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Newborns suffer high rates of mortality due to infectious disease—this has been gen-
erally regarded to be the result of an “immature” immune system with a diminished 
disease-fighting capacity. However, the immaturity dogma fails to explain (i) greater 
pro-inflammatory responses than adults in vivo and (ii) the ability of neonates to survive 
a significantly higher blood pathogen burden than of adults. To reconcile the apparent 
contradiction of clinical susceptibility to disease and the host immune response findings 
when contrasting newborn to adult, it will be essential to capture the entirety of available 
host-defense strategies at the newborn’s disposal. Adults focus heavily on the disease 
resistance approach: pathogen reduction and elimination. Newborn hyperactive innate 
immunity, sensitivity to immunopathology, and the energetic requirements of growth 
and development (immune and energy costs), however, preclude them from having an 
adult-like resistance response. Instead, newborns also may avail themselves of disease 
tolerance (minimizing immunopathology without reducing pathogen load), as a disease 
tolerance approach provides a counterbalance to the dangers of a heightened innate 
immunity and has lower-associated immune costs. Further, disease tolerance allows 
for the establishment of a commensal bacterial community without mounting an unnec-
essarily dangerous immune resistance response. Since disease tolerance has its own 
associated costs (immune suppression leading to unchecked pathogen proliferation), it 
is the maintenance of homeostasis between disease tolerance and disease resistance 
that is critical to safe and effective defense against infections in early life. This paradigm 
is consistent with nearly all of the existing evidence.
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introdUCtion

The world has seen under-five mortality greatly reduced over the last two decades but this progress 
has least benefited those in the first 28 days of life—the neonatal period—which now accounts for 
nearly half of all under-five deaths (1). Infectious disease is one of the most common causes of 
newborn death, accounting for more than a third of all neonatal mortality (1). Unfortunately, the 
underlying reasons for this are not clear, preventing a rational approach to preventing newborn death 
across the globe. Unquestionably, newborns are much more susceptible to infection causing clinical 
disease (2–5). Also clear is that the neonatal immune system is very different than that of adults 
(6, 7). Many immunomodulatory approaches to improving outcome in neonatal infectious disease 
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have been unsuccessful (8, 9), which necessitates a careful reex-
amination of our assumptions and beliefs regarding the nature of 
neonatal immune responses. The current dogmatic view, namely 
that the neonatal immune system is immature and therefore 
deficient to resist infection as compared to that of an adult (10), 
is inadequate as it does not capture the existing body of evidence 
(11). We recently reviewed the molecular mechanisms guiding 
the ontogeny of immune response from birth throughout infancy, 
emphasizing that newborns harbor an immune phenotype that 
is a match to the unique environmental pressures and challenges 
in the first days of life (11, 12). Balancing disease tolerance and 
resistance, while a challenge throughout the entire life span, is also 
unique for newborns (12). We here place the existing evidence in 
a larger framework to expand on this concept of host defense as 
a balance between disease tolerance and resistance to help guide 
the search for actionable answers.

neonataL Host deFense FroM 
inFeCtioUs disease: tHe CoMpLete 
piCtUre

Host defense to infection can broadly be divided into three 
different, not mutually exclusive, categories: disease avoidance, 
disease resistance, and disease tolerance (13). A more detailed 
exploration into the finer details of these defense strategies has 
been previously been outlined by Medzhitov et al. in their 2012 
Science paper titled “Disease Tolerance as a Defense Strategy” 
(13). Here, each strategy is briefly summarized and connected 
explicitly to the neonatal immune response, which has been 
found time and time again to be distinct from the adult immune 
response (4, 11, 14–17):

(i) An avoidance strategy reduces the risk of infection by 
preventing exposure to infectious agents. Human avoidance of 
rotten meat consumption through an olfactory response to the 
metabolites produced by bacteria breaking down tissue is an 
example of avoidance (13). Limitations in both newborn mobil-
ity and exclusive breastfeeding can prevent potentially harmful 
exposure and represent an example of an avoidance strategy in 
early life (18). However, there are obvious physiological, physical 
as well as social and cultural limitations to this strategy; there is an 
unfortunate inevitability to some degree of pathogen exposure.

When avoidance has failed and infection has been established, 
the (ii) disease resistance approach aims to reduce pathogen 
burden and has traditionally been considered the primary modus 
operandi of the immune system (and thus the focus of most 
prophylactic or therapeutic interventions). However, unleashing 
antimicrobial immune responses can also cause collateral dam-
age (13). In fact, much of what is clinically recognized as signs 
and symptoms of infection relates to this immune pathology 
(19). For example, a recent comparison of sepsis models showed 
that lipopolysaccharide (LPS) treatment in mice “induced a very 
similar course of inflammation” as infection (20). Given that 
LPS has no intrinsic virulence, the pathology of LPS challenge 
must result from host response, and thus similarities between 
LPS-induced sepsis and, e.g., polymicrobial sepsis (21) implicate 
host-mediated immune pathology as a key agent of disease. This 

is further evidenced by murine studies showing that knocking 
out anti-inflammatory cytokine production during infection 
is associated with worse outcomes without impacting bacterial 
clearance or viral replication (22, 23). Importantly, the newborn 
is particularly susceptible to this host-mediated immune pathol-
ogy (e.g., intraperitoneal LPS challenge at 10 mg/kg resulted in 
100% mortality in neonatal mice and 0% in adults) (11, 24). It is 
therefore not surprising that evolution has selected for a higher 
threshold that needs to be overcome in early life before a full-
fledged immune response can be unleashed (12). This leaves the 
newborn with a conundrum; a disease avoidance approach has 
clear limitations [indiscriminately avoiding bacterial coloniza-
tion is not only impossible, but would be harmful as the first few 
days of life are extremely important for establishing a healthy and 
diverse community of commensal enteric bacteria (25)], while a 
disease resistance approach carries substantial risk for immune-
mediated damage (11, 13, 24, 26).

Newborns thus likely also rely on employing the third strategy 
of host defense, disease tolerance. (iii) Disease tolerance reduces 
potential harm to the host without reducing pathogen burden, 
generally by minimizing the level of immunopathology that 
results from a resistance response (13). This strategy is understood 
to be widely employed by plants (27) but the notion that animals 
(and humans) may rely on a disease tolerance defense as well has 
only recently begun to be considered (13). It is important to note 
that disease tolerance is different from the concept of adaptive 
immune tolerance: the former is a broad, categorical term for 
a defense strategy of coping with infection, and the latter is the 
immunological phenomenon of immune unresponsiveness to 
specific antigens. To our knowledge, the concept of disease toler-
ance as a defense strategy in early life has never been experimen-
tally examined. However, existing evidence, while not proof, is at 
least consistent with its existence. Lastly, the host microbiota has 
increasingly been recognized as key to host defense, impacting all 
aspects of from avoidance (colonization resistance) to immune 
development; however, its role and relation to disease tolerance 
is significant and unexplored, as the tolerance to a range of 
microbial commensals is essential for a healthy human host (28).

tHe Case For HiGHer disease 
toLeranCe in earLy LiFe

A disease tolerant vs. intolerant phenotype would be expected to 
display a lower morbidity/mortality relative to a same pathogen 
load, and/or a higher pathogen load at a similar mortality level 
(13). While many suspected cases of bacterial sepsis in both 
neonates and adults are not confirmed by a positive blood culture 
(29, 30), within culture-positive cases, neonates have consistently 
been found to exhibit much higher circulating bacterial loads 
than adults (31). Despite expected variability depending on the 
pathogen involved, studies generally report bacterial counts in 
adults (with an active bacterial infection) to be somewhere in the 
range of 1–30 CFU/ml blood (31–34), while in neonates, the more 
commonly detected range lies between 50 and 500 CFU/ml blood 
with one-third of infected newborns harboring bacterial counts 
in excess of 1,000 CFU/ml (31, 35). Furthermore, while 50% of 
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adult culture-positive cases harbor <1 CFU/ml blood (considered 
a “low” bacterial load), 78% of culture-proven newborn sepsis 
cases reported  >5  CFU/ml of blood, and  <50  CFU/ml blood 
was considered to be low for neonates (31). Most of these studies 
were not set up to compare newborn vs. adult bacterial loads in 
sepsis but rather were framed in the context of describing how 
much blood would be needed in order to confidently determine 
a culture-positive or a -negative state, thus do not directly address 
this comparison (34). However, this relationship also holds true 
in more controlled animal models, where much higher bacterial 
counts are consistently found in the blood as well as visceral 
organs of septic neonatal vs. adult mice challenged with the same 
pathogen (36).

Perhaps, a higher bacterial load in infected newborns does 
not seem surprising at first glance—after all, neonates are more 
susceptible to suffer from infection, and higher bacterial loads 
would seem to be entirely in line with this observation. However, 
this simple concept begins to unravel when age-specific mortality 
statistics are taken into consideration. While bacterial load corre-
lates with outcome across all ages, there are log-fold differences in 
the scale of circulating bacteria which neonates are able to survive 
in comparison to adults. Studies have shown 100% mortality in 
adult patients with greater than 100 CFU/ml blood (37) and 84% 
mortality when the bacterial load was greater than 5 CFU/ml blood 
(38). By contrast, a cohort of neonates with sepsis suffered 73% 
mortality when bacterial loads were greater than 1,000 CFU/ml  
blood and 37% when less than 1,000 CFU/ml blood (35). This 
particular study describes the “low bacterial count with 37% 
survival” group as those with bacterial loads between 5 and 49 
colonies per ml of blood—an amount that would be considered 
extremely high and lethal in adult patients (31). As stated above, 
the most recent studies tend not to report the magnitude of bacte-
rial burden in human patients with sepsis, but simply whether they 
were culture positive or negative; this precludes a full assessment 
of the relationship between bacterial load and mortality across 
the age groups. However, many animal models using CFU/ml  
blood as an outcome validate the observation that neonates are 
able to survive much higher circulating bacterial loads than adults 
(36, 39). Note that this is not to suggest that newborns are able to 
survive higher levels of bacterial exposure than adults (in fact, the 
opposite is true, as detailed below), rather that neonates are able 
to survive levels of bacteremia that adults cannot.

tHe BaLanCe oF disease resistanCe 
Vs. iMMUnopatHoLoGy

Many studies have described deficiencies in the neonatal innate 
immune system that could be responsible for the decreased ability 
to clear invasive pathogens. For example, kinetics of pathogen 
clearance in animal models of neonatal infection show that 
neonates take longer to clear invasive bacteria than their adult 
counterparts (36, 39). A recent study comparing methicillin-
resistant Staphylococcus aureus infection in neonatal and adult 
mice attributed a delayed clearance in neonates to inefficient 
phagocytosis and a limited neutrophil recruitment to the site 
of infection. Specifically, in neonates, neutrophil production 

dropped off despite the continued presence of bacteria, whereas 
in adult animals, a diminishing neutrophil production corre-
sponded with bacterial clearance. Other studies have implicated 
impaired neutrophil recruitment as a potential explanation for 
the increased susceptibility to infection in early life (40, 41). 
Furthermore, while neonates have higher basal levels of circulat-
ing phagocytic cells than adults, they are generally considered 
to be less efficient phagocytes (40, 42–45). For example, in vitro 
neonatal monocytes and neutrophils in whole blood cultures have 
been shown to have an impaired phagocytic ability of Escherichia 
coli and S. aureus when compared to adults (44). However, other 
groups that found similarly reduced phagocytosis of S. aureus by 
newborn polymorphonuclear leukocytes (PMNs) also found that 
the exposure of neonatal PMNs to adult plasma resulted in adult 
levels of bactericidal activity and hydrogen peroxide production 
(against S. aureus) (17, 46). Similarly, phagocytosis of group B 
Streptococci and E. coli by adult and neonatal purified monocytes 
had similar phagocytic activity between the different age groups 
(45, 47). This brief excursion into the literature of just one aspect 
of host defense immediately highlights that the ability of newborn 
immune cells to fight infection is a purposeful response and not 
simply a state “deficient as compared to the adult.”

Just as in vitro comparisons of neonatal and adult phagocytic 
cells have contributed to the theory that neonatal susceptibility to 
infection is a result of “immaturity,” so has the evidence accrued 
which describes diminished in vitro pro-inflammatory responses 
when comparing neonatal and adult cells (7, 10, 48, 49). However, 
animal models of neonatal sepsis using a variety of pathogens 
(both bacterial or viral) or TLR agonists have found neonates to 
generate an inflammatory response equal to or greater than that  
of adults (1, 24, 39, 50–52). Furthermore, exogenous supplemen-
tations of pro-inflammatory cytokines have been shown to greatly 
increase mortality in a polymicrobial model of sepsis in neonatal 
mice (53, 54). This increased mortality of neonatal sepsis does 
not relate to a decreased bacterial clearance, as neonatal mice also 
suffer a much greater mortality than adults when challenged with 
purified TLR agonists in the absence of an infection (24, 26). This 
has led to the realization that the inflammatory response itself is 
considered to be largely responsible for the higher mortality of 
infected newborns vs. adults (53, 54).

Given this higher risk of the newborn vs. adult to suffer from 
the immune response to an infection (or TLR agonist), newborns 
would benefit from mechanisms that would reduce the risk to 
unleash a harmful antimicrobial immune response. The molecular 
mechanisms related to this have recently begun to be deciphered 
and highlight a direct connection to disease tolerance. An E. coli 
model of neonatal sepsis found that neonatal TRIF−/− mice suf-
fered a higher mortality than WT or MyD88−/− strains with the 
opposite being true in young adults (55). Neonatal prioritization 
of TRIF-dependent pathway activation when exposed to TLR 
agonists was then linked to a strong induction of type 1 interferon 
regulatory responses, as opposed to the adult MyD88-dependent 
pro-inflammatory response. A molecular explanation for these 
age-dependent differences in defense strategy has recently been 
identified as the endogenous, heterodimeric complex of TLR4 
ligands S100A8/A9: high levels of S100A8/A9 shift TLR signal-
ing from MyD88- to TRIF-dependent pathways. S100A8/A9  
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alarmins are also known to be massively released at birth. This 
alarmin release is entirely incongruous with the “immune 
immaturity” paradigm as it represents a purposeful shift away 
from MyD88 pathway activation, the preferred adult pathway. If 
neonatal death was driven by a simple lack of adult-like features, 
one would expect that any external shift toward a more adult-like 
immune response would lead to better outcome. But the opposite 
is in fact the case, as S100a9−/− neonatal mice suffer much higher 
mortality than their WT counterparts when infected, implying 
the alarmin release at birth; i.e., the subsequent shift away from 
an adult-like response is an important and necessary step to suc-
cessfully mount a defense against an early-life infection (11, 56). 
The age-dependent production of S100A8/A9 thus represents 
an example of disease tolerance unique to neonates that has 
developed to avoid immunopathology from an MyD88-driven 
pro-inflammatory response at the potential cost of rapid bacterial 
clearance.

This emphasis on the TRIF-dependent response is entirely 
incongruous with the “immune immaturity” paradigm. While 
this is true for pathogens that signal through TLR4, other mecha-
nisms of disease tolerance to, e.g., Gram-positive infections still 
need to be identified. For example, there are several other 
mechanisms in place in early life that commonly are described 
as immune suppressive, with the notion that these are remnants 
of the mechanisms that allow semiallogeneic mismatch in utero 
without rejection of maternal cells by the fetus (12). However, 
these mechanisms persist far beyond the immediate perinatal 
period and thus likely have other benefits in postnatal life, such 
as increasing disease tolerance by reducing immune-mediated 
pathology (“immune cost”) even if it comes at the cost of an 
increased bacterial burden (13).

tHe BaLanCe oF disease resistanCe 
Vs. disease toLeranCe

The benefit of disease tolerance as a host-defense strategy depends 
on the capacity for virulence of a given invasive agent. If the only 
pathogen ever encountered by a host organism secreted virulence 
factors that inflicted mortality in 100% of cases, there would be 
intense pressure to improve resistance and no pressure to improve 
tolerance. More relevant to humans is the opposite case; there are 
myriads of bacteria that rarely cause mortality and provide both 
direct and indirect fitness advantages to the host. This creates 
a situation where disease tolerance is a viable defense strategy, 
but to a finite degree. Even very low virulence organisms, if left 
totally unchecked, would cause disease. To prevent disease from 
occurring upon the transition from the semi-sterile environment 
in utero into the microbe-rich ex utero world, disease tolerance 
(immunosuppression preventing immunopathology) and disease 
resistance (inflammatory/antimicrobial responses preventing 
virulence) must maintain a state of homeostasis for optimal host 
defense. Without active suppression of inflammatory innate sign-
aling, the initial influx of microbes from the birth process could 
prompt an enormous, potentially lethal inflammatory response; 
even if this inflammatory response did not result in mortality, 
there would be serious short- and long-term health ramifications 

as a result of inadequate bacterial diversity in the gut (25, 57). If 
there was no disease resistance, opportunistic colonizers would 
inevitably reach the blood stream and cause disease (Figure 1). 
Since adults (a) are less sensitive to immunopathology caused by 
inflammation, (b) have already established an enteric microbi-
ome, and (c) are not hindered by the energetic requirements of 
development and environmental change (see below); the benefits 
of disease resistance (keeping pathogens out) outweigh the costs 
of disease tolerance (letting pathogens in).

tHe Cost oF Host deFense

Any form of host response (or lack thereof) to an invasive agent 
must be weighed in terms of the potential for self-inflicted dam-
age, or immunopathology. The resultant immunopathological 
impact of any given response can range from negligible (i.e., mild 
fever) to fatal (i.e., septic shock), and thus the immunopathology 
associated with an immune response has been described as the 
“immune cost” of a response (58). The three principle host-defense 
strategies of avoidance, disease tolerance, and disease resistance 
can be ordered in terms of increasing immune cost, i.e., immune 
pathology: avoidance has a very low cost, resistance a very high 
cost, and tolerance lies somewhere in between (13). In addition 
to the cost of damage from an immune response, however, there 
is also an associated “energetic cost” which describes the amount 
of energy required to deploy a given strategy. Ordering the 
strategies by energetic cost indicates the same order as that of 
immune cost—disease avoidance very low (primarily behavioral, 
little to no regulation), disease resistance very high (58) (massive, 
highly regulated cell mobilizations across the body), and disease 
tolerance in the middle (some regulatory maintenance to avoid 
resistance and tissue healing). Both types of costs, immune and 
energetic, are particularly important to consider when discussing 
infections in neonates, as newborns are (a) particularly sensitive 
and prone to immunopathology (24) and (b) in the midst of a 
rapid growth and development phase which demands a high 
energy input to be maintained (59), i.e., neonates are unable to 
“pay” the costs of a full resistance response (Figure 2). Avoidance 
has failed by definition when discussing an already established 
active infection, which leaves disease tolerance as the primary 
defense strategy for newborns to cope with an invasive agent. This 
comprehensive, holistic point of view takes into account aspects 
of immunity (i.e., energy balance) which fall beyond the narrowly 
defined immune system and is best captured with the phrase “host 
fitness cost.” The concept of host fitness cost helps better explain 
some seemingly paradoxical observations in neonatal immunity 
and can inform interventions moving forward.

tHe roLe oF tHe MiCroBioMe  
in neonataL Host deFense

In the last decade, a vast body of research has emerged, implicat-
ing the microbiome as a critical mediator of neonatal immune 
development (2, 6, 28, 60–62). Dysbiosis during the neonatal 
period has been associated with necrotizing enterocolitis, and 
both early- and late-onset sepsis (60, 63–65). Given the potential 
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FiGUre 1 | The cost of host-defense strategies in newborn infection. The immune response must be suppressed to a degree in order to allow healthy commensal 
colonization of the gut, though unchecked suppression can result in gut “leakiness” and lead to infection. Upon infection, newborns must balance the potential 
self-inflicted harm associated with the pro-inflammatory/antimicrobial response (immunopathology) with the dangers of unencumbered pathogen proliferation and 
ensuing virulence. A disease tolerance strategy reduces immunopathology and supports microbiome development at the cost of pathogen load, while a disease 
resistance strategy reduces pathogen load at the cost of microbiome development and immunopathology.

FiGUre 2 | Difference in energy demands of the newborn and adult as it relates to infectious disease. Newborns must devote a large amount of energy toward 
growth and development which adults are able to spend on maintaining homeostasis. When healthy (a), these differences in energetic demands may not be 
important, though when fighting infectious disease (B), the newborn is unable to expend the resources required to employ a strategy of disease resistance  
and must therefore rely more heavily on disease tolerance.
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costs of impaired microbiome development, the neonatal immune 
system seems to have developed specific mechanisms to ensure 
“safe colonization” of the interphase between external and internal 

environments. Some of these mechanisms are reviewed below. 
The active immunosuppressive portion of the neonatal immune 
response may not only serve to minimize the damage associated 
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with immunopathology but also ensure that the neonatal gut can 
be colonized with a large and diverse array of commensal bacte-
ria. The interplay and dependence on commensal bacteria begins 
immediately with colonization, as transcriptomic analysis of 
germ-free mice exposed to common commensal bacteria showed 
the most prominent changes in genes associated with toll-like 
receptor (TLR) and type 1 interferon (IFN1) signaling pathways, 
which, as evidenced by the aforementioned importance of the 
TRIF-dependent signaling, are crucial in early life (66).

Newborns heavily depend on avoidance to prevent infec-
tion. In the context of microbial colonization, they rely on their 
mothers to introduce them to the right organisms and promote 
their growth, meanwhile avoiding unwanted colonizers from 
outcompeting the beneficial ones. While maternal influence on 
prepartum colonization is still being debated (67), postpartum 
colonization has been shown to be largely derived from the 
vagina during birth (68). In newborns sampled during the first 
week of life alongside their mothers, the majority of taxa detected 
in their stools were also detected in stool samples taken from their 
mothers at the same time (69). While newborns are colonized by 
bacterial families such as Bacteroides and Clostridia acquired from 
their mothers, the composition of their microbiota is still different 
from their mothers with Escherichia/Shigella, Bifidobacterium, 
Streptococcus, and Enterococcus occupying roughly half the space 
of the entire intestinal microbiome in newborns but only about 
10% in their mothers [the exception is Bacteroides, which feature 
prominently in both (69)]. While life will eventually expose an 
individual to a multitude of different foods and diverse microbial 
environments, newborns subsist solely on breast milk and have no 
environmental exposure in their control. Thus, microbes found in 
human milk or other maternal sources that utilize human milk 
oligosaccharides dominate initial colonization (70, 71) and in 
turn provide resistance to colonization by potential pathogens 
(72) and other forms of immune support (28). Consequences of 
less-controlled exposure are suggested by the detriment of devia-
tion of exclusive breastfeeding practices; excusive breastfeeding 
in low- and middle-income countries (and perhaps high income) 
is associated with a substantial reduction in newborn disease and 
mortality (18).

Avoiding inflammatory or deleterious responses to commen-
sal microbes is important throughout the life span of colonized 
hosts. Strategies put in place by the newborn are appropriate for 
the environmental pressures and physiological requirements of 
this unique early-life period. Adults depend on a thick mucous 
layer packed with antimicrobial peptides and dimerized IgA 
alongside trained innate and adaptive mucosal responses to 
prevent microbial translocation into host tissues (73). Since the 
development of these defenses first requires stimulation by the 
microbiota, newborns must employ a different repertoire of toler-
ance strategies prior to the introduction of solid food. For example, 
newborn intestinal epithelial cells (IECs) produce a micro-RNA 
molecule that targets IRAK-1, a necessary signal transducer of 
inflammatory TLR signaling for degradation and thus reduces 
inflammation caused by commensal stimulation of intestinal 
TLRs (74). However, this mechanism requires continuous TLR4 
stimulation for its maintenance and is absent in pups delivered 
by C-section. Also, murine IECs produce antimicrobial peptide 

CRAMP only prior to Paneth cell development and show some 
efficacy against Listeria infection (75). In fact, weaning appears to 
be a massive transitory period for IEC regulation. Transcriptional 
regulator Blimp1 is active in the newborn intestine and ceases to 
be expressed upon weaning; its deletion results in an adult-like 
intestinal architecture at birth and with it a substantial early-
life mortality in animal models (76). A more comprehensive 
evaluation of intestinal transcriptional regulation showed a more 
global postweaning shift in rodents with an increase in IL-1/TLR 
signaling post weaning that was lost in MyD88/TRIF−/− mice, 
showing that the intestinal immune environment is very sensitive 
to changes in early-life transitions (77) and is likely guided by the 
changing microbial and nutritional environment.

Newborn colonizers also play an instrumental role in prevent-
ing immune hyperresponsiveness within and outside the mucosal 
immune system. Widely studied commensal Bacteroides fragilis 
promotes an anti-inflammatory environment by inhibiting the 
recruitment of invariant NKT cells to the gut and lung mucosa, 
leaving mice less susceptible to inflammatory disease later in 
life (78). dsRNA from lactic acid bacteria (LAB) preferentially 
promotes IFN-β expression in mucosal dendritic cells to concen-
trations that predominantly drive their anti-inflammatory effects 
in adult rodents (79). Since LAB are prominent colonizers of 
the newborn gut, it is likely that they perform similar functions 
during this period—although that mechanism still needs to be 
investigated. An influx of highly activated regulatory T cells into 
the neonatal skin has been linked with tolerance to commensal 
skin bacteria, an event that was not replicated when the same 
experiment was performed in adult animals. Selective inhibition 
of these specific Tregs completely prevented tolerance to com-
mensal bacteria colonization later in life (80).

There is evidence in adult animal models that microbiome-
derived products can reduce disease pathology, i.e., increase 
disease tolerance. Recently, the clostridia-derived metabolite 
desaminotyrosine (DAT) was shown to promote type 1 IFN sign-
aling in lung dendritic cells, resulting in a less damaging response 
to influenza challenge and an increased animal survival, while 
the viral burden in DAT-treated mice remained unchanged (81). 
Newborns are thought to be at risk for “inside-out” infections, 
where the pathogen escapes mucosal compartments, supported 
by the identification of the same strain of bacteria from septic 
newborns in their feces (82). The microbiome is not only instru-
mental in excluding potential pathogens, but by promoting an 
anti-inflammatory environment, it likely also plays a role in 
reducing the potential harm from responses to inflammatory 
microbes. For example, newborn mice given probiotic strains 
of Lactobacillus were rescued from death caused by Citrobacter 
rodentium infection (a mouse model of enteropathogenic E. coli) 
via a mechanism involving the recruitment of Tregs to the colon 
(83). A second group was administered L. acidophilus alongside 
a prebiotic to newborn mice prior to challenge with C. rodentium 
in young adulthood, a finding that treated mice had an enhanced 
IL-10 and a diminished NF-kB response to infection, in addition 
to a faster recovery from disease (84).

Taken together, host-commensal bacteria crosstalk in new-
borns is highly dependent on maternal care for both original 
inoculation and continued support through breastfeeding and 
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controlled environmental exposure. This complete dependence 
is unique to the newborn period, highlighted by both the devas-
tating consequences of suboptimal breastfeeding practices and 
the reworking of intestinal and microbial architecture once solid 
foods are introduced. During this time, commensals selected 
to thrive in newborns promote disease tolerance by boosting 
anti-inflammatory immune responses and disease avoidance by 
excluding potentially pathogenic organisms from coming into 
contact with the epithelium, thus preventing infection of the 
mucosal and systemic sites.

transLationaL iMpaCt

Successful immune defense relies on a balance between disease 
resistance and disease tolerance strategies to bring the host back 
to homeostasis. The ideal intervention is one that would hasten 
restoration of homeostasis or enable the system to deal with 
an extreme imbalance in either direction for longer periods. A 
promising approach that fits this requirement is to work in the 
realm of innate immune memory or trained immunity—the 
concept that an initial infection or an exposure to a pathogen 
can provoke an enhanced innate immune response when the 
organism is re-exposed or exposed to a different pathogen (85) 
Unlike many traditional interventions, prophylactic or treat-
ment approaches reliant on trained immunity are not depend-
ent on shifting the response only toward resistance. Numerous 
examples of successful interventions reliant on innate immune 
memory have been described in animal models and human clini-
cal trials (85). Various TLR agonists have, for example, shown to 
protect nonspecifically against mortality from a polymicrobial 
challenge 24 h later in neonatal mice (41). A similar model used 
a Listeria monocytogenes challenge and found TLR agonists to 
be protective as well. Cord blood monocytes stimulated with 
endotoxin showed an enhanced activity both 7 and 14 days later. 
Moreover, a retrospective analysis revealed correlation between 
histological chorioamnionitis (a condition prompting an 
inflammatory response) exposure and a reduction in late-onset 
neonatal sepsis (85). Most impressively, probiotics in newborns 
have been shown to be very powerful in reducing both necrotiz-
ing enterocolitis (86), a devastating disease characterized by 
colonization with proteobacteria and excessive inflammation 
(87), and most recently, sepsis and respiratory disease when 
administered within days of birth (88). Finally, certain live vac-
cines (particularly Bacille Calmette–Guérin) have been shown 
to reduce all-cause neonatal mortality, presumably through 

nonspecific protection against unrelated pathogens in the first 
month of life (89).

sUMMary

The paradigm that neonates are more susceptible to infectious 
disease than adults is well known, well documented, yet poorly 
understood. The high susceptibility and mortality figures have 
largely been attributed to “immune immaturity,” a vague concept 
that is predicated on findings of weaker antimicrobial responses 
of newborns than those of adults. Here, we posit that an increased 
susceptibility to infection in neonates is not a result of immaturity 
but rather one of immunosuppressions, which is in part an active 
defense strategy termed disease tolerance. This is supported by 
the finding that neonates can survive significantly higher bacte-
rial loads than adults during active infection. This observation is 
consistent across many studies, yet still is oft ignored and cannot 
be adequately explained by the immaturity paradigm. Employing 
a defense strategy of disease tolerance during infection rather than 
disease resistance confers some advantages but is more likely a virtue 
of necessity. Compared to the adult-like disease resistance strategy, 
disease tolerance is (a) less energetically intensive (critical during a 
period of rapid development), (b) less likely to incur serious damage 
associated with bacterial clearance (neonates are more sensitive to 
immunopathology than adults and seem to have a heightened innate 
immune response), and (c) less likely to interfere with the develop-
ment of the gut microbiome (overactive resistance pathways could 
result in a dangerous inflammatory response and interfere with 
colonization). Maintaining homeostasis between disease resistance 
and disease tolerance is a critical outcome of fighting and prevent-
ing infection. Fortunately, interventions, which work within these 
constraints, have been identified and promise to finally usher in the 
desperately needed reduction of global newborn mortality rates.
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