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A robust adaptive immune response requires a phase of proliferative burst which is fol-
lowed by the polarization of T cells into relevant functional subsets. Both processes are 
associated with dramatically increased bioenergetics demands, biosynthetic demands, 
and redox demands. T cells meet these demands by rewiring their central metabolic 
pathways that generate energy and biosynthetic precursors by catabolizing and oxidiz-
ing nutrients into carbon dioxide. Simultaneously, oxidative metabolism also produces 
reactive oxygen species (ROS), which are tightly controlled by antioxidants and plays 
important role in regulating T cell functions. In this review, we discuss how metabolic 
rewiring during T cell activation influence ROS production and antioxidant capacity.
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iNTRODUCTiON

T cells are central orchestrators of antigen-specific adaptive immunity and tolerance. Upon stimula-
tion of antigen receptors, T cells rapidly transit from naïve to an active state followed by massive 
clonal expansion. Depending on the nature of pathogens and the surrounding cytokine milieu, 
proliferating T cells can differentiate into diverse phenotypic and functional subsets to elicit a robust 
immune response. After the clearance of pathogens, the majority of effector T cells die through apop-
tosis and the remaining memory T (Tmem) cells are responsible for immunity upon re-exposure to the 
same pathogen. Accumulating evidence suggests that a coordinated rewiring of cellular metabolism 
is required for T cell activation and differentiation by fulfilling the bioenergetic, biosynthetic, and 
redox demands (1–9). Importantly, different phenotypic and functional T cell subsets are character-
ized by distinct metabolic programs (Table 1), which are largely controlled by immune modulatory 
signaling cascades (10–17). Naïve T (Tnai) cells, Tmem cells, and immune-suppressive regulatory T (Treg) 
cells predominantly rely on fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) 
to meet their relatively low-energy needs (14, 15, 18, 19). However, persistent aerobic glycolysis, 
the pentose phosphate pathway (PPP), and glutaminolysis are required to drive cell growth, clonal 
expansion, and effector functions in both CD4+ subsets and CD8+ effector T (Teff) cells (Table 1)  
(10, 15, 16, 18, 20–31).

These metabolic programs actively support ATP production by providing mitochondrial OXPHOS 
substrates, support biomass accumulation by generating metabolic precursors for the biosynthesis 
of protein, lipids, and nucleic acids, and maintain redox balance through generation and elimination 
of reactive oxygen species (ROS).
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TAble 1 | The metabolic profiles of T cell subsets.

T cell type Naïve Active Differentiated Memory T cell (Tmem)

Metabolic profile FAO
OXPHOS

Aerobic glycolysis
PPP
Glutaminolysis

Th1: aerobic glycolysis/some OXPHOS FAO
OXPHOSTh2: aerobic glycolysis

Th9: aerobic glycolysis
Th17: aerobic glycolysis, glutaminolysis
Tfh: aerobic glycolysis, OXPHOS
Treg: FAO, OXPHOS
CTL: aerobic glycolysis
CAT: oxidation, phosphorylation

FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; Th1, T helper 1 cell; Th2, T helper 2 cell; Th9, T helper 9 cell; Th17, T helper 17 
cell; Tfh, follicular helper T cell; Treg, regulatory T cell; CTL, cytotoxic T lymphocyte; CAT, chronically activated T cell; Tmem, memory T.
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MiTOCHONDRiAl OXPHOS AND NADPH 
OXiDASeS (NOXs) iN GeNeRATiNG ROS 
iN T CellS

The mitochondria are the central metabolic hub and powerhouse 
of all eukaryotic cells. The oxidation of acetyl-CoA to carbon 
dioxide (CO2) by the tricarboxylic acid (TCA) cycle is the central 
metabolic process for fueling ATP production. While glycolysis 
and FAO primarily provide the OXPHOX substrate, acetyl-CoA, 
for mitochondria in Tnai cells, Tmem cells, and Treg cells (14, 15, 18, 19),  
heightened mitochondrial biogenesis during T  cell activation 
leads to higher numbers of mitochondria and likely the enhanced 
mitochondrial dependent metabolic flux in Teff cells compared 
with Tnai cells (23, 32, 33). In particular, a surplus of 3-, 4-, and 
5-carbon metabolites (anaplerotic substrates) including pyruvate, 
malate, and α-ketoglutarate (α-KG) feed into the TCA cycle during 
the catabolism of glutamine and other amino acids (5, 13, 15, 34).  
The electron transport chain (ETC) constantly transfers electrons 
from NADH and FADH2 to oxygen while allowing protons (H+) 
to pass through the inner mitochondrial membrane to form 
an electrochemical proton gradient that drives ATP synthesis. 
However, both protons and electrons can leak from the ETC 
due to the uncoupling of ATP synthase from the proton gradient 
and a premature exit of electron before reaching cytochrome  
c oxidase, respectively. Electron leak largely occurs at the sites 
of complex I (NADH–ubiquinone oxidoreductase) and complex 
III (ubiquinone–cytochrome c oxidoreductase) in the ETC and 
results in the partial reduction of oxygen, generating superoxide 
O2

−•( ). Subsequently, mitochondrial dismutase acts to convert 
superoxide to hydrogen peroxide (H2O2), which is free to diffuse 
into cytosol and act as a redox signaling molecule to elicit differ-
ent cellular responses (35–37). Thus, increased ROS production 
in T  cells can occur as a result of metabolic reprogramming 
during T cell activation. Besides mitochondria, cytoplasmic ROS 
is generated by NOXs, which is also an important source of ROS 
in T cell. NOX family proteins are transmembrane proteins that 
transport the electrons from nicotinamide adenine dinucleotide 
(phosphate), NAD(P)H, to oxygen and generate superoxide anion 
as the intermediate product of oxidase and subsequently H2O2, as 
the product of dismutation of the superoxide. There are different 
isoforms of the NOX enzyme including NOX1, NOX2, NOX3, 
NOX4, NOX5, dual oxidase 1, and DUOX2, and the expression 
of these subunits varies among different tissues. NOX-2 is an 

important source of ROS in T cells (38, 39). The ROS production 
by NOX is regulated at various levels including the assembly of 
functional NOX complex, the availability of prosthetic group, 
flavin adenine dinucleotide, the intracellular concentration of 
calcium, cell surface receptor signals mediated by G protein-
coupled receptors, complement, T cell receptor (TCR), and CD28 
(35–37, 40, 41).

ROS SiGNAliNG iN ReGUlATiNG T Cell 
ACTivATiON AND DiFFeReNTiATiON

T cell activation requires ligation of TCR and the major histo-
compatibility complex molecules. This interaction will initiate the 
signaling cascade and activation of transcriptional factors such 
as nuclear factor of activated T  cells (NFAT), activator protein 
1 (AP-1), and nuclear factor of kappa light chain enhancer in 
B  cells (42). It has been reported that TCR ligation increases 
the production of ROS from OXPHOS and cytoplasmic ROS 
from NADPH oxidases (NOXs), a family of plasma membrane-
associated oxidases (36, 40, 41). ROS-mediated signaling events 
are required for driving T cell activation, proliferation, and dif-
ferentiation (Figure 1) (36, 41). T cells with reduced production 
of mitochondrial ROS display impaired production of interleu-
kin-2 and antigen-specific proliferation, indicating an essential 
signaling role for mitochondrial ROS in driving optimal TCR 
signaling. The proximal TCR signaling machinery, including 
zeta chain-associated protein kinase 70, linker of activated T cell, 
SH2 domain-containing leukocyte protein, phospholipase Cγ1, 
and protein kinase Cθ, is involved in driving ROS production 
upon T  cell activation (36, 41, 43). Conversely, physiologically 
relevant levels of ROS facilitate the activation of oxidation-
dependent transcription factors, such as NF-κB and AP-1, which 
are required for driving essential signaling events to support 
T  cell-mediated immune responses (44–46). However, exces-
sive ROS production following ablation of de novo glutathione 
(GSH) synthesis suppresses the activity of mammalian target 
of rapamycin and the expression of transcription factors NFAT 
and c-MYC, the latter of which control metabolic reprogram-
ming following T cell activation (15, 47, 48). Thus, T cells fail to 
meet their increased energy and biosynthetic needs and display 
compromised proliferation (48). In addition, uncontrolled ROS 
production is involved in the activation-induced T-cell death by 
affecting expression of apoptosis related genes including Bcl-2 
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FiGURe 1 | Mitochondria and NADPH oxidases (NOX)-derived reactive oxygen species (ROS) regulates T cell activation, differentiation, and metabolism. 
Mitochondria and NOX are the two major sources of ROS. The stimulation of T cell receptor (TCR) initiates signaling and metabolic events that drive ROS production 
in cytoplasm through NOX-dependent reaction and ROS production in mitochondria via mitochondria electron transport chain (ETC). Excess ROS causes damage 
and cell death. However, physiologically relevant levels of ROS mediate essential redox signaling through nodulation of a wide spectrum of redox-sensitive 
transcription factors to drive T cell activation and function.
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and FasL and mitochondrial membrane potential (43, 49–52). 
NOX-derived ROS modulates the function of GATA-binding 
protein 3, signal transducer and activator of transcription, and 
T-box transcription factor to collectively control T cell activation 
and differentiation. T cells from NOX-deficient animals showed 
a skewed Th17 phenotype, whereas NOX-intact cells exhibited a 
preferred Th1 response (39, 53–55). In CD8 T cells, NOX-derived 
ROS is involved in regulating the production of IFN-γ and CD39 
expression through c-Jun N-terminal kinase and NFκB signaling 
(40, 56). Importantly, the impact of ROS on T cell activation can 
be extended to the later T  cell differentiation stages. Fine tun-
ing of ROS is required for polarizing T cell in part by engaging 
lineage-specific transcription factors and modulating cytokine 
profiles, and consequently directs T cell-mediated inflammatory 
responses (39, 40, 53–55, 57–61).

MeTAbOliC PATHwAYS iN MODUlATiNG 
ANTiOXiDANT CAPACiTieS

Excessive ROS production causes collateral damage to macro-
molecules, cellular organelles, and eventually necrosis, which 

can lead to uncontrolled hyper-inflammation and tissue dam-
age. Thus, a fine-tuned balance between ROS production and 
antioxidant capacity ensures appropriate levels of intracellular 
ROS (Figure  2) (44, 55, 62). GSH, a tripeptide of glutamine, 
cysteine, and glycine, is the most abundant antioxidant capable 
of providing reducing equivalents and also serves as a versatile 
nucleophilic cofactor in a wide spectrum of metabolic reactions 
in aerobic organisms (63, 64). Thioredoxin (TXN) is a class of 
small redox proteins that are involved in modulating cell surface 
receptors and confers tolerance to oxidative stress in T  cells 
(65–69). A reciprocal redox reaction can be coupled between 
these two antioxidant systems to act as a backup for each other 
under certain conditions (70–77). Supporting these findings, 
the inhibition of thioredoxin reductase (TXNRD) conferred an 
increased susceptibility of cancer cells to GSH depletion (78–80). 
Glutathione-disulfide reductase (GSR) regenerates GSH from its 
oxidized form, glutathione disulfide (GSSG), whereas TXNRD 
is responsible for the regeneration of TXN once it has been 
oxidized. Importantly, both GSR and TXNRD require NADPH 
as a reducing agent. Upon antigen stimulation, both PPP and 
glutaminolysis are significantly upregulated and further enhance 
T  cell antioxidant capacities by generating NADPH through 
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FiGURe 2 | T cell metabolic programs that link to reactive oxygen species (ROS) production and the de novo synthesis of GSH. Pyruvate that is derived from 
glucose via glycolysis is shuttled to the mitochondria and drives the tricarboxylic acid (TCA) cycle and fuels oxidative phosphorylation (OXPHOS). Glucose-derived 
glucose-6-phosphate feeds into the pentose phosphate pathway (PPP) and produces NADPH in the cytoplasm. In addition, glutamate feeds the TCA cycle through 
α-ketoglutarate (α-KG) to fuel OXPHOS and generate ROS. Excessive ROS production is regulated by glutathione (GSH), a tripeptide of glutamine, cysteine, and 
glycine, which is synthesized de novo by glutamate-cysteine ligase (GCL) and glutathione synthetase (GSS). In addition, NADPH, glutathione-disulfide reductase 
(GSR), and glutathione peroxidase (GPX) are involved in regenerating GSH from glutathione disulfide (GSSG), whereas thioredoxin reductase (TXNRD) is responsible 
for the regeneration of thioredoxin (TXN) to control oxidative stress in T cell.
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metabolic reactions that are controlled by glucose-6-phosphate 
dehydrogenase, phosphoglycerate dehydrogenase, malic enzyme 
1, and isocitrate dehydrogenase 1. The intracellular GSH con-
centrations are normally in a range of three orders of magnitude 
higher than extracellular GSH. Even though some cells are able 
to recycle extracellular GSH, it may only play a minor role in 
maintaining intracellular GSH pool (63, 64, 81–86). By contrast, 
both the regeneration of GSH from GSSG (recycling pathway) 
and de novo synthesis of GSH, by glutamate-cysteine ligase 
(GCL) and glutathione synthase (GS), are required to maintain 
intracellular GSH levels (64, 87). The ligation of glutamate and 
cysteine to form dipeptide ϒ-glutamylcysteine (ϒ-GC) is the first 
and also the rate-limiting step of GSH de novo synthesis, which 
is controlled by ATP-dependent ligase GCL, a heterodimer of 
a catalytic subunit (GCLC) and modifier subunit (GCLM). 
Subsequently, GSH is formed by GS-mediated ligation of ϒ-GC 
and glycine (88, 89). Thus, the supply of intracellular cysteine, 
glycine, and glutamate must fulfill the need of de novo synthesis of 
GSH during T cell activation. Supporting this idea, the metabolic 
processes that are involved in providing three amino acids are 
tightly regulated upon T  cell activation (13, 15, 90–92). Upon 
T cell activation, heightened glycolysis, PPP, and glutaminolysis 
intersect with the de novo synthesis of GSH through promoting 
cysteine uptake and providing glycine, glutamine, and NADPH 
(93–95). As such, the genetic abrogation of de novo synthesis of 

GSH, the glucose, or glutamine starvation significantly dampens 
T cell activation (10, 13, 15, 20, 48).

GlUTAMiNe CATAbOliSM iN 
COORDiNATiNG THe PRODUCTiON  
OF ROS AND GSH

Glutamine has been known as a key nutrient, which supports 
a diverse range of cellular functions (93–102). Glutamine pro-
vides high proportions of the energy from OXPHOS, provides 
precursors for various biosynthetic pathways, as a key nitrogen 
and carbon donor, and also is catabolized to various intermedi-
ate metabolites that have signaling roles in modulating cellular 
processes. In specialized cells, such as the cells of the nervous 
system, glutamine catabolism intersects with signaling networks 
to support the production of central neurotransmitters including 
glutamate, GABA, and aspartate (103–106). To meet bioenergetic 
and biosynthetic demand during T cell growth and proliferation, 
glutaminolysis replenishes the anapleurotic substrate α-KG that 
fuels OXPHOS via the TCA cycle and also provides sources 
of nitrogen and carbon to support the biosynthesis of nones-
sential amino acids, lipids, nucleotides, and polyamines (13, 15, 
102, 107). Similar to cancer cells, de novo synthesis of GSH in 
T  cells, which relies on glutamine to provide precursors, plays 
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FiGURe 3 | Cellular redox homeostasis is essential for mounting an effective T cell-mediated immune response. In addition to generate ATP and provide 
biosynthetic precursors, T cell activation-induced metabolic reprogramming actively regulates redox homeostasis. The coordination of de novo synthesis of 
glutathione (GSH) and the production of reactive oxygen species (ROS) ensures T cell redox balance and a fine-tuned T cell response.

an essential role in suppressing oxidative stress. Accordingly, 
glutaminolysis is a branched pathway that consists of several 
paths, enabling energy production through oxidation and 
biomolecule production, including GSH through biosynthesis 
(93–95). While the ATP generating capacity of glutaminolysis 
is considered to be redundant with glucose oxidation and/or 
FAO, the oxidation of glutamine is indispensable for driving 
T  cell proliferation and differentiation (13, 15, 102). However, 
enhanced glutamine oxidation in the mitochondria also increases 
the production of its by-product, mitochondrial ROS, the main 
source of cellular ROS in T cells (35, 37). Therefore, glutamate 
represents a key branch point in glutaminolysis that can be 
committed toward mitochondrial oxidation to produce ATP 
and ROS, or toward de novo synthesis of GSH to modulate redox 
balance and suppress oxidative stress. In addition, the high rate 
of glutaminolysis ensures that the capacity to supply glutamate, 
the most abundant intracellular metabolite in cells, exceeds the 
demand for glutamate from each of the downstream metabolic 
branches. The branched pathways in glutaminolysis enable the 
production of counteracting metabolites, i.e., ROS and GSH, 
from a common metabolic precursor, and permit a fine-tuned 
coordination between the metabolic flux shunted toward GSH 

synthesis and the metabolic flux shunted toward OXPHOS. 
Consistent with this idea, the overall high consumption rate of 
glutamine in proliferative cells is suggested to provide a sensitive 
and precise regulation on intermediate metabolites that can be 
committed toward several metabolic branches, hence permitting 
rapid responses to meet the demands for energy production or 
antioxidant production (99, 108). In addition to increasing anti-
oxidant capacity, T cells may adapt by shifting glucose catabolism 
from OXPHOS toward aerobic glycolysis, which could provide 
biosynthetic precursors and rapidly produce ATP by the substrate 
level of phosphorylation.

CONClUSiON AND PeRSPeCTive

Reactive oxygen species is not only a by-product of cellular 
metabolic programs but also a key signaling molecule involved 
in directing T  cell activation and differentiation. However, 
uncontrolled ROS production causes collateral damage to 
biomolecules and cellular organelles. Under pathophysiological 
conditions, ROS generation from mitochondria can contribute 
to the initiation and progression of inflammatory and autoim-
mune diseases. However, oxidative stress caused by elevated ROS 
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