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Fighting external pathogens requires an ever-changing immune system that relies on 
tight regulation of gene expression. Transcriptional control is the first step to build efficient 
responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional 
regulation of RNA editing, location, stability, and translation are the other key steps for final 
gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays 
we have a deep understanding of how transcription factors control the immune system 
but recent evidences suggest that post-transcriptional regulation by RBPs is equally 
important for both development and activation of immune responses. Here, we review 
current knowledge about how post-transcriptional control by RBPs shapes our immune 
system and discuss the perspective of RBPs being the key players of a hidden immune 
cell epitranscriptome.

Keywords: post-transcriptional RNA regulation, RNA binding proteins, immune cell development, immune cell 
homeostasis, immune cell activation, T-cell mediated immunity, humoral response

iNTRODUCTiON

Immune cell development and function are not only regulated by gene networks controlled by 
transcription factors but also by post-transcriptional regulatory mechanisms, controlled by RNA-
binding proteins (RBPs) and non-coding RNAs, that are essential for immune cell lineage commit-
ment, maintenance, and modulation of immune responses (1, 2). Here, we review the state of the 
art, paying special attention to those mechanisms controlled by RBPs that shape gene expression in 
our immune system.

Pioneering studies discovered the presence of nucleotide regulatory sequences in the 3′ untrans-
lated region (3′UTRs) of dozens of messenger (m) RNAs encoding cytokines, such as Tnf, Il1, 
Ifng, and Csf2 (3–6), that were responsible for the discrepancies in mRNA abundance and protein 
expression observed due to differential regulation of mRNA stability and translation. Some of these 
foundational studies also highlighted the key role of mRNA splicing in defining the qualitative 
nature of cellular transcripts. How differential splicing controls membrane association, cell signal-
ing, and immunoglobulin (Ig) secretion of the mRNAs encoding the B-cell receptor (BCR) and the 
T-cell receptor (TCR) are exemplars of the importance of mRNA splicing in immunity (7–9). With 
the advent of transcriptome-wide datasets, provided initially by microarray and more recently by 
next-generation sequencing (NGS) technologies, the novel concept of “RNA regulons” has emerged 
(10, 11). RNA regulons are defined as networks of RNA molecules that are similarly modulated in 
order to trigger a given response. Coordinating such RNA regulons is often the responsibility of 
regulatory RBPs that have key roles in immunity like the polypyrimide track protein 1 (PTBP1), 
embryonic lethal abnormal vision like protein 1 (ELAVL1, also known as HuR), or the members of 
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the zinc finger protein 36 family (ZFP36, ZFP36L1 and ZFP36L2; 
also known as TTP or Tis11-family of proteins).

In recent years, the number of genes identified as encoding 
RBPs has increased substantially with the development of new 
techniques that enable the mapping of protein:RNA interactions 
to a single nucleotide resolution (e.g., RNA interactome capture, 
SONAR, and Cross-Linking ImmunoPrecipitation; CLIP) (12–15).  
In most cases, proteins with well-known enzymatic activity were 
classified as novel RBPs (13). This raises the possibility that RNAs 
are not only transient messengers of genetic information but also 
they might act as facilitators or repressors of protein function. For 
example, long non-coding RNAs (lncRNAs), such as NeST, Xist, 
Air, and Hotair, modulate transcription by binding to proteins 
in histone-modifying complexes and targeting them to selected 
genes including Ifng (16–19). Other lncRNAs, such as lnc-EGFR 
and Flicr, modulate Treg differentiation and function and have 
been implicated in peripheral immune tolerance (20, 21). Circular 
RNAs (cRNAs) enable the recruitment of the activation-induced 
cytidine deaminase AID to actively transcribed switch (S) regions 
for Ig gene mutagenesis and class-switch antibody recombina-
tion (CSR) (22). cRNAs also mediate formation of AID com-
plexes with distinct heterogeneous nuclear ribonucleo proteins 
(hnRNPs) and SERBP1, which are themselves required for CSR 
(23, 24). Although it remains unclear how cRNAs and RBPs 
recruit AID selectively to S regions, formation of cRNA:DNA 
hybrid G-quadruplexes may explain selectivity while preventing 
off-target AID-mediated mutagenesis and chromosomal trans-
locations that can lead toward B-cell malignant transformation.

Recent progress in RNA biology has brought us to the 
realization that chemical modification of the RNA (called “epi-
transcriptomics” by analogy to DNA methylation) can exert key 
roles in cell maintenance, development, and differentiation in 
the immune system. Methylation, hydroxylation, and uridinyla-
tion of ribonucleotides were discovered over 50 years ago (25). 
But, it has not been until recently that such modifications have 
been linked with RBP function and with the control of mRNA 
stability and translation (26–29). The impact of RNA epigenetic 
modification is highlighted by its role in suppressing antiviral 
responses. Incorporation of modified nucleosides (e.g., m5C, 
m6A, m5U, s2U, or pseudouridine) reduces RNA recognition 
by Toll-like receptors (TLRs) (30). Methylation of adenosine at 
the N6 position (m6A) has been linked to nuclear retention of 
antiviral RNAs, inhibition of interferon production (31), and 
HIV viral replication in T  cells (32). m6A mRNA methylation 
is also important in T-cell homeostasis and differentiation (33). 
Conditional deletion of the methyltransferase METTL3, which 
catalyzes m6A, disrupts IL-7 mediated signaling and reduces 
decay of SOCS mRNAs, affecting naïve T-cell priming for pro-
liferation and differentiation (33). Over-expression of METTL3 
blocks HSP myeloid differentiation whereas its inhibition induces 
apoptosis. METTL3-dependent methylation of N6-adenosine 
increases AKT phosphorylation and MYC, BCL2 and PTEN 
translation in myeloid leukemia cells (34). These studies illustrate 
the importance of annotating the epi-transcriptome of immune 
cells. Furthermore, it is to be expected that epigenetic modifica-
tion of RNA will be dynamically regulated. Scores of RBPs have 
the potential to influence these modifications, acting as “writers,” 

“readers,” or “erasers” of these chemical changes. This highlights 
the immense complexity of post-transcriptional regulation of 
gene expression by RBPs.

THe MANY MOLeCULAR FUNCTiONS  
OF RBPs iN GeNe eXPReSSiON

RNA Processing
RNA-binding proteins control all aspects of mRNA biology 
(Figure  1A). In the nucleus, RBPs bind to nascent RNA and 
recruit the spliceosome, a multimeric ribonucleoprotein complex 
that edits the nucleotide sequence of nascent RNAs by joining 
selected exons while removing intronic regions (35–37). Selective 
recognition of splicing sites for exon inclusion is carried out by 
splicing factors (e.g., SC35, hnRNPLL, PTBP1, and ELAVL1) and 
enables the expansion of the proteome by generating alternative 
coding mRNA transcripts. In lymphocytes, splicing factors com-
monly act as on/off switches to allow alternative splicing and 
RNA transcript expression (38). Altered or loss of function of 
splicing factors such as U2AF1, hnRNPA1, SF3B1, and SRSF2 
results in profound deficiencies in hematopoiesis and myelo-
dysplastic syndromes (39–42). RNA splicing is tightly linked 
with 5′ RNA capping (5′-m7Gppp) and 3′ RNA polyadenylation 
(PolyA). Alternative usage of polyA sites is associated with 3′UTR 
shortening, increased mRNA stability, and enhanced protein pro-
duction upon macrophage and lymphocyte activation (43–45). 
Alternative polyadenylation plays an important role in antiviral 
innate immunity (46). Differential expression of polyadenyla-
tion factors (e.g., CSTF2, CPEB1, PAB1, PAB2, and U1-snRNP) 
regulates the usage of weak upstream polyA sites and removes 
destabilizing miRNA and RBP binding sites (43, 47–51). mRNA 
processing and maturation in the nucleus are closely associated 
with mRNA export to the cytoplasm through the nuclear pores. 
mRNA can be exported upon assembly of the ribonucleoprotein 
complex TREX or interaction of PAB1 with the CRM1/XPO1 
complex. Deregulation of CRM1/XPO1 is often found in chronic 
lymphocytic leukemia and other cancers (52).

mRNA Translation
In the cytoplasm, RBPs control the dynamic location and assembly 
of mRNAs into polyribosomes for protein synthesis. Recognition 
of the 5′-CAP and RNA regulatory motifs in the 5′UTR (e.g., Kozak 
and IRES sequences) by eukaryotic initiation factors enables for-
mation of the 43S pre-initiation complex, ribosome assembly, and 
translation. mTOR-dependent regulation of the 4E-BP/eIF4E axis 
is essential for lymphocyte growth, proliferation, activation, and 
differentiation (53–56). Other RBPs, such as PTBP1, ELAVL1 and 
TIA1, can promote or repress translation after binding to specific 
RNA motifs present in the 5′UTR or 3′UTR (57, 58). Importantly, 
they can control the recognition and usage of alternative first-
codon start sites. This allows translation of several open reading 
frames (ORFs) and expansion of the cell proteome (59). RNA 
accumulation within cytoplasmic RNA granules and regulation 
of translation are important mechanisms to halt viral replication 
during the antiviral immune response (60). RBP-dependent 
regulation of transcript stability and translation controls type I 
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FiGURe 1 | Post-transcriptional regulatory mechanisms controlled by RNA-binding proteins (RBPs) with a detailed view of messenger RNA (mRNA) decay.  
(A) Major post-transcriptional mechanisms regulated by RBPs include transcription, mRNA editing and splicing, mRNA transport and subcellular localization, mRNA 
translation, mRNA storage, and mRNA decay. (B) Major mechanisms for mRNA degradation include nonsense-mediated decay (NMD), mRNA programmed decay, 
and miRNA-mediated mRNA decay. Representative RBPs involved in these mechanisms are shown in (A,B).
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interferon (IFN) antiviral response. Dead-box helicases, includ-
ing DDX9 and DDX58 (also known as RIG-I), recognize viral 
RNAs and activate the mitochondrial antiviral signaling protein 
(MAVS), NFkB and IRF3/7 to trigger the type-I (IFN) response 
(61–63). The extension of this antiviral response is controlled 
by RBPs such as OASL1, KSRP, and Elavl1. OASL1 expression 
modules IRF7 mRNA translation (64), whereas KSRP and Elavl1 
binding to 3′UTR regulatory elements controls mRNA stability 
and translation of Ifnα and Ifnβ (65, 66). Interferon-induced, 
double-stranded RNA-activated protein kinase PKR promotes 
phosphorylation of eIF2a and silencing of CAP-dependent 
translation and stress granule (SG) formation (67–71). This global 
mechanism affects to hundreds of interferon-induced genes (72), 
and it is one of the 10 strategists used by viruses to escape from 
Ifn-mediated innate immunity (73, 74).

RNA Stability and Decay
Mesanger RNA translation is coupled with mRNA stabilization 
and decay by RBP and miRNAs (Figure 1B). The 5′ CAP and the 
polyA tail not only enable efficient mRNA translation but also 
protect mRNA from degradation by the exosome. RNA decap-
ping by DCP2 and mRNA deadenylation by polyA ribonuclease, 
including PAN2–PAN3, CCR4–NOT, and PARN, are central 

mechanisms widely used for mRNA translational silencing and 
decay. Several activators, including EDC4, enhance the catalytic 
activity of DCP2 and form the decapping complex. Decapped 
mRNAs are then susceptible to 5′- to 3′-exonuclease degrada-
tion, a process carried out by the XRN1 family of proteins. The 
abundance and activity of DCP2 are tightly modulated (75, 76). 
Recurrent mutations and/or chromosome translocations of the 
helicase DDX3X and the decapping activator protein NUDT16 
are associated with different malignancies, including T-cell 
acute lymphoblastic leukemia, chronic lymphoblastic leukemia, 
natural killer/T-cell lymphomas, carcinomas, and medulloblas-
tomas (77–83). PolyA tail shortening and 3′- to 5′-exonuclease 
degradation are promoted by destabilizing RBPs such as ZFP36, 
Roquin-1, and Roquin-2 (encoded by Rc3h1 and Rc3h2). Stable 
and actively translated mRNAs are bound by the RBP PABP, 
which also interacts with eIF4E to assemble the 43S pre-initiation 
complex and the ribosome. Recognition of constitutive decay 
AU- and GU-rich elements by mRNA decay activators such as 
Roquin1/2, ZFP36, KSRP, and CUGBP/CELF recruit polyA 
ribonucleases (84–86). This displaces PABP, shortens polyA tails 
and triggers exosome-mediated 3′–5′ decay (87). The activity of 
mRNA decay activators is highly regulated during immune cell 
activation. mRNA decay activators can compete with mRNA 
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stabilizers such as ELAVL1 (88). Post-translational modification 
of RBPs controls the activity of mRNA regulons (89). For example, 
phosphorylation of ZFP36 by the p38-MK2 signaling pathway is 
not only essential for TNF production upon macrophage activa-
tion but also controls feedback regulatory networks that shape 
the inflammatory response (90). Deficiencies in MK2-p38 MAPK 
signaling or in ZFP36, Roquin-1, and Roquin-2 are associated 
with severe inflammatory and autoimmune pathologies linked to 
global changes in cytokine profile expression (91, 92).

Non-Sense Mediated Decay
Point mutations in RNA coding sequences, errors in mRNA 
splicing or abortive translation can trigger nonsense-mediated 
RNA decay (NMD) (Figure  1B). NMD is an RNA quality 
control mechanism that censors the synthesis of truncated 
proteins. During the first (or pioneer) round of translation, the 
cell tests whether mRNAs are correctly edited and spliced, and 
whether translation can take place from the start to the stop 
codon (93). The presence of components of the exon junction 
complex (marking unsuccessful splicing in newly transcribed 
mRNAs), the improper recognition of the 5′CAP by the cap-
binding protein (CBP) complex (CBC) CBP80–CBP20 or the 
presence of premature termination codons triggers translation 
initiation silencing and NMD. The up-frameshift proteins 1, 2, 
and 3 (UPF1, UPF2, and UPF3) play a central role in NMD and 
enable XRN1- or SMG5/SMG7-mediated exonuclease decay or 
SMG6-mediated endonuclease decay (94). NMD is essential for 
embryo and neuronal development, hematopoiesis, and T-cell 
development and differentiation (95). The absence of UPF1 and 
UPF2 is associated with the accumulation of peptide by-products 
and cell death (96). UPF1 cooperates with siRNAs and miRNAs 
to control mRNA stability, myeloid cell differentiation, and 
inflammation (97, 98).

miRNA-Mediated Decay
The importance of RBP in miRNA biogenesis and function has 
been reviewed extensively (99–102). Briefly, miRNAs are key 
agents of immune cell differentiation, homeostasis, and function. 
For example, conditional deletion in lymphocytes of the RBP 
DICER (an RBP required for the biogenesis of most miRNAs) 
blocks lymphoid development and differentiation (103, 104). 
Mechanistically, miRNA-mediated mRNA decay is linked to 
mRNA translational blockade, mRNA decapping and deadenyla-
tion (100). miRNAs act in close partnership with RBPs involved 
in mRNA stability control. RBPs can dampen miRNA-mediated 
decay by binding directly to miRNA precursors or, indirectly, by 
competing for binding motifs present in the 3′UTR of the mRNA 
targets. The RBP Lin28 binds directly to let-7 miRNA precursors, 
blocking their maturation which is required for reprograming of 
somatic cells and embryonic cell renewal (105–107). By contrast, 
ELAVL1 competes with miRNAs for binding to RNA regulatory 
motifs present in the 3′UTR of target mRNAs, enhancing their 
stability in macrophages (108). ELAVL1 also promotes miRISC 
complex dissociation from target mRNAs, thus increasing mRNA 
stability (109). On the contrary, physical interaction of ZFP36 
with AGO2 (part of the miRISC complex) enhances miRNA-
dependent mRNA degradation (110–112). Finally, the RBPs 

Pumilio 1 and 2 can reshape mRNA secondary structures allow-
ing miRNA-21 and miRNA-22 recruitment and degradation of 
p27 mRNA (113). Recent evidence indicates that the expression 
of Pumilio 1 and 2 is closely linked to FOXP1/p21/p27 expres-
sion, thus having a key role in hematopoietic stem/progenitor cell 
(HSPC) proliferation and leukemic cell growth (114).

mRNA Subcellular Location
RNA location and storage are important mechanisms for timely 
protein synthesis in immune cells. Cytoplasmic RNA granules, 
including processing (P-) bodies and SGs, are assembled in both 
T and B cells upon activation with mitogens (58, 115). P-bodies 
are aggregates of ribonucleoprotein complexes containing RNAs 
targeted for degradation (116, 117). By contrast, SGs are associ-
ated with RNA translational silencing and storage (118–120). 
Why, when, and how P-bodies and SGs are assembled in activated 
lymphocytes remain poorly understood. However, it is plausible 
that they regulate the abundance and translation of key modula-
tors of cell activation, proliferation, and selection (121). Roquin-
dependent suppression of ICOS is linked to P-body assembly in 
CD4 T cells activated with anti-CD3 and anti-CD28 antibodies 
(115). In B cells, analysis of the mRNA targets bound by TIA1, 
a translation silencer found in SGs, showed that the translation 
of hundreds of transcripts might potentially be regulated by 
temporal location in RNA granules. TIA1 regulates p53 mRNA 
translation during B-cell activation and in response to genotoxic 
stress (58). TIA1 binding to U-rich motifs in the p53 3′UTR 
silences translation in activated B cells without affecting overall 
mRNA abundance. DNA damage triggers TIA1:p53 mRNA dis-
sociation, p53 mRNA release from SGs and p53 protein synthesis. 
Thus, TIA1 has the potential to coordinate cell cycle arrest, DNA 
repair, and selection of B cells by controlling p53 expression. It 
is also possible that regulation of mRNA location and transla-
tion is part of a larger genetic program that enables to rapidly 
proliferating lymphocytes to switch quickly their transcriptome 
and translatome to cope with endogenous genotoxic stress during 
TCR/BCR expansion.

RBPs iN DeveLOPMeNT OF THe iMMUNe 
SYSTeM

Genetically altered mouse models have revealed the importance 
of RBPs in myeloid and lymphocyte development and function 
(Figure 2). One of the most studied RBP in the immune system is 
Elavl1 (also known as HuR). Conditional deletion of Elavl1 from 
the pro-B-cell stage onward results in reduced B-cell numbers. 
B-cells populations are consistently reduced between 1.5- and 
5-fold in the bone marrow and the periphery. This correlates 
with a global reduction in serum Igs (122, 123). By contrast, 
Elavl1 deficiency in myeloid-cells does not affect bone marrow 
progenitors or their capacity to differentiate in vivo and in vitro 
(124). Conditional deletion of ELAVL1 in thymocytes affects 
T-cell development and egress from the thymus, thus resulting 
in severe lymphopenia in the periphery. ELAVL1 is required for 
TCR-mediated signaling, activation and progression through 
positive selection. In the absence of ELAVL1, an array of cell cycle 
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FiGURe 2 | Role of RNA-binding proteins (RBPs) in T- and B-cell development. Conditional mouse models have revealed the importance of the RBP ZFP36L1 
and ZFP36L2 in cell quiescence upon VDJ recombination to test and positively select those cells that have successfully recombined the BCR and TCR. C-NOT3 
is related to successful VDJ recombination. These three RBPs and ELAVL1 are implicated in later expansion of double negative (DN) 3–4 T cells. ELAVL1, ZFP36, 
Roquin, and Regnase-1 are implicated in activation and differentiation of single positive T cells. ZFP318 is involved in IgD expression in transitional T2 B cells. 
ZFP36L1 and LIN28b have been involved in marginal zone (MZ) B-cell differentiation. hnRNPC and ELAVL1 are implicated in follicular (FO) B-cell maintenance.
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regulators, TCR, and death-receptor signaling components are 
deregulated, leading to an accumulation of CD4 and CD8 single 
positive thymocytes (125).

Qualitative and quantitative control of the cell transcriptome 
by mRNA splicing is a key for lymphocyte development. For 
example, the B-cell development block arising from PTEN 
knockout in pro-B  cells has been attributed, in part, to the 
defective splicing of Ikzf1 mRNA. In pro-B cells, PI3K signaling 
supresses the function of FOXO-1 that is required for the cor-
rect splicing of Ikzf1, a transcription factors which enables VDJ 
recombination in cooperation with PAX5 (126). Forward genetic 
screens in zebrafish have extended the list of RBPs involved in 
pre-mRNA-processing in T cells in thymus and they support the 
idea that global splicing pathways control lymphoid development 
(127). Expression of the splicing factors FUS, SC35, hnRPNPL, 
and hnRPNPLL is important for B- and T-cell development and 
for T-cell activation (128, 129). This was initially attributed to 
the role of SC35, hnRPNPL, and hnRNPLL in regulating alterna-
tive mRNA splicing of the receptor tyrosine phosphatase CD45, 
a key negative-feedback regulator of TCR signaling (130, 131). 
However, recent transcriptome analyses suggest that they might 

also regulate global splicing programs in T and B cells (132, 133).  
Analysis of hnRPNPL knockout mice shows decreased thymic 
cellularity, a partial block at double negative 4 and double-
positive T-cell stages, and the reduced egress of mature T cells 
from the thymus to the periphery. Thymocytes deficient in 
hnRPNPL have an aberrant splicing program that reduces CD45 
levels and, possibly, the expression of GTPase and cytoskeleton 
regulators, that are key for T-cell migration in response to CCL21 
and CXCL2. hnRPNPL also modulates pre-TCR signaling as its 
deletion increases Lck activity, linked to increased proliferation 
of DN4 cells (134). Future studies are required to characterize the 
splicing profiles of the different immune cell populations during 
development and to identify the splicing regulators and their 
mechanisms of action.

Splicing has also an important role in myeloid cell develop-
ment. Splicing factors are commonly mutated in hematopoietic 
malignancies. As a result, these diseases are associated with 
extensive alterations in mRNA splicing. Mouse genetics has 
revealed that mutagenesis of SRSF2 and SF3B1 drives myelod-
ysplastic syndromes characterized by leukopenia, macrocytic 
anemia, myeloid, and erythroid dysplasia (135–137). B-cell 
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lineage-specific expression of the mutant SF3B1-K700E reduces 
the number of mature B cells. Sub-clonal mutations of splicing 
factors, such as SF3B1, are often found after treatment of chronic 
lymphocytic leukemia, and they are predictive of poor outcomes 
(138, 139). Recently, chronic stimulation of TLR leading to HSPC 
dysfunction and myelodysplasia has been linked to altered RNA 
splicing due to abnormal ubiquitination of the splicing factor 
hnRNPA1 (42). Using gain and loss of function models, it has 
been shown that the E3 ubiquitin ligase TRAF6 can modulate the 
function of multiple RBPs, including hnRNPA1. This RBP con-
trols mRNA splicing during hematopoiesis and myeloid develop-
ment. hnRNPA1 regulates the alternative splicing of Arhgap1, an 
inhibitor of the small G-protein CDC42 that regulates LT-HSC 
self-renewal and differentiation. hnRNPA1 shuttling activity is 
required for the formation and survival of myeloid precursors. 
Disruption of hnRNPA1 shuttling can lead to tumorigenesis 
(140). In summary, RBPs play major roles in the development 
of the immune system and they preserve cells from malignant 
transformation by quantitatively and qualitatively affecting the 
transcriptome.

Regulation of mRNA stability and decay is essential in lym-
phocyte development. The RBPs ZFP36L1 and ZFP36L2 are 
redundant in lymphocyte development. However, conditional 
deletion of both RBPs early in lymphopoiesis results in a severe 
reduction of lymphocyte precursors in the thymus and bone 
marrow, lymphopenia and, eventually, malignant transformation 
of immature CD8 + thymocytes. Mechanistically, ZFP36L1 and 
ZFP36L2 regulate the expression of proliferative cell cycle regu-
lators in developing thymocytes by controlling mRNA stability 
and translation (141, 142). In the absence of these RBPs, up-
regulation of NOTCH1contributes to the bypass the β-selection 
checkpoint. In B cells, ZFP36L1 and ZFP36L2 are essential for cell 
quiescence necessary for VDJ recombination. In both cell types, 
they regulate the mRNA stability of an RNA regulon involved in 
transition into the S phase of the cell cycle (143, 144). Thus, it is 
possible they enforce quiescence in other developmental systems.

B-cell specific deletion of CNOT3, a subunit of the CCR4–
NOT deadenylase complex, results in a developmental block at 
the pro- to pre-B-cell transition. CNOT3 has a dual function. 
It controls the efficient VH to DH-JH rearrangement in the 
distal region of IgH as well as it maintains in check P53-EBF1 
expression. In its absence, p53 mRNA is abnormally stable and 
expressed. This switches on the expression of the p53-target genes 
p21, Bax, and Puma, which in turn induce cell growth arrest and 
death (145, 146). The interplay of RBPs and miRNAs in mRNA 
stability and decay is also essential for lymphocyte development. 
LIN28b is expressed in fetal BM and thymus. It inhibits miRNA 
let-7 in order to promote fetal immune cell development. Enforced 
expression of Lin28b in adult BM results in the anomalous expan-
sion of B-1a, marginal zone (MZ) B cells, gamma/delta T cells, 
and natural killer (NK) T cells (147). An emerging picture from 
these studies suggests that the regulation of mRNA stability and 
decay is essential for immune cell development. RBPs coordinate 
fundamental cellular processes such as quiescence, cell cycle 
 re-entry and proliferation coupled to TCR and BCR rearrange-
ment and cell selection at given cell stages of development. If RBP 
function is faulty, this can lead to pathology.

RBPs iN iMMUNe CeLL HOMeOSTASiS

Recent studies have highlighted the importance of RBPs in 
immune cell maintenance and differentiation in the periphery. 
For example, the RBP hnRNPC (aka AUF1) is required for BCL2, 
A1, and BCL-XL expression and maintenance of follicular (FO) 
B  cells (148). hnRNPC regulates Bcl2 mRNA decay through 
the binding to AU-rich regulatory elements (AREs) present in 
the Bcl2 3’UTR. Gene targeting deletion of these Bcl2 AREs 
diminishes Bcl2 mRNA stability and protein levels in primary 
B cells, decreasing life- span of transitional (T) and FO B cells 
(149). Stringent regulation of mRNA abundance is also essential 
for the maintenance of marginal zone precursors (MZP) and 
mature marginal zone (MZ) B  cells. Expression of the RBP 
ZFP36L1 enforces the identity of MZ B  cells by limiting the 
expression of genes that promotes the FO B-cell phenotype. This 
novel epigenetic mechanism involves the repression by ZFP36L1 
of the transcription factors KLF2 and IRF8. In the absence of 
ZFP36L1, MZ B-cell identity is lost as well as cell location in the 
splenic MZ (150).

RBPs iN MYeLOiD CeLL ACTivATiON

The role of RBPs such as ZFP36, Roquin, Regnase-1, hnRNPC and 
ELAVL1 in myeloid cell activation has been studied extensively. 
Mice lacking the expression of ZFP36, Roquin, Regnase-1, and 
AUF1 share pro-inflammatory syndromes arising from a failure 
to limit cytokine production. Timely expression of cytokines and 
growth factors is regulated by RBPs that bind to RNA regulatory 
elements present in their 3′UTR. Constitutive decay elements 
(CDEs), AU-rich elements (AREs), and miRNA recognition ele-
ments control cytokine mRNA stability and decay. CDE and ARE 
show very low sequence complexity and can be bound by mul-
tiple RBPs sometimes mediating opposing functional outcomes. 
Widespread 3′UTR shortening and removal of decay elements 
may be a general mechanism used by T cells and macrophages 
to increase the expression of cytokines upon activation (43, 44), 
although their impact in protein expression might be limited (45) 
and subject to further regulation.

Post-translational control of RBP expression, subcellular 
location, and binding affinity is a reversible regulatory mecha-
nism that affects RNA operons during macrophage activation 
(151, 152). Competitive binding of RBPs and miRNA to their RNA 
regulatory elements is coupled to cellular signaling pathways. 
Phosphorylation of ZFP36 at two conserved serine residues (S52 
and S178 in mouse, S60 and S186 in human) by the p38-MK2 axis 
turns on the expression of essential immunomodulators such as 
TNF and COX-2. RAS-MEK signaling upstream of p38-MAPK 
mediates tumor cell intrinsic expression of PD-L1, partly by 
supressing ZFP36-dependent CD274 mRNA decay, and promotes 
tumor-immune evasion (153). Mechanistically, phosphorylated 
ZFP36 is sequestered by 14-3-3 proteins reducing its affinity for 
RNA. This prevents deadenylase recruitment and mRNA degra-
dation (88, 154, 155). Selective targeting of mRNAs by ZFP36 not 
only regulates the expression of cytokines but also controls the 
magnitude of the pro-inflammatory response upon macrophage 
activation with LPS (90, 156). ZFP36 regulation of negative 
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feedback regulators such as DUSP1, IER3, and TNFAIP3 (or A20) 
may also prevent TNF overexpression, apoptosis, and chronic 
systemic inflammatory syndrome (157–159). Recently, analysis 
of non-phosphorylatable Zfp36aa/aa knockin mice showed protec-
tion in models of bacterial infection and inflammatory arthritis 
(160, 161), corroborating the essential role of post-translational 
regulation of ZFP36 function in macrophage activation.

Similarly, functional activity of the RBP ZFP36L1 is regulated 
by the mTOR-p38-MK2 signaling pathway. ZFP36L1 controls a 
senescence-associated secretory phenotype that can either activate 
immune surveillance responses or promote tumor development 
and aging (162). Inhibition of mTOR impairs the senescence phe-
notype, partly by blocking 4EBP translation initiation of MK2. 
In turn, MK2 fails to phosphorylate and inactivate ZFP36L1, 
decreasing the mRNA expression of senescence-related mRNAs 
such as Cdkn1a, IL8, and IL1. Selective mutation of ZFP36L1 
at Ser54, Ser92, and Ser203 impairs the senescence-associated 
secretory phenotype and blocks the pro-tumorigenic effects of 
senescence. Interestingly, mutation of MK2 phosphosites of 
ZFP36 and ZFP36L2 also reduces senescence to some extent, 
pointing out to the conservation of redundant functional mecha-
nisms that are yet to be defined.

hnRNPC and Roquin have been also involved in cytokine 
mRNA destabilization and in the inflammatory response. Similar 
to ZFP36, deletion of these two RBPs aggravates endotoxemia and 
chronic inflammation (163–165). This suggests that, although 
each of these three proteins induces mRNA translational 
silencing and degradation of similar targets, they may have non-
redundant functions. Roquin has been mostly studied in T cells. 
However, it is co-expressed with ZFP36 and hnRNPC in mac-
rophages. Whether these RBPs cooperate in the control of the 
inflammatory response and by which mechanisms are questions 
that remain unanswered. It might be possible that they control 
different thresholds of macrophage activation at different given 
times. Sustained activation of the p38-MK2 and NFkB pathways 
by hnRNPC and Roquin seems to play a central role in regulat-
ing the function of ZFP36 (166, 167). These RBPs, additionally, 
regulate the stability and translation of their own mRNAs (168). 
Thus, future studies should integrate the knowledge about these 
three RBPs to identify the molecular mechanisms and activation 
thresholds that control cytokine mRNA decay and expression in 
macrophages during the inflammatory response.

It is widely believed that ELAVL1 function opposes the desta-
bilizing activities of ZFP36 and hnRNPC, and the translational 
silencing function of TIA1 (88, 169–172). However, recent studies 
using conditional knockout mice suggest a more complex pic-
ture. ELAVL1 controls the expression of both pro-inflammatory 
and anti-inflammatory cytokines in a cell-dependent manner. 
Myeloid cell-specific deletion of ELAVL1 results in an exacer-
bated inflammatory phenotype with enhanced expression of 
chemotaxis-related and inflammatory mRNAs (including Tnf, 
Tgfb, Il10, Ccr2, and Ccl2) (124). ELAVL1 synergizes with the 
translational inhibitor TIA1 to suppress pro-inflammatory 
cytokine expression (170). These results contrast with other find-
ings that linked ELAVL1 expression with increased Tnf mRNA 
stability and TNF synthesis in macrophages (88, 173). Similarly, 
results obtained after T cell-specific deletion of ELAVL1 suggest a 

more complex role than the opposition of ZFP36. Th2-polarized 
cells from heterozygous Elavl1 mice have decreased mRNA 
steady levels of Gata3, Il4, and Il13 without affecting protein 
abundance. However, Th2 cells from Elavl1 KO homozygous 
mice have an increased expression of Il2, Il4, and Il13 mRNA 
and protein (174). This could be explained if ELAVL1-dependent 
stabilization of cytokine mRNAs is out-weighed by the altered 
expression of other RNA regulons controlling key cellular func-
tions. Indeed, ELAVL1 expression in T  cells and macrophages 
is associated with the stabilization of RNA regulons involved 
in cell activation, signaling, proliferation, and differentiation 
(125, 175). In B cells, ELAVL1 preserves mRNA splicing of key 
metabolic genes during B-cell activation, allowing metabolic 
switch and cell growth. In the absence of ELAVL1, B cells fail to 
control the oxidative response induced upon mitogen activation 
and die by apoptosis (122). Regulation of ELAVL1 function is 
highly dynamic and depends on post-translational modification 
of the protein. Phosphorylation, methylation, and ubiquitination 
alter ELAVL1 subcellular location and/or function (176–179). 
Cellular stress and DNA damage responses are drivers of ELAVL1 
function. ATM/ATR, CHK1/CHK2, PKC, AMPK, and MK2-p38 
MAPK have been all involved in ELAVL1 phosphorylation and 
regulation (151, 152). Thus, ELAVL1 is a major post-transcrip-
tional regulator of gene expression whose function is stringently 
regulated during immune cell activation.

RBPs iN T-CeLL MeDiATeD iMMUNiTY

RNA-binding proteins coordinate global changes in mRNA 
expression and splicing upon TCR- and CD28-mediated T-cell 
activation (180–183) (Figure  3A). It has been estimated that 
over 2,000 genes are subjected to alternative splicing in T cells 
upon activation, including genes involved T  cell-specific and 
chemokine activation pathways and in MAPK, NFKB, and JAK/
STAT signaling (184). Intron retention is globally reduced in 
activated T cells whereas alternative polyA site usage and 3′UTR 
shortening is increased. These effects correlate with a global 
increase in mRNA stability and translation (43, 185). Mapping 
of functional 3′ splice sites has been attempted by U2AF2 RNA 
immunoprecipitation (184). U2AF1 and U2AF2 form the heter-
odimer U2AF, which recruits the spliceosome to the 3′ splice site. 
Loss of function experiments suggest that U2AF1 is required for 
mRNA splicing and surface expression of CD25 and CD62L and 
the secretion of cytokines such as IL4, IL5, IL10, IL13, IL17, IFNg, 
RANTES, and TNF. The expression of SYNCRIP and ILF2, two 
splicing factors that bind to the U2AF complex, is also important 
for the secretion of a limited number of cytokines such as IL-21, 
suggesting that they might regulate T follicular helper (Tfh) cell 
differentiation (184).

Other splicing factors such as hnRNPU, CELF2, and hnRNPL 
play essential roles in modulating TCR-dependent signaling and 
activation. hnRNPU is a negative regulator of the multifunctional 
protein MALT1, one of the components of the CARMA1–
BCL10–MALT1 signaling complex. As part of this complex, 
MALT1 acts as a scaffold between antigen-engaged TCR/CD28 
and downstream NF-kB-signaling pathways. TCR-mediated 
activation promotes Malt1 exon7 inclusion. Malt1 exon 7 encodes 
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for a TRAF6-binding domain that allows TRAF6 recruitment 
and ubiquitination of IKK and activation of classical p65/p50 
NFkB. This enables production of IL-2 and T-cell proliferation. 
Expression of hnRNPU limits Malt1 exon 7 inclusion acting as a 
negative feedback regulator (186). In this study, the authors iden-
tified other splicing factors that potentially compete to modulate 
Malt1 alternative splicing. hnRNPR, hnRNPLL, and SRSF3 might 
promote exon inclusion whereas hnRNPH1, hnRNPA1, U2AF1, 
and hnRNPU promote exon skipping. As noted above, a recent 
report shows that TRAF6-mediated ubiquitination of hnRNPA1 
leads to global splicing changes in HSC (42). Thus, it is possible 
that coordinated regulation of different splicing factors shapes 
the T-cell transcriptome during development, activation, and 
differentiation.

Regulatory feed-forward loops allow activated T  cells to 
respond to a rapidly changing environment. Evidence suggests 
that the splicing factor CELF2 and JNK are involved in a positive 
loop that allows the full activation of T cells (Figure 3B). CELF2 
expression is required for exon 2 skipping of MKK7. This enables 
MKK7-protein interaction with JNK, enhancing signaling. In 
turn, JNK activation induces CELF2 stabilization and further 
exon skipping. hnRNPL is also a splicing repressor that has been 
involved in CD45 alternative splicing. Expression of hnRNPL 
leads to the expression of the smallest isoform of CD45 which 
is required for T-cell homeostasis (187, 188). hnRNPL-deficient 

mice have profound defects in thymic development and migra-
tion to the periphery that cannot be only subscribed to a defect in 
CD45 alternative splicing (134). Indeed, a recent study suggests 
that hnRNPL regulates the splicing of hundreds of genes upon 
PMA activation of Jurkat cells (189).

T-cell activation also induces the accumulation of RBPs in the 
cytoplasm (190). This directly correlates with the increase in RNA 
metabolism that supports T-cell growth, proliferation, cytokine 
production, and differentiation into the different T-cell subtypes. 
For example, TCR-mediated ERK activation phosphorylates 
hnRNPK at Ser284 and Ser353. This allows hnRNPK cytoplasmic 
location and translation inhibition of selected mRNA targets. 
hnRNPK also limits Vav-1-mediated proteolysis and enables IL-2 
production (191, 192). Other RBPs such as ELAVL1, PTBP1, and 
ZFP36 have also been involved in IL2 mRNA translational regula-
tion and protein synthesis upon TCR engagement (174, 193, 194).

The role of RBPs in cytokine expression upon antigen-
mediated T-cell activation has been, and remains, an intensive 
area of research. T-cell differentiation and effector/memory 
functions are associated with distinctive cytokine profiles. Recent 
evidence suggests that mRNA translation silencing by RBPs is 
responsible for uncoupling cytokine mRNA abundance from 
protein synthesis in anergic self-reactive T cells (195). RBPs, such 
as Roquin-1 and Roquin-2, have a relevant role in controlling 
TCR signal strength, activation, and differentiation of mature 
T  cells (Figure  3C). The number of CD4+T  cells is normal in 
Roquin-1 knockout mice, although the CD8+T-cell population 
is expanded (196). Expression of Roquin-1 and Roquin-2 is 
reduced upon TCR engagement. Both gene transcription and 
activation of the paracaspase MALT1 contribute to decrease 
Roquin expression (197, 198). This promotes strong T-cell activa-
tion and effector functions regulating the expression of ICOS and 
OX-40 (165). Production of IL-10 also decreases Roquin-1 which 
limits further the expression of these co-inhibitors and promotes 
Tfh cell differentiation (198, 199). The increased number of Tfh 
cells in Roquin-1/2 double knockout and Sanroque mice causes a 
breach in self-tolerance and promote autoimmunity. These mice 
have elevated levels of IL-17 and IFNg, which correlates with 
an increased differentiation of Th17 and Tfh cells (197,  200). 
Roquin-1 function favors Th1 over Th2 T  cell and increases 
serum levels of IFNg, IL6, IL17, and TNF. This is linked with the 
development of hepatitis and strong collagen-induced arthritis 
(201, 202). In addition, the RBP ARID5a promotes the develop-
ment of autoimmune diseases such as experimental autoimmune 
encephalomyelitis and arthritis (203). Mechanistically, ARID5a 
stabilizes Il6 mRNA, likely by countering Regnase-1 endonuclease 
activity. In the absence of ARID5a, Il6 production is significantly 
reduced in vivo and Th1 T cells are favored over Th17 T cells. In 
summary, post-transcriptional regulation of cytokine expression 
by RBPs controls the magnitude of T-cell effector functions as 
well as balances antigen-dependent T-cell differentiation.

RBPs iN B-CeLL HUMORAL iMMUNiTY

The role of alternative splicing and polyadenylation in the gen-
eration of different Ig isotypes and the production of membrane-
bound or secreted Ig has been long appreciated (8, 9, 204). 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 4 | Role of RNA-binding proteins (RBPs) in the germinal center (GC) reaction. Summary of RBPs associated with: (1) B-cell metabolic switch upon B-cell 
activation; (2) cell cycle progression, proliferation, and somatic Ig hypermutation in the dark zone; (3) positive GC B-cell selection and Myc-mediated re-entry into 
further rounds of proliferation and Ig hypermutation; and (4) terminal differentiation into plasma B cells and memory B cells.

9

Díaz-Muñoz and Turner Role of RBPs in Immunity

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1094

Alternative splicing of an mRNA transcript encoding for the Ig mu 
heavy chain (Igh) produces both IgD and IgM. Recent evidence 
suggests that the candidate RBP ZFP318 controls differential splic-
ing in transitional T2 B cells enabling IgD expression (205, 206). 
Splicing also raises the production of rare Ig by-products upon 
induction of somatic hypermutation (SHM) by Plasmodium 
falciparum and other pathogens (207). These rare Ig by-products 
can be often found in B-cell non-Hodgkin’s lymphomas (B-NHL), 
B-cell chronic lymphocytic leukemia (B-CLL), and other lympho-
mas, marking their origin as the germinal center (GC) reaction 
(208). The mechanisms controlling the alternative splicing of 
these Ig transcripts remain incompletely understood, but might 
be linked to the observation that AID and some of its cofactors are 
bonafide splicing regulators. Activation-induced cytosine deami-
nase (AID) is expressed upon B-cell activation and is necessary for 
affinity maturation in GCs. Affinity maturation is the process by 
which SHM of the Ig locus enables the expansion of the antibody 
repertoire. AID is an RNA/DNA binding protein that binds to 
G-quadruplex structures formed upon active transcription of 
the Ig locus (209). RNA mediates the interaction of AID with 
hnRNPK and hnRNPL, which are required for DNA cleavage and 
end-joining essential to both class CSR and SHM (23). hnRNPI, 
hnRNPU, hnRNPC, PABP1, and SERBP1 have been also described 
as components of these AID-RNP complexes. Knockdown of any 
of these proteins reduces CSR to some extend (24).

RNA-binding proteins control many other aspects of the 
antibody response (Figure  4). T-cell independent and T-cell-
dependent antibody responses are impaired in the absence of 
PTBP1 or ELAVL1. GCs are not formed in Elavl1fl/fl Mb1Cre mice, 
and affinity maturation is severely impaired (122, 123). ELAVL1 
expression guarantees the correct mRNA splicing and expression 
of key enzymes of the glucose metabolism such as DLST. This is 
the E2 subunit of the 2-oxoglutarate dehydrogenase complex 

that controls the amount of reducing equivalents (NADH) that 
will be subsequently used for oxidative phosphorylation, ATP 
production, and ROS scavenging. Thus, after B-cell activation, 
ELAVL1 enables a B-cell metabolic switch that fuels B-cell growth 
and proliferation while preserving the cells from a detrimental 
oxidative stress response (122). Additionally, PTBP1 is essential 
for high-affinity antibody production (210). PTBP1 controls the 
expression of a substantial fraction of MYC-dependent genes to 
enable cell cycle progression and GC B-cell positive selection. 
Among these, PTBP1 regulates the splicing of key metabolic 
genes such as Pkm1 and Tyms but also controls other MYC target 
genes by an, as yet, unknown mechanism. Whether additional 
properties of PTBP1, such as its ability to regulate mRNA stability 
or translation, play a role in the selection of GC B cells remains 
uncertain. The RBP hnRNPLL might also have an important role 
during later B-cell to plasma cell differentiation (211). In the 
absence of hnRNPLL, plasma cells and antibody production are 
reduced. This is likely because hnRNPLL regulates both mRNA 
splicing and stability of key drivers of plasma cell differentiation 
such as Irf4 and Oct1. Finally, it is suggested that hnRNPLL might 
regulate mRNA translation of IgG1, although this needs further 
investigation.

RNA-binding proteins control T-cell-mediated B-cell selec-
tion in GCs (Figure 4). Analysis of the Sanroque mouse model 
revealed the importance of Roquin-1 and Roquin-2 expression 
in T-follicular helper cells to prevent autoimmunity. Sanroque 
mice bare a point mutation in the ROQ domain of Roquin-1 
and develop spontaneous GCs, plasmacytosis, polyclonal hyper-
gammaglobulinemia, and production of autoantibodies and 
high-levels of IFNg. As a result, they develop hepatitis, nephritis, 
and anemia (165, 200). Roquin-1 and Roquin-2 are mRNA desta-
bilizers that limit the extension of the GC response. They control 
the number and activation of Tfh cells as well as they restrain 
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activation and differentiation of helper T cells and conversion of 
Treg to Tfr cells (212). Roquin-1 and Roquin-2 bind to CDEs 
present in the 3′UTR of several mRNA targets, including Icos, 
Ox40, Il6, Ifng, and Tnf, and recruit the CCR4-NOT deadenyla-
tion complex (115, 213–215). It has been proposed that Roquin 
not only can cooperate with miRNAs such as miR-146a but also 
can interfere with miR-17-92, causing PTEN up-regulation and 
controlling excessive PI3K-mTOR signaling and autoimmunity 
(212). Roquin can interact with other RBPs such as NUFIP2 to 
recognize 3′UTR RNA regulatory elements (216) and with the 
RNA nuclease Regnase-1 (encoded by Zc3h12a) (197) to regulate 
the expression of mRNA targets like Icos. Regnase-1 targets mostly 
mRNA undergoing active translation in the cytoplasm or in the 
endoplasmic reticulum (217, 218). By contrast, it is believed that 
Roquin targets for degradation silenced mRNAs that accumulate 
in P-bodies. Nevertheless, Regnase-1 knockout mice have a 
similar phenotype to the Sanroque mice (219).

CONCLUSiON AND PeRSPeCTiveS

Post-transcriptional control by RBPs is an essential extra layer of 
gene regulation that is fundamental for the development, homeo-
stasis, and function of the immune system. The involvement of 
RBP at all stages of the biology of RNA can be conceptualized 
by considering RBPs as writers, editors, readers, and erasers of 
the transcriptome; an analogy that has been used previously in 
the context of epigenetic regulation at the level of DNA and his-
tones. RBP writers (e.g., splicing factors) affect transcription and 
RNA processing. RBP editors (e.g., RNA methyltransferases and 
deaminases) modify the sequence content of the transcriptome. 
RBP readers bind RNA and define subcellular location (e.g., RNA 
granule components), and translation (e.g., eukaryotic transla-
tion factors). Finally, RBP erasers (e.g., destabilizing factors and 
nucleases) induce RNA decay. Acting in concert with transcrip-
tion factors, epigenetic regulators, and signal transduction 
networks, they comprise a global regulatory network that we are 
just starting to appreciate.

A reductionist approach to study the role of RBPs at a  single 
gene level is likely to be insufficient to uncover the broad 
implications of post-transcriptional RNA control in immune 

cell development, differentiation, and function. An integrative 
analysis of the protein:RNA interactome, transcriptome, and 
translatome is required to understand the global mechanisms 
of RBP-mediated control. Gaining knowledge of how indi-
vidual RBPs target single RNA molecules and their function is 
a first step to further define these global cellular mechanisms. 
Collection of the protein:RNA interactome from hundreds of 
RBPs is extremely useful in order to infer possible interactions 
of different RBPs for single or global gene expression. Capturing 
the dynamic changes of cellular RBP-content in concert with the 
quantitative and qualitative changes in the transcriptome is a 
key to understand immune cell development and activation. For 
example, it has been reported that m6A modification of the RNA 
might differ between different RNA species and during T-cell 
activation (33, 220). Cellular responses to intrinsic and extrinsic 
signals induce post-translational modifications that alter both the 
expression and function of RBPs. Thus, careful selection of model 
systems is essential when studying the role of post-transcriptional 
regulation by RBP in the immune system. Finally, validation of the 
post-transcriptional regulatory mechanism by selecting model 
genes is essential. Gene-wide identification of the protein:RNA 
interactome annotates tens of thousands interactions with hun-
dreds of transcripts (12). However, RNA binding by RBPs may not 
always have consequences for the qualitative or quantitative tran-
scriptome. Thus, genetic modification and biochemical analysis 
of single protein:RNA interactions will be important to validate 
RBP action on genes that drive important immune phenotypes.
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