjuvant CTB 
and tandem copies of B-cell epitopes and T-cell epitopes from 
HpaA, UreA, UreB, and CagA and assessed the efficacy of the 
CTB-HUUC in BALB/c mouse model. The results showed that 
both oral prophylactic and therapeutic CTB-HUUC vaccinations 
reduced bacterial load and protected stomachs in mice.
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