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The ribonuclease A superfamily is a vertebrate-specific family of proteins that encom-
passes eight functional members in humans. The proteins are secreted by diverse 
innate immune cells, from blood cells to epithelial cells and their levels in our body fluids 
correlate with infection and inflammation processes. Recent studies ascribe a prominent 
role to secretory RNases in the extracellular space. Extracellular RNases endowed with 
immuno-modulatory and antimicrobial properties can participate in a wide variety of host 
defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. 
Their expression and secretion are induced in response to a variety of injury stimuli. 
The secreted proteins can target damaged cells and facilitate their removal from the 
focus of infection or inflammation. Following tissue damage, RNases can participate in 
clearing RNA from cellular debris or work as signaling molecules to regulate the host 
response and contribute to tissue remodeling and repair. We provide here an overall 
perspective on the current knowledge of human RNases’ biological properties and their 
role in health and disease. The review also includes a brief description of other vertebrate 
family members and unrelated extracellular RNases that share common mechanisms of 
action. A better knowledge of RNase mechanism of actions and an understanding of 
their physiological roles should facilitate the development of novel therapeutics.
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iNTRODUCTiON

Thirty years ago Steven Benner conjectured the existence of extracellular RNA communicators (1, 
2). At that time, he was investigating bovine RNaseA activity and expressed skepticism that pancre-
atic RNases merely removed the large amount of bacterial RNA present in the ruminant digestive 
tract (3, 4). Based on the diverse biological properties displayed by some RNaseA family members, 
i.e., anti-tumoural action, angiogenesis, and neurotoxicity, he suggested that the catalytic activity 
of vertebrate secreted RNases intervened in the regulation of the development of higher organ-
isms. The hypothesis was launched well before the discovery of extracellular vesicles as horizontal 
nanovehicle carriers and well before the discovery that angiogenin, a member of the vertebrate-
specific RNaseA superfamily, generates RNA regulatory fragments (5, 6). RNaseA, the vertebrate 
secretory RNases’ reference family member, is a small and highly stable protein that served as a 
working model for biochemists during the twentieth century; several Nobel prizes in chemistry 
were awarded for work with RNaseA (7, 8). Many times, researchers have tried unsuccessfully to 
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TABLe 1 | Proposed roles and reported activities for extracellular RNases.

RNases roles Reported activities Reference

Cellular immune 
regulation

 – Innate cells’ activation and migration (46–53)
 – Toll-like receptor pattern recognition and 

receptor activation
(46, 54, 55)

 – Hematopoiesis (28)
 – Selective processing of non-coding RNA (6, 40, 

56–59)
 – Release of regulatory tRNA fragments (6, 41, 58)

Tissue 
homeostasis, 
repair and 
remodeling

 – Alarm signalling (17, 54, 60, 
61)

 – Activation and chemotaxis of fibroblasts (51, 52, 62)
 – Activation of epithelial cells (51, 52)
 – Cell proliferation activity (63, 64)
 – Angiogenesis and neo-vascularization (65, 66)
 – Wound healing activity (67–70)
 – Autophagy induction (71, 72)
 – Apoptosis induction (73–75)

Clearance of 
extracellular 
RNA (exRNA)

 – Clearance of cellular RNA debris following 
tissue injury

(29)

 – RNA scavenger activity (76, 77)
 – Removal of blood exRNA released during 

hypoxia
(76)

 – Reduction of exRNA pro-inflammatory activity (29, 78)

Epithelial barrier 
protection

 – Antimicrobial activity at the skin and 
respiratory, urogenital and intestinal epithelial 
tracts

(43, 44, 70, 
79–85)

Body fluid 
sterility

 – Antibacterial activity (83, 86–91)
 – Antiparasitic activity (92–99)
 – Antiviral activity (100–107)
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rescue the RNaseA superfamily from its purely academic role  
(1, 7). Despite extensive knowledge on the mechanism of catalysis 
(8) and phylogeny (9–12), the biological properties of some fam-
ily members remained puzzling, and the ultimate physiological 
roles of these proteins remained elusive. Exhaustive sequencing 
of RNases within vertebrates and a comparative phylogenetic 
analysis suggested that the family emerged with a host defense 
role (11, 13–16). Another interesting hypothesis suggested that 
granulocyte-secreted proteins could play a primary role in local 
tissue repair and the removal of macromolecular debris following 
cell damage during inflammation (17). The authors considered the 
potential contribution to RNA clearance by eosinophil secreted 
RNases. Later studies also indicated an RNA scavenging role for 
pancreatic-type RNases (18, 19). In addition, the secreted proteins 
displayed immuno-regulatory properties that suggest they could 
participate in the transmission and amplification of local danger 
signals (17, 20). Therefore, extracellular RNases are key players 
that ensure tissue health and body homeostasis. Indeed, we find 
examples of genetic deficiencies in extracellular RNases that lead 
to immune-related diseases, such as amyotrophic lateral sclerosis 
(ALS), associated with human RNase5 mutations (21, 22) and 
cystic leukoencephalopathy, a neuronal disorder associated with 
RNaseT2 deficiency (23, 24). Potential RNA-targeted therapeutic 
applications for secretory RNases were envisaged as far back as 
two decades ago (25–27).

Recent methodological advances in the cellular biology and 
RNA fields have facilitated novel approaches to understanding 
the in  vivo role of extracellular RNases. Hopefully, knowledge 
on RNases action and trafficking in biological fluids will give 
path to translational research from academia to pharmaceutical 
industry. Indeed, recent experimental trials with animal models, 
such as those on hematopoiesis regulation by human RNase5 (28) 
or attenuation of extracellular RNA (exRNA) pro-inflammatory 
activity by RNaseA (29), are already offering promising thera-
peutic results.

The review summarizes the current knowledge on the mecha-
nism of action of the RNaseA superfamily members and their 
contribution to innate immunity, as sentinel proteins at the extra-
cellular space. We also briefly compared RNaseA proteins with 
other extracellular RNases, such as RNaseT2 family members, 
which are ancient RNases that are highly conserved through taxa 
from viruses to humans (30, 31), and bacterial RNases (19, 32) 
that work as defense weapons in inter-strain warfare.

THe RNase A SUPeRFAMiLY

The RNaseA superfamily is a vertebrate-specific gene family that 
has shown great divergence in a short period of time, a charac-
teristic trait of immune-related proteins (11, 16, 33). Despite the 
low sequence identity between some family members (~30%), 
they all share a common three-dimensional structural fold and 
conserved motif signature (CKXXNTF). They are small secretory 
proteins (13–15 kDa) expressed with a short 25–27 amino acid 
signal peptide. The mature protein adopts an α + β kidney-shaped 
fold crosslinked by three to four disulfide bonds. A conserved 
catalytic triad formed by two His and a Lys participates in the 
endoribonuclease acid–base catalytic mechanism of action (8). 

A  marked preference for cleavage of single-stranded RNA 
(ssRNA) is observed, with specificity for pyrimidines at the main 
base and a preference for purines at the secondary base site (7, 
34, 35). In addition, other nucleotide-binding sites contribute to 
RNase-substrate specificities (36–38) and might determine the 
selectivity of RNases for cellular RNA. Recently, novel method-
ologies to identify the selective cleavage site for non-coding RNA 
for some family members, i.e., tRNA, have indicated their direct 
involvement in main cellular machinery tasks (39–41).

RNaseA superfamily members are mainly expressed in innate 
cells and display a variety of antimicrobial and immune modula-
tion activities. They can participate in host immune responses, 
working as alarmins and safeguard molecules against infection 
and inflammation (16, 42–45). Table 1 summarizes most of their 
reported activities and suggested physiological roles. Below, we 
describe the eight canonical family members in humans. Table 2 
indicates their reported source cell types and summarizes their 
constitutive and induced expression patterns. Human RNase 
expression and response processes activated by diverse stimuli 
are illustrated in Figure 1.

hRNase1
hRNase1 is the human homolog of the family reference protein, 
bovine pancreatic RNaseA. A comparative evolutionary analysis 
indicates a divergent role for non-ruminant RNase1 family 
members that are unrelated to digestion (18, 142). Expression 
of human RNase1 was detected in almost all tissues (143). In 
particular, human RNase1 is abundantly expressed by endothelial 
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TABLe 2 | Expression profile and location of human secretory RNases.

Human 
RNase

Main 
expression 
tissues and cell 
typesa

Presence in biological 
fluids: rank score or 
reported levelb

Subcellular locationc expression regulated by (in comparison with)d

1 • Pancreas
• Lung
• Adipose
• Endothelial 

cells
• Erythroblasts

• Amniotic fluid: 629
• Blood: 4.09e3

• Serum: 0.5 μg/mL
• Synovial fluid (108)
• Cerebrospinal fluid (109)
• Urine (110)

• Extracellular space
• Exosomes (111)

↑ Psoriatic arthritis (vs healthy in synovial fluid)
↑ Sepsis (vs normal in whole blood and monocytes) (112)
↑ Meningococcal sepsis (at 24 h vs normal at 0 h in monocytes)
↑ Leishmaniasis (vs normal)
↑ Systemic lupus erythematosus (vs normal)
↑ Interstitial cystitis (ulcer vs normal)
↓ Francisella tularensis novicida (vs uninfect)
↓ Francisella tularensis schu S4 (vs uninfect)
↓ Mycobacterium tuberculosis (vs none in macrophages at 48 h)

2 • Liver
• Lung
• Spleen
• Bone marrow
• Neutrophils
• Eosinophils
• Monocytes

• Amniotic fluid: 1.41e4

• Blood: 982
• Cerebrospinal fluid (113)
• Urine (114)
• Early gut lavage  

fluid (115)
• Late gut lavage fluid (115)

• Extracellular space (116)
• Exosomes (117)
• Azurophil granule lumen

↑ Septic shock (vs normal)
↑ Meningococcal sepsis At 8 h, 24 h vs normal at 0 h in lymphocytes

At 24 h vs normal at 0 h in blood
At 0, 8, and 24 h vs normal at 0 h in monocytes
At 24 h vs meningococcal sepsis at 0 h in 
monocytesHealthy: 163 ng/mL

Inflammatory bowel disease: 538 ng/mL
Healthy: 18 ng/mL
Inflammatory bowel disease: 95 ng/mL

↑ Sepsis (vs normal in whole blood, CD8, and monocytes)
↑ Tuberculosis (vs normal)
↑ Leishmaniasis (vs normal)
↑ Lyme disease at acute phase of infection (vs normal)
↑ Interstitial cystitis (ulcer vs normal)
↑ Psoriasis (at lesional skin vs normal at normal skin)
↑ Burn (vs control at early stage and middle stage)
↓ Francisella tularensis novicida (vs uninfect)
↓ Mycobacterium tuberculosis (vs none in macrophage at 48 h)

3 • Bone marrow
• Neutrophils
• Eosinophils
• Monocytes
• T cells

• Amniotic fluid: 3.17e4

• Blood: 4.51e3

• Cerebrospinal fluid (113)

• Exosomes (111, 124)
• Extracellular space (125)
• Azurophil granule lumen

↑ Meningococcal sepsis At 24 h vs normal at 0 h in blood
At 24 h vs normal at 0 h in lymphocytes
At 0, 8, and 24 h vs normal at 0 h in monocytes

• Bronchoalveolar lavage 
fluid (118)

• Sputum (119) 

• Tear (120) 
 
 

• Early gut lavage fluid 
(115)

• Late gut lavage fluid  
(115)

• Plasma (121)

Control: 1.7 μg/L
Asthma: 2.8 μg/L
Healthy: 26.1 ± 4.7 ng/mL
Asthma: 142.6 ± 34.2 ng/mL
Control: <20 μg/L
Vernal keratoconjunctivitis: 470 μg/L
Atopic keratoconjunctivitis:215 μg/L
Giant papillary conjunctivitis: 53 μg/L
Healthy: 5 ng/mL
Inflammatory bowel disease: 15 ng/mL
Healthy: 1 ng/mL

Control: 3.5 ± 4.1 μg/L
Reactive eosinophilia with inflammation: 
75.0 ± 92.3 μg/L

↑ Septic shock (vs normal) (112)
↑ Lyme disease at acute phase of infection (vs normal)
↑ Leishmaniasis (vs normal)
↑ Burn (vs control at early stage and middle stage)
↑ Asthma (118, 119)
↑ Inflammatory bowel disease (115)
↓ Atopic eczema (at normal skin vs normal at normal skin) 

(Continued)
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Human 
RNase

Main 
expression 
tissues and cell 
typesa

Presence in biological 
fluids: rank score or 
reported levelb

Subcellular locationc expression regulated by (in comparison with)d

• Serum (122) Control: 5.4–9.2 μg/L
Helminthiases: 46–98 μg/L
Atopic dermatitis: 50 μg/L
Bacterial infections: 23 μg/L
Malaria: 13 μg/L
Interstitial cystitis:10 μg/L
Normal: 32.6 ± 8.1 ng/mL
Chronic non-allergic sinusitis: 
87.6 ± 20.8 ng/mL
Perennial allergic rhinitis:  
84.7 ± 24.7 ng/mL
Perennial and seasonal allergy: 
112.9 ± 25.6 ng/mL

• Nasal fluid (123)

4 • Liver
• Adipose
• Salivary gland
• Colon
• Endothelial 

cells
• Monocytes
• B cells
• T cells

• Blood: 9.27e3

• Cerebrospinal fluid (113)
• Extracellular space
• Exosomes (126)

↑ Sepsis (vs normal in whole blood)
↓ Visceral Leishmaniasis (vs normal)
↓ Psoriasis (at lesional skin vs normal at normal skin)

5 • Liver
• Endothelial 

cells
• Spinal cord 

neurons
• T cells
• Mast cells

• Amniotic fluid: 2.60e4

• Blood: 7.93e3

• Plasma: 96–478 ng/ml 
(127)

• Bronchoalveolar lavage 
fluid (128)

• Serum (129)
• Cerebrospinal fluid (130)

Healthy: 394.6 ± 137.6 ng/mL
Ulcerative colitis: 526.5 ± 224.1 ng/mL
Crohn’s disease: 508.8 ± 228.5 ng/mL
Crohn’s disease: 508.8 ± 228.5 ng/mL
Control: 6.197 ± 1.987 ng/ml
Amyotrophic lateral sclerosis: 
5.582 ± 1.754 ng/mL

• Exosomes (111)
• Extracellular space
• Growth cone
• Basal lamina (131)
• Angiogenin–RNase 

inhibitor complex (132)
• Neuronal cell body
• Nucleus (133)
• Nucleolus (134, 135)
• Cytoplasmic vesicle
• RNA stress granules (58)

↑ Enterococcus faecalis (vs none at 5 days)
↑ Mycobacterium tuberculosis (vs none in macrophage at 48 h)
↑ Meningococcal sepsis (at 24 h vs normal at 0 h in blood)
↑ Asthma (128)
↑ Inflammatory bowel disease (129)

↓ Francisella tularensis novicida (vs uninfect)
↓ Francisella tularensis schu S4 (vs uninfect)
↑ Psoriasis Lesional vs non-lesional psoriasis

Lesional vs normal

6 • Lung
• Heart
• Placenta
• Kidney
• Monocytes
• Neutrophils

• Amniotic fluid: 1.49e4

• Blood: 1.87e3

• Exosomes
• Extracellular space
• Cytoplasmic vesicle

↑ Ulcerative colitis
↑ Crohn’s disease
↑ Interstitial cystitis (ulcer vs normal)
↑ Tuberculosis (vs normal)
↑ Juvenile dermatomyositis (vs normal)
↑ Interstitial fibrosis and inflammation (vs normal)
↑ Sepsis (vs normal in whole blood)
↑ Periodontitis (vs normal)
• Meningococcal sepsis ↑ At 8 h, 24 h vs normal at 0 h in lymphocytes

↓ At 0 h vs normal at 0 h in monocytes

TABLe 2 | Continued
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Human 
RNase

Main 
expression 
tissues and cell 
typesa

Presence in biological 
fluids: rank score or 
reported levelb

Subcellular locationc expression regulated by (in comparison with)d

↓ Francisella tularensis novicida (vs uninfect)
↓ Francisella tularensis schu S4 (vs uninfect)
↓ Mycobacterium tuberculosis (vs none in dendritic and macrophage cell at 18 

and 48 h)
↓ Newcastle disease virus (at 14, 16, and 18 h vs none at 0 h)
↓ Psoriasis (vs normal)
↓ Septic shock (vs normal)
↓ Burn (middle stage vs control)

7 • Epithelial 
tissues

• Liver
• Kidney
• Skeletal 

muscle
• Keratinocytes 

(89, 136)
• Basal cells 

(70)

• Amniotic fluid: 2.69e3

• Blood: 3.22e4

• Skin washing fluids (44) Forehead: 0.93 ng/cm2

Nose: 2.7 ng/cm2

Arm: 0.94–4.9 ng/cm2

Palm: 2.0 ng/cm2

Finger: 1.5 ng/cm2

Hand back: 2.0 ng/cm2

Neck: 3.1 ng/cm2

Calf: 3.4 ng/cm2

• Exosomes (111, 137, 
138)

• Extracellular space 
(43, 84)

• Cytoplasm

↑ Sepsis (vs normal) (112)
↑ Psoriasis (lesional vs normal)
↑ Acute pyelonephritis (84)
↑ Atopic dermatitis (69)
↑ Chronic anal fistula (139)
↑ Nontypeable Haemophilus influenzae (70)
↑ Pseudomonas aeruginosa (89)
↑ Staphylococcus aureus (89)
↑ E. coli (89)
↑ Streptococcus pyogenes (89)
↑ Mycobacterium tuberculosis (140)
↓ Atopic eczema (at skin lesion and normal skin vs normal at normal skin)

8 • Placenta
• Spleen (141)
• Lung (141)
• Testis (141)

• Extracellular space

aSummary from Uniprot (www.uniprot.org/uniprot/), Genevisible (https://genevisible.com/search), and Human Expression Atlas (https://www.ebi.ac.uk/gxa/home/).
bSummary from Bgee (https://bgee.org/) (Rank scores of expression calls are normalized across genes, conditions, and species. Low score means that the gene is highly expressed in the condition. Max rank score in all species: 
4.10e4. Min rank score varies across species).
cSummary from Uniprot (www.uniprot.org/uniprot/) and Exocarta (www.exocarta.org/).
dSummary from Human Expression Atlas (https://www.ebi.ac.uk/gxa/home/). Only inflammatory, injury, and infection-related conditions are included (up and downregulation is indicated by arrows).
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FiGURe 1 | Illustration of the immuno-modulatory properties reported for human RNaseA family members. Induction stimuli, expression cell type, and regulation 
pathways are indicated. Abbreviations: Epi, epithelial; Fib, fibroblast; Ker, keratinocytes; MØ, macrophages; Neu, neutrophils; Mon, monocytes; Eos, eosinophils; 
DC, dendritic cells; Mas, mast cells; End, endothelial cells; Vir, virus; dotted line indicates regulation paths and solid line indicates expression and secretion 
processes.
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cells (144, 145), and its presence in blood can modulate the con-
tent of exRNA (18, 77). An interesting hypothesis attributes an 
RNA scavenger role to hRNase1 (77). Supporting this proposal, 
Raines and co-workers (18) highlight the different optimal 
conditions for catalysis between ruminant and non-ruminant 
RNases. Whereas bovine pancreatic RNase shows a slightly acidic 
optimum pH for catalysis, adapted for working in the digestive 
tract (4), the observed optimum neutral pH for non-digestive 
RNases allows their enhanced activity in biological fluids such 
as blood (18). Likewise, the enhanced capacity to cleave double-
stranded RNA (dsRNA) by non-digestive RNases (10, 18) might 
facilitate the removal of heterogeneous RNAs circulating in blood 
(18). Interestingly, clearance of exRNA would mitigate its pro-
inflammatory activity (76, 77). An excess of exRNA is released in 

hypoxic conditions, and hRNase1 administration was reported to 
provide cardiac protection in a mouse model (76). Administration 
of the protein in  vivo reduces the release of pro-inflammatory 
cytokines and provides a multiple-organ protection in mice (29).

hRNase2
hRNase2, together with hRNase3, is one of the main secre-
tory proteins stored within the eosinophil secondary granules 
(107, 146). This eosinophil protein is partly responsible for 
eosinophil-induced neurotoxicity, and it is referred to as the 
eosinophil-derived neurotoxin (EDN), hereafter. In addition, 
hRNase2/EDN is expressed in other blood cell types (Table 2) 
such as monocytes and dendritic cells (DCs) (107). Expression 
of the protein is induced by viral infection (100, 107, 147), and 

https://www.frontiersin.org/Immunology/
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it displays a broad antiviral activity, in particular against ssRNA 
viruses (104, 107). The protein inhibits the replication of respira-
tory syncytial (RSV), human immunodeficiency virus (HIV)-1, 
and hepatitis B DNA virus (100, 102, 103). RNase2 has high cata-
lytic activity, which together with its unique protein structural 
features (106), is essential for its antiviral action (104). Eosinophil 
recruitment and degranulation is activated during RSV infection 
(147), and hRNase2 is a clinical marker for RSV bronchiolitis 
(148). Interestingly, Weller and co-workers observed the induced 
release of eosinophil RNases by cytokines such as eosinophil 
chemotactic proteins (eotaxins CCL11 and CCL24) and through 
the P13K/MAPK pathway in humans and mice (149). Eosinophil 
activation by virus infection can be mediated by the toll-like 
receptor (TLR)7–MyD88 signaling pathway. Likewise, specific 
expression of the eosinophil RNases following RSV infection in 
mice is reported to be mediated by the TLR7–MyD88 pathway 
(55). The TLR7 receptor can be activated by ssRNA, causing 
the eosinophil RNase to act on viral RNA to enhance the host 
response against the infection. In addition, viral infection of the 
respiratory tract is frequently accompanied by lung inflammation 
and hRNase2 expression. Secondarily, local eosinophil degranu-
lation correlates with tissue damage with eosinophil degranula-
tion activated by tissue injury (Figure 1) and the released RNases 
contributing to the tissue remodeling process (149). Indeed, 
hRNase2 immuno-regulatory properties can promote leukocyte 
activation, maturation, and chemotaxis (107). In particular, 
hRNase2 can contribute to host immunity through interactions 
with DCs (46, 47). The activation of DCs can be mediated by the 
TLR2–MyD88 pathway, and hRNase2 is classified as an alarmin 
(60). Direct protein binding to TLR may occur (107) taking into 
account the striking shape similarity between the TLR receptor 
and the RNase inhibitor (RI), both of which have leucine-rich 
repeat (LRR) domains (150). Human RNase2 and mouse RNases2 
are also both expressed in macrophages (Table 2) (48, 107). Of 
note, the mouse eosinophil-associated RNase Ear11 works as a 
macrophage chemoattractant, although, in this case, the process 
is not directly mediated by TLR2 activation (48, 107). Because 
TLRs can interact with ssRNA, we can contemplate a scenario in 
which RNA pieces bound to RNase2, or, alternatively, the direct 
action of RNase cleavage products, trigger the TLR signaling 
cascade. As TLRs can discriminate between self and non-self 
molecules, cleavage of viral RNA could contribute to the host 
defense response. Thereby, immune regulation and antimicrobial 
functions would work cooperatively (151). Eosinophil degranula-
tion during infection and inflammation can contribute locally to 
both eradicate the infection focus and palliate tissue injury.

hRNase3
hRNase3 is the other eosinophil RNase abundant in the secondary 
secretory granule, where both RNase2 and 3 together account for 
about one-third of the total protein content (152). The two human 
eosinophil RNases share 70% amino acid identity. RNases 2 and 
3 emerged from a gene duplication event about 50 million years 
ago and underwent a divergence process at an extremely rapid 
rate of evolution (12). During the drift of RNase3 from a common 
RNase2/3 ancestor, the protein acquired much higher cationicity 
(pI > 10); therefore, it is called eosinophil cationic protein (ECP). 

Abundant surface-exposed Arg residues facilitate binding of the 
protein to bacterial cell membranes and subsequent destabiliza-
tion through a carpet-like mechanism characteristic of many 
host defense antimicrobial proteins and peptides (AMPs) (153). 
RNase3 shares neurotoxic and antiviral activities with RNase2 
(105) but it has unique bactericidal properties (86). In particular, 
hRNase3, together with its high cationicity, has an aggregation-
prone region that promotes the protein self-aggregation and 
mediates the agglutination of bacterial cells (154). Bacterial cell 
agglutination is further enhanced by high binding affinity of the 
protein to anionic lipopolysaccharides in the Gram-negative 
bacterial wall (155). RNase3 release is induced both by infection 
and inflammation, and several immuno-modulatory activities 
have been described. The levels of protein circulating in biological 
fluids (Table 2) correlate with eosinophil degranulation, and it 
is currently used as a routine clinical marker for the diagnosis 
and monitoring of inflammatory disorders, such as asthma (51, 
52). Airway inflammation is closely associated with eosinophil 
degranulation and local tissue damage follows the deposition of 
eosinophil secondary granule protein (156, 157). The levels of this 
protein are also associated with damaged airway epithelia (52). 
Further, skin ulceration follows eosinophil infiltration, and local 
protein deposits harm epithelial cells (121, 158, 159). Fortunately, 
the detrimental side effects of the protein tissue deposits are fol-
lowed by remodeling processes. RNase3 remodeling activity is 
partly mediated by the upregulation of the insulin growth factor-1 
receptor on epithelial cells. In addition, hRNase3 activation and 
chemotaxis of fibroblasts can contribute to tissue repair (49, 62, 
160). Nevertheless, fibroblast activation can also lead to airway 
fibrosis, as observed during chronic eosinophil inflammation in 
asthma (49). Interestingly, a population study identified a natural 
genotype variant of hRNase3 (ECP97Arg) with enhanced cyto-
toxicity that was linked to a higher frequency of fibrosis (161). 
Despite the higher antimicrobial activity of the Arg97 variant, 
genetic selection toward a less toxic protein must have taken place 
in a chronic parasite infection in endemic areas of Asia to reduce 
the incidence of liver fibrosis (162). The Arg to Thr substitution at 
position 97 of hRNase3 results in a new potential N-glycosylation 
site at a nearby Asn residue (163). Additional glycosylation at this 
site blocks the cationic domain that participates in the protein 
antimicrobial activity (164). Similarly, a correlation between 
hRNase3 polymorphisms and cerebral malaria susceptibility was 
observed (165, 166).

Together with direct hRNase3 action on pathogens and host 
tissues, a series of immune-modulating activities are observed 
(51, 52). Eotaxin attracts eosinophils to the area of inflammation, 
i.e., lung in asthma, nasal mucosa in allergic rhinitis, skin in der-
matitis, or gut epithelia in intestinal bowel diseases. Eosinophil 
degranulation is activated by IL-5, leukotriene B4 (LTB4), platelet 
activating factor (PAF) (52), or the P13K/MAPK pathway (149). 
Early experimental assays also showed mast cell activation by 
hRNase3 and the induction of histamine release (50). In turn, 
mast cells produce and secrete IL-5, PAF, and LTB4, which 
enhance hRNase3 release from eosinophils. Moreover, hRNase3 
induces the synthesis of prostaglandin D2 by mast cells, which 
then acts as an eosinophil chemoattractant. This process suggests 
cross talk between mast cells and eosinophils, with RNase able 
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to promote positive feedback (52). Other leukocyte cells such as 
neutrophils can also express hRNase3 (Table 2). Interestingly, free 
granules released by both eosinophils and neutrophils maintain 
their autonomy and functionality (167) and selectively secrete 
RNases upon cytokine induction (168). Moreover, the extracel-
lular granules can also be engulfed by macrophages (Figure 1) 
and contribute to the immune response.

hRNase4
hRNase4 is one of the oldest representative RNase A family 
members within mammals, showing a static evolution history 
in comparison with the other family counterparts (33). RNase 
4, together with RNase 5, shares some conserved structural 
features with non-mammalian vertebrates RNases, such as the 
first pyroglutamic N-terminal residue (169). Moreover, there 
are no reported glycosylation forms and no recognition sites for 
N-glycosylation (169). RNase4 retains the highest inter-species 
homology, close to 90%, within the family members (33, 170). 
Nearly ubiquitous distribution suggests a housekeeping role for 
this protein. The presence of hRNase4 transcripts was detected in 
most human tissues (143, 171) and was found particularly abun-
dant in the liver (143) and lungs (169). Interestingly, cytoplasmic 
granules of monocytes also express this RNase (172). Divergence 
and diversification events within the oldest mammals suggest a 
strong evolutionary pressure that may respond to host adapta-
tion to an ever-changing pathogen environment. In this scenario, 
duplication of the RNase4 gene in ancestral mammals may have 
led to other RNaseA family lineages that acquired a host defense 
function (33). There is a controversy about the physiological role 
of the protein. On one side, its conservation among species sug-
gests strong evolutionary pressure to maintain an essential role. 
Cleaning-up of cellular RNA was first proposed (173). However, 
the enzyme showed enhanced preference for uridine at the main 
base binding site (169, 173, 174), suggesting strong selectivity 
for RNA recognition (169). A structural analysis highlighted 
particular structural features at the main base binding pocket 
that determine the protein enhanced preference for uridine over 
cytidine in comparison to other family members (174, 175). 
Although considerable work has been undertaken to interpret 
RNase4 substrate specificity, there are few reports on the biologi-
cal properties of the protein. Interestingly, RNase4 was identified, 
along with RNase5, among the soluble factors secreted by T cells 
showing anti-HIV activity (176).

hRNase5
hRNase5 is considered the most ancient RNaseA family member, 
and it shares many structural features with non-mammalian 
vertebrate RNases. It is unique within the family in presenting 
six paired cysteine residues instead of eight. In addition, it shows 
rather atypical enzymatic properties, with very low catalytic 
efficiency for ssRNA but selective cleavage for some non-coding 
RNA (41, 177, 178). Its expression was detected in many adult 
and embryonic somatic cells (179). It was also reported in a 
variety of innate cells, ranging from diverse blood cell types to 
intestinal and skin epithelial cells (Table  2) (28, 67, 129, 180). 
Further expression of this protein is increased during inflamma-
tion (129, 181). RNase5 promotes angiogenesis and is, therefore, 

termed angiogenin (65). The purified protein was reported to 
display other activities, such as antimicrobial action (67, 88) 
and some immuno-regulatory properties (88, 182), in addition 
to the induction of vascularization. In particular, the protein 
inhibits neutrophil degranulation, a process that might induce 
an anti-inflammatory effect during immune response (183, 184). 
Interestingly, this degranulation inhibitory action was mimicked 
by a short tryptic peptide (183), indicating a protein activity 
unrelated to its enzymatic function. On the other hand, angio-
genesis relies on hRNase5 catalytic activity and is inhibited by the 
RI (185). Distinct immuno-regulatory activities were observed 
to be dependant on the action of the protein on non-coding 
RNA, i.e., cleavage of tRNA and upregulation of rRNA. Upon 
nuclear translocation hRNase5 can stimulate the proliferation 
of several cell types, such as endothelial cells (66), by regulating 
rRNA transcription (63, 186). In addition, angiogenesis and cell 
proliferation are mediated by the activation of cellular signaling 
kinases such as the ERK1/2 (179, 187). In addition, hRNase5 
expression is activated in response to cellular stress and promotes 
the formation of stress granules. The protein generates stress-
induced tRNA fragments (tRFs) (tiRNA) (6, 56, 58). In turn, the 
tiRNA fragments can impede the formation of the translation 
initiation factor complex, thereby inhibiting translation (188). 
Accumulation of tiRNA activates the cell response to oxidative 
stress (59). The release of tRFs associated with hRNase5 activity 
is also a characteristic feature linked to endoplasmic reticulum 
(ER) stress, a condition that can be triggered by the accumulation 
of unfolded/misfolded proteins in the ER lumen (57). Likewise, 
hRNase5 induces the release of tiRNA by stem cells and activates 
hematopoietic cell regeneration (28). Generation of tRFs is also 
observed upon viral infection (189). Using deep sequencing 
methodologies, the enzyme cleavage target sites are being identi-
fied (5, 6, 39). Two tRNA halves can be produced by a unique 
enzymatic cut at the anticodon loop (5, 6, 58, 190). In addition, 
Li and co-workers observed a unique cleavage by hRNase5 at 
the tRNA TΨC loop (39); the resulting 3′-tRNA fragment was 
complementary to an endogenous human genome sequence, and 
the fragment was found to downregulate retroviral expression by 
RNA interference (39). However, potential therapeutic applica-
tions for hRNase5, such as hematopoiesis regeneration or antivi-
ral activity (28), should be viewed with caution, considering its 
protein pro-tumoural properties (65). In particular, upregulation 
of rRNA transcription has been related to cancer cell proliferation 
(63, 64). A recent work correlated elevated hRNase5 expression 
in some tumor cell lines with the promotion of cell proliferation 
and development of malignant cancer (64). In addition, elevated 
levels of tiRNA were also observed in some cancers (190) with 
tRFs inducing tumorigenesis (188).

hRNase6
hRNase6, also named hRNasek6, was identified for the first time 
by Helen Rosenberg and Kimberly Dyer as a human ortholog of 
bovine kidney RNasek2 (191). The first tissue screening study to 
define hRNase6 expression patterns revealed a nearly ubiquitous 
distribution, including monocytes and neutrophils (191). The 
expression of this protein is upregulated following genitourinary 
tract bacterial infections (83) and high antimicrobial activity 
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against Gram-positive and Gram-negative species was observed 
(83, 90). Very recently, hRNase6 antiviral activity was reported. 
Interestingly, the authors observed the protein downregulation in 
Th17 polarized cells upon HIV infection (192).

hRNase7
hRNase7 is probably the best studied example of an RNase that 
can work as a tissue safeguard sentinel (Table 1). It is also one of 
the most abundant antimicrobial proteins purified from skin (44, 
79). RNase7 is secreted by a variety of epithelial cells (Table 2) 
and mostly contributes to urinary tract sterility and epidermis 
protection (43, 80–82). Together with high antimicrobial activ-
ity against a variety of infective microorganisms (82, 87, 89, 
193), some immuno-modulatory properties were reported. 
RNase7 expression is upregulated during kidney infection (84). 
Expression is also selectively induced by inflammation signal-
ing molecules, such as IL-1β and IFN-γ (89) or the PI3K/AKT 
pathway (194). The PI3K/AKT signaling pathway can modulate 
the innate immune response during inflammation and prevent 
sepsis (195, 196). Interestingly, expression of this protein in the 
urinary tract can be upregulated by insulin through the PI3K/
AKT pathway (197). Spencer and co-workers correlated expres-
sion with increased susceptibility to infection of diabetic patients 
(197). Indeed, insulin induces the secretion of granulocyte 
content and impairment of the expression of other AMPs, which 
are also associated with diabetes (198). Of note, the regulation of 
protein expression by the P13K/AKT pathway is also observed 
with eosinophil-associated RNases (EARs) (149). On the other 
hand, RNase7 is abundantly secreted by keratinocytes (43, 44, 79) 
and can contribute to wound healing and tissue repair (67, 68). 
Protein overexpression in skin can be induced by inflammation 
and infection diseases (69, 81). Interestingly, protease degrada-
tion of the RI at the stratum corneum can activate hRNase7 for 
skin barrier protection (67). Finally, expression of the protein was 
recently reported to be induced in basal cells of damaged airway 
epithelia, reinforcing the idea of a protective role for this protein 
following tissue injury (Table 1) (70). A very recent study showed 
that this protein directly stimulated plasmocytoid DCs following 
tissue damage and infection, and the authors of the report pro-
posed to classify hRNase7 as an alarmin (54). Interestingly, the 
immuno-modulatory activity of the RNase correlates with bind-
ing to self-DNA and activation of TLR9 receptors. The authors 
suggest that following tissue damage, hRNase7 detects the host 
DNA released by dying cells and activates the host response (54).

hRNase8
hRNase8 is the last identified and least well-characterized canoni-
cal member of the RNaseA superfamily. It was first uniquely iden-
tified in the placenta (199). Wide spectrum antimicrobial activity 
was observed for this protein (91), suggesting a role in amniotic 
fluid protection against infection. Indeed, hRNase7, the closest 
homolog to hRNase8 in the RNaseA family, was found recently 
among AMPs expressed in prenatal skin, suggesting it may con-
tribute to amniotic cavity sterility (200). However, despite sharing 
a high sequence identity with hRNase7, hRNase8 shows highly 
reduced catalytic activity (199). A particular cysteine location 
within its primary sequence indicates a unique disulfide bonding 

among the family members. An evolutionary analysis in primates 
revealed a sequential cysteine gain-and-loss process, represent-
ing an unusual example of disulfide bond reshuffling (201). In 
addition, the protein shows an elevated rate of incorporation of 
non-silent mutations in its primary structure (202) suggesting 
functional divergence toward a distinct physiological role (141). 
Moreover, a unique extension at the hRNase8 N-terminus may 
indicate that the protein is not undergoing the secretion process 
shared by all other canonical members of the family (141). Recent 
evidence of hRNase8 gene expression in other additional tissues, 
such as the lung, liver, and testes (141), together with controver-
sial reports on its recombinant protein antimicrobial activity (91, 
199), urges a reconsideration of the function of this protein.

hRNases 9–13
The RNaseA superfamily was lately expanded with the discov-
ery of several novel mammalian members (11, 203–205). The 
newcomers share just 15–30% identity with the eight “canonical 
RNases,” and they are associated mainly with male reproductive 
functions. Some of them, like hRNase9, are endowed with bacte-
ricidal activity and are expressed in the epididymis, with evidence 
of an association with sperm maturation (33, 206). The primary 
structure of these proteins resembles ancestral RNases, sharing 
the three most conserved disulfide bonds and a secretion peptide, 
but not the N-terminus region of mature proteins. In addition, 
the non-canonical RNases do not include the family signature 
(CKXXNTF) or the catalytic triad and their biological properties 
do not seem to require enzymatic activity (207).

Other vertebrate RNaseA Family Members
The RNaseA superfamily is one of the most extensively studied 
gene family, since the pioneering studies on molecular evolution 
(208). As a vertebrate-specific family, it is an excellent working 
model and a deep analysis has been carried out to understand 
the main driving force toward a defined function in mammals 
(11, 33, 209, 210). Further, we will briefly comment on the non-
human family members present in the extracellular compartment 
and displaying immune modulation properties. In particular, 
bovine proteins are the best characterized, being the RNaseA 
the bovine counterpart of human RNase1. RNaseA, the bovine 
pancreatic RNase1, is expressed in large amounts in the pancreas 
and participates in RNA degradation in the digestive tract (3).

Bovine Seminal RNase (BS-RNase)
Bovine seminal RNase is a close homolog to bovine pancreatic 
RNase that is solely present in seminal fluid (211), where it plays 
an immune-protective role (182). BS-RNase, despite sharing an 
80% amino acid identity with the pancreatic RNaseA, is the only 
family member present in  vivo as a homodimer. Owing to its 
natural dimeric form, BS-RNase can elude the blockage of the 
cytosolic RI in case of cellular internalization following endocy-
tosis. The high cytotoxicity of the protein (212) is attributed to the 
degradation of cellular RNA (213). In addition, the dimerization 
of BS-RNase and RNaseA constructs correlates with an enhanced 
catalytic activity and the ability to cleave dsRNA (214–216). 
Degradation of dsRNA by BS-RNase is induced by IFN (217, 
218) and the protein can inhibit HIV-1 replication in leukemia 
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cells (219). Interestingly, engineered quaternary structures of 
RNaseA can not only mimic BS-RNase enzymatic cleavage of 
dsRNA, but also some of its biological properties (220, 221). 
The seminal RNase also differs from its pancreatic homolog by 
its ability to inhibit the proliferation of cancer cells mediated by 
autophagy induction (72). BS-RNase also inhibits the prolifera-
tion of T-lymphocytes (222, 223) and can downregulate the T cell 
IL-2 receptor expression (222). However, the immune-protective 
mechanism of BS-RNase in the seminal fluid remains unknown 
(182).

Bovine Milk RNases
Bovine milk RNases are another group of secretory RNases that 
mediate an extracellular protective role. Two proteins with RNase 
activity homologous to human RNases 4 and 5 were identified in 
bovine milk (224, 225). Both RNases were quantified in bovine 
milk at μM concentrations and reported to display some antimi-
crobial activity (225). Bovine milk RNases can participate in the 
host response against infection both by direct antimicrobial action 
and immune response activation (182). A pro-inflammatory 
activity is observed in epithelial cells, which is mediated by nucleic 
acids (53, 226). Both RNases can bind nucleic acids, and milk 
RNase5 induces cytokine release in leukocytes (53). Recognition 
of foreign pathogen nucleic acids may facilitate the activation of 
pattern recognition receptors and promote a pro-inflammatory 
response (226). Interestingly, the RNase immuno-stimulatory 
activity is also dependent on the protein catalytic activity (226).

Rodent RNases
Rodent RNases are another well characterized group that can help 
us to outline the RNaseA family involvement in the host immune 
response (11). Lineages of RNases 1, 2, 3, and 5 are identified in 
rat and mouse genomes, presenting an unusual expansion rate 
(11, 207, 227–229). However, no orthologs of RNases 7 and 8 have 
been found (11, 33). Particularly, a striking diversity of RNases 2 
and 3 counterparts is observed in mice and rats. Two orthologs 
of the eosinophil RNases lineage were first discovered in 1996 
and named EARs (230). Subsequently, up to 13 new eosinophil 
murine members were identified (231). The phylogenetic analysis 
of the distinct EAR rodent gene clusters revealed a rapid gene 
duplication and selection process that resulted in high diversi-
fication, a characteristic pattern of host defense protein lineages 
(232). Many of these EAR proteins, despite their nomenclature, 
are not solely secreted by eosinophil granules but can also be 
expressed by other cell types. For example, mEAR11 is expressed 
in somatic tissues, such as lungs, liver, or spleen, along with mac-
rophages. The protein expression is induced in response to Th2 
cytokines and it acts as a potent leukocyte chemoattractant (48). 
The immune regulation of eosinophil release of granule proteins 
in mice has been thoroughly studied by Weller and colleagues 
(149, 168). EARs similar to their human counterparts actively 
contribute to the host defense and tissue repair and remodeling. 
However, significant differences are observed in the regulation 
mechanism of eosinophil degranulation, limiting the use of labo-
ratory animal models in the study of human eosinophil-associated 
diseases (233–235). Nonetheless, experimental studies in mice 

corroborate the autonomy of eosinophil cell-free granules and 
their activation by a common CCR3-mediated signaling pathway 
(149, 168). EARs can also provide immune protection against 
virus infection in  vivo in a mice model, where the eosinophil 
activation and virus clearance is mediated by a TLR7-signaling 
pathway (55).

In addition, several homologs to human RNase5 endowed 
with antimicrobial properties were identified in mouse intestinal 
epithelium (88). In particular, the upregulation of the mouse 
RNase Ang4 by commensal bacteria suggests a role for this 
protein in the gut and systemic innate immunity, where it can 
establish a host defense barrier against infection (88).

Rosenberg and colleagues went further down the evolution 
scale and characterized avian and reptilian RNases to deepen the 
understanding of the role of vertebrate RNaseA family in host 
immunity (13, 16, 236). As mentioned previously, non-mam-
malian RNases are evolutionarily closely related to mammalian 
RNase5 members (11). Two leukocyte-associated homologs were 
identified in chicken, RNases A1 and A2, the last one displaying 
both angiogenic and bactericidal properties (13). On the other 
hand, the Iguana RNase is catalytically active but devoid of anti-
microbial activity (236).

Frog RNases
Frog RNases are secreted by oocytes and early embryos and 
might protect the eggs against infection (237–241). The observed 
anti-proliferative properties of the RNases from early verte-
brates have attracted the interest of pharmaceutical companies 
since their discovery (242, 243). Rana pipiens RNase, named 
Onconase® (ONC) after its anti-tumoural activity, is currently 
on phase III clinical trial. The anti-proliferative action of ONC 
on cancer cells is mediated by induction of the autophagy 
pathway (71), as reported for BS-RNase (72). Recently, its cyto-
toxicity was enhanced by promoting its dimerization (244). The 
anti-tumoural activity of ONC has also been attributed to its 
action on microRNA (miRNA) precursors (40). On the other 
hand, the frog RNase inhibits the replication of HIV-1 through 
directly targeting the viral RNA and host cellular tRNA (245, 
246). A specific excision on host Lys-tRNA inhibits the virion 
replication (101). A common tRNA targeting mechanism might 
be shared with the oldest mammalian RNases. Moreover, a 
similarity between the structural fold of tRNA and miRNAs 
that are targeted by the frog RNase suggests that the RNA rec-
ognition and cleavage requires specific primary and secondary 
structures (40).

Finally, identification and characterization of fish RNases 
completes the overall picture of the vertebrate RNaseA fam-
ily (15, 247, 248). RNases identified in zebrafish (ZF-RNases) 
shared the bactericidal, angiogenic and reduced catalytic 
properties of hRNase5 (247). Catalytic activity for ZF-RNase5 
was required for angiogenesis but not for antimicrobial action 
(247). Interestingly, ZF-RNases 1 to 3 can activate the ERK1/2 
kinase pathway similar to hRNase5 (249). Recently, the expres-
sion of several RNase2 and RNase3 paralogs in the pond-
cultured blunt snout bream fish induced by bacterial infection 
was reported (250).
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OTHeR eXTRACeLLULAR RNases

RNases T2: A Family of Ancient 
extracellular RNases
RNaseT2 family, in contrast with the RNaseA family, comprises 
a group of proteins conserved from virus to humans, suggest-
ing a shared preserved function (31). The biological properties 
of human RNaseT2 have been extensively studied. The RNase 
that works as a signaling molecule and is secreted by damaged 
tissues has being classified as an alarmin (61). RNaseT2 is stored 
in the lysosomal compartment and contributes to the clearance 
of cellular macromolecular debris. Its secretion can be induced 
by oxidative stress and it participates in the regulation of immune 
response. RNaseT2 is proposed to work as an RNA scavenger 
in the extracellular compartment (31). Moreover, the human 
RNaseT2 shows macrophage chemotaxis (30) and tissue remod-
eling activities in  vitro. Similarly, the RNaseT2 secreted by the 
eggs of the parasite Schistosoma mansoni, also named Omega-1, 
can induce the release of pro-inflammatory cytokines by mac-
rophages during infection (251). Omega-1 can be internalized 
into DCs and regulates their programming pathway by the 
RNase-mediated cleavage of rRNAs and mRNAs and subsequent 
impairment of protein synthesis. Another RNaseT2 family mem-
ber that has been well characterized is the yeast RNaseT2, named 
Rny1, which is stored in cell vacuoles, similar to the storage of 
other RNaseT2 members in lysosomes, and shows a selective 
tRNA cleavage under oxidative stress equivalent to the activity 
reported for hRNase5 (56). In addition, yeast RNaseT2 combines 
its enzymatic action with other non-catalytic properties such as 
binding to regulatory proteins and the destabilization of lysoso-
mal membrane, a mechanism that can trigger the programmed 
cell death (56, 252). Overall, we observed common properties 
between the RNaseA and the RNaseT2 family members, e.g., 
release of stress-induced tiRNA, leukocyte activation, or exRNA 
scavenging (30, 31, 56, 250).

Plant Self-incompatibility RNases 
(S-RNases)
Plant S-RNases prevent self-fertilization and avoid inbreeding. 
S-RNases exert cytotoxicity against the growing pollen tube by 
targeting rRNA (253, 254). Each plant is endowed with specific 
recognition patterns that can block the RNase activity of all 
the S-RNases except its own, ensuring the degradation of pol-
len grains corresponding to its haplotype (255). Interestingly, 
S-RNases exhibit a specific catalytic activity on tRNA when the 
plants are exposed to stress (256).

Bacterial RNases as inter-Strain 
Competition Toxins
Going further down the evolutionary scale, we can find a wide 
variety of bacterial RNases that participate in the bacterial 
defense against external threats, e.g., presence of a competing 
bacterial species, viral infection, or the defense response of the 
infected host cell. Bacterial RNases can work as powerful toxins 
selectively targeting coding and non-coding RNAs (257–259). 
Among the non-coding RNAs, the specific cleavage of tRNAs 

is a conserved regulatory mechanism shared from bacterial to 
mammalian cells (56). Stress-induced tRNA cleavage is reported 
for the Escherichia coli endoribonuclease Prrc in response to bac-
teriophage infection (260). Colicins are another group of E. coli 
cytotoxic tRNases that block the protein synthesis machinery as 
a defense mechanism against other microbial competitors (261). 
Interestingly, comparison among the bacterial RNases suggest 
an evolutionary convergence to acquire structural features that 
enable the targeting of the tRNA anticodon loop (261). In simple 
eukaryotes, such as the protozoa Tetrahymena, and the budding 
yeast Saccharomyces cerevisiae, the release of specific tRFs during 
starvation is also reported (256, 262). We can establish a parallel-
ism between the release of stress-induced tiRNA by prokaryotes, 
primitive eukaryotes, and human RNase5 (6), as a mechanism 
to downregulate protein synthesis. An intriguing question arises: 
have the host defense mechanisms of vertebrate RNases evolved 
from the ancestral prokaryotic inter-strain competition pro-
cesses? Although the RNaseA superfamily is vertebrate-specific, 
the recent report of the structure of a bacterial RNase involved 
in inter-strain competition highlights a shared protein scaffold 
shaped for RNA recognition (32). However, the lack of sequence 
identity between bacterial and vertebrate RNases and the absence 
of any putative invertebrate intermediate suggests a convergent 
evolution (32, 263). Thus, the origin of the RNaseA superfamily 
remains unknown. In contrast, the RNaseT2 family conserves its 
ancestral lineage from prokaryotes to humans (56).

Similarities between unicellular self-defense and mammalian 
innate immune mechanisms can provide novel strategies to boost 
our own immune response. For example, macrophage immune 
regulation by Bacillus RNase (binase) can trigger the host cell anti-
tumor response (19) and the RNaseT2 of the Schistosoma parasite 
can modulate the host response (250) and prevent the outbreak of 
autoimmune diseases or diabetes (264, 265). Understanding the 
uniqueness of RNases and their specificity for cellular RNAs will 
lead to the development of novel therapeutics.

RNase TRAFFiC iN THe eXTRACeLLULAR 
SPACe

Extracellular RNases are released as secretory proteins by diverse 
pathways into the extracellular compartment. Recent advances in 
histochemical and cell analytical methodologies have unveiled the 
structural and functional complexity of the extracellular space. A 
rich world of secretory storage granules, transport vesicles, and 
intracellular vacuoles ensures that the organism is fit to respond 
to external stimuli.

Compartmentalization
Compartmentalization of RNA and RNases is an important 
regulatory mechanism (266). RNases packed within secretory 
granules will be selectively released upon action by diverse stimuli 
(see Figure 1). In particular, eosinophil degranulation has been 
thoroughly investigated and several secretory mechanisms have 
been described (267). Intracellular granules can undergo piece-
meal degranulation, whereby small packets of derived vesicles are 
mobilized toward the cell surface for secretion (231). Alternatively, 
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the cell storage granules can be freed as independent entities. 
Free extracellular eosinophil granules can actively release their 
content upon cytokine activation (167). Weller and co-workers 
have extensively characterized the signaling pathways that medi-
ate the release of RNases by the free extracellular eosinophil 
granules in humans and mice (149, 168). Free eosinophil granules 
can be internalized by other innate cells, such as macrophages 
(Figure 1) and thereby participate in the regulatory pathways of 
the recipient cell. Extracellular RNases can also find a way back 
into cells through the endosomal pathway (240, 268). Fortunately, 
the cytosolic compartment of cells is protected from the potential 
toxicity of RNaseA superfamily members by the action of the 
RI, which constitutes about 0.1% of the total protein content in 
the cytosol of mammalian cells (269). The RI is expressed in all 
studied human tissues (143) and binds with an extremely high 
affinity to mammalian RNaseA family members (in the fM range) 
(270, 271). Interestingly, Raines and co-workers (270) identified 
the avian and reptilian counterparts of mammalian RI but no 
equivalent protein was detected in amphibians and fish, suggest-
ing a specific role for RI in higher order vertebrates (270). Recent 
RI-knockout experiments confirmed the protective action of RI 
toward cytosolic RNA against endocytosed RNases (272). The 
inhibitor structure adopts a horseshoe conformation composed 
of LRRs and exposed free cysteine residues. The inhibitor is func-
tional in its fully reduced state and is extremely sensitive to cellular 
oxidative stress. RI inactivation by partial oxidation can work as 
a mechanism to switch on the RNase-mediated degradation of 
cellular RNA under stress conditions (56, 270). For example, RI 
participates in the regulation of hRNase5 subcellular localization 
during stress conditions. Under stress, the cytosolic hRNase5 is 
liberated from the RI complex, whereas the nuclear protein is 
bound to the inhibitor, thereby downregulating cell growth (272). 
Interestingly, the hRNase5 evasion of the cytosolic RI and migra-
tion to the nucleolus is also mediated by phosphorylation (273). 
RI can also participate in the regulation of RNases expressed at 
the epidermis (67). The secreted RNases in the skin provide a 
protective barrier against invading pathogens. Degradation of 
RI by proteases at the stratum corneum can liberate the RNases’ 
antimicrobial action during infection (67, 274). Regulation of 
RNase activity by RI in the urinary tract has also been proposed 
by Spencer and co-workers (275).

intercellular Communication
Nowadays, novel methodologies have led to better understand-
ing of the functions of the extracellular compartment and have 
proposed previously undescribed roles for secretory proteins. 
RNases secreted by diverse stimuli (Figure 1) can participate in 
intercellular communication in an organism (56). Of note, some 
RNaseA family members have been detected within extracellular 
vesicles (117, 276, 277) (Table 2) and selective RNA packaging into 
the vesicles has been observed (278). This brings us back to the 
pioneering biochemical work on the pancreatic RNaseA family 
(3). The identification of the angiogenic activity of hRNase5 and 
the suspicion that angiogenic factors might contain RNA (279) 
hinted that exRNA might work as an intercellular communica-
tor (1). Novel sequencing methodologies confirmed hRNase5 
selective cleavage of non-coding RNAs and the involvement 

of the released products in immune regulation pathways (57). 
Other pancreatic RNase family members may also have evolved 
to acquire a non-digestive role and may contribute to the regula-
tion of the circulating exRNA content in blood (18, 280). James 
Lee proposed that during vertebrate evolution the mechanism 
of action of granulocyte proteins might have evolved from mere 
localized action to an organized systemic response mechanism. 
The increase in size and complexity of multicellular organisms is 
accompanied by long distance stress signaling processes. In this 
context, secretory RNases originally recruited at the damaged tis-
sue site to remove cellular RNA debris from dying cells could have 
acquired a selective anti-pathogen activity to provide the host 
protection against infection. An amoeboid-type secretory blood 
cell initially adapted to localized response and tissue repair duties 
would have acquired novel properties, allowing isolated tissue 
cells to communicate over an extended distance and participate 
in the overall systemic response (17).

ROLe iN HeALTH AND DiSeASe

Overall, extracellular RNases display a variety of immune-related 
activities that ensure that the organism is fit for survival. The 
RNases participate in diverse tasks, from cellular housekeeping 
to ensuring the sterility of body fluids (Table 1). Following tissue 
damage by an external injury the RNases are expressed as alarm 
signaling molecules (54, 60, 61). Their secretion at the inflamma-
tion site contributes to tissue repair and remodeling (52, 62). To 
participate in the tissue healing process, the RNases can target and 
remove the host-damaged cells. Selective cytotoxicity can be medi-
ated by the activation of autophagy or apoptotic pathways (72, 75). 
To facilitate subsequent tissue remodeling, the RNases also func-
tion as cytokines and chemokines, displaying anti-inflammatory 
activities and inducing chemoattraction of innate cells, such as 
macrophages or DCs (29, 46–48). Other complementary activities 
have been reported such as binding to nucleic acids, activation of 
TLR receptors and removal of exRNA (54, 55, 76).

RNases’ expression can also be induced during infections and 
the secreted RNases can directly participate in the killing of invad-
ing microorganisms (42, 84, 89) (Table 1). Overall, we observed 
an organized distribution of tasks among the distinct host innate 
cells that can ensure the coverage of wide spectra of potential 
pathogens. On the other hand, there is also a downregulation in 
RNases’ expression after extended periods of infection (Table 2). 
A close inspection of the RNases’ expression patterns suggests 
an adaptive process by the intracellular-dwelling pathogens to 
inhibit the host response and extend their survival lifespan.

Fortunately, extensive research on secretory RNases is currently 
setting the basis for applied therapies. Clinicians are already tak-
ing advantage of the selective secretion of RNases for monitoring 
and diagnosing inflammation. RNase3 levels are routinely used to 
monitor asthma processes (51). Levels of hRNase1, hRNase3, and 
hRNase7 are increased during sepsis and are proposed as mark-
ers for the diagnosis of organ failure (112). Another interesting 
proposal is the use of RI as a cancer biomarker (281).

Furthermore, successful results achieved using experimen-
tal animal models promise therapeutic applications in the 
near future. Removal of circulating exRNA shows beneficial 
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anti-inflammatory properties following tissue damage (17, 29, 
76). In particular, removal of blood exRNA can protect cardiac 
tissue in hypoxic conditions (29, 76). Treatment with hRNase1 
has been observed to reduce deposits of exRNA and inflamma-
tion in a mouse model of atherosclerosis (78). RNases can also 
determine the fate of RNA stress granules. Under stress condi-
tions, hRNase5 accumulates within stress granules (282). Local 
accumulation of RNA and alteration of RNA self-assembly is 
associated with neurodegenerative diseases (283). Selective cleav-
age of cellular RNAs mediates response to stress stimuli (56, 57). 
Overall, deregulation of non-coding RNA processing is a major 
cause of immune-malfunctioning and serious diseases (284).

Some RNaseA members can participate in biological functions 
such as hematopoiesis and angiogenesis, and show anti-tumoural 
properties mediated by selective cellular RNA targeting (6, 40, 
285). The design of RNase constructs to develop specific immu-
notoxins that selectively target cancer cells is currently one of the 
most prioritize research topics. ImmunoRNases are engineered 
to be internalized by tumor cells, evade RI, and degrade cellular 
RNA (26, 269, 286–289). A recent nanocarrier delivery system 
using encapsulated RNaseA effectively achieves inhibition of 
cancer cell proliferation (290).

RNases can also maintain the sterility of biological fluids 
(100, 285). Eosinophils are involved in antiviral immunity and 
eosinophil RNases might mediate host response by TLR7 activa-
tion (55). Expression of hRNase2 is induced by HIV-1 infection 
and recombinant hRNase2 administration is proposed as an 
anti-HIV-1 therapy (100).

CONCLUSiON AND PeRSPeCTiveS

The overview of the immuno-regulatory properties of secretory 
RNases highlights the similarities between their mechanisms of 
action and provides novel approaches to progress toward a deeper 
understanding of their ultimate in  vivo biological role. We are 
confident that any step forward in this direction can consolidate 
our knowledge of the innate immune system and contribute to 
the development of novel treatments against immunological 
deregulations. In particular, the biological roles of RNases, such 
as in hematopoiesis regulation, tissue remodeling, prevention 
of infection and inflammation offer promising therapeutic 
applications.
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