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Overcrowding conditions and temperatures shifts regularly manifest in large-scale infec-
tions of farmed fish, resulting in economic losses for the global aquaculture industries. 
Increased understanding of the functional mechanisms of fish antimicrobial host defenses 
is an important step forward in prevention of pathogen-induced morbidity and mortality 
in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to 
fish immune responses and for this reason, much of the recent fish immunology research 
has focused on fish macrophage biology. These studies have revealed notable similar-
ities as well as striking differences in the molecular strategies by which fish and higher 
vertebrates control their respective macrophage polarization and functionality. In this 
review, we address the current understanding of the biological mechanisms of teleost 
macrophage functional heterogeneity and immunity, focusing on the key cytokine regu-
lators that control fish macrophage development and their antimicrobial armamentarium.

Keywords: teleost, monocyte, macrophages, antimicrobial, cytokine, respiratory burst, nitric oxide, nutrient 
depravation

iNTRODUCTiON

The immune systems of all vertebrates are integrally dependent on macrophage-lineage cells and 
while the ontogeny of functionally disparate macrophage subsets and lineages have been thoroughly 
studied in mammals (1, 2), they remain to be adequately defined in aquatic vertebrates such as 
teleost fish [previously reviewed by Hodgkinson et al. (3)]. In mammals, these functionally distinct 
macrophage subsets are framed by polarized extremes including the interferon-gamma (IFNγ) and 
tumor necrosis factor-alpha (TNFα) primed M1/classically activated macrophages; the interleukin-4 
and/or interleukin-13-stimulated M2a/alternatively activated macrophages; the immune complexes 
or apoptotic cell-stimulated M2b/alternatively activated macrophages; and the interluekin-10  
(IL-10), transforming growth factor-beta (TGF-β) and/or glucocorticoid (GC)-primed M2c/alter-
natively polarized macrophages (4). Depending on their respective stimulus-dependent polarization 
states, these macrophage subsets participate in either inflammatory/microbicidal or repair/wound-
healing/immune suppression responses (4). While bony fish clearly possess functional analogs of 
these mammalian macrophage subsets (Figure 1), the molecular mechanisms governing the polari-
zation and functionality of these respective fish macrophage populations remain to be fully defined.

The teleost fish inflammatory/M1 macrophage populations have been the best-studied and shown 
to rapidly kill pathogens through phagocytosis (5), production of reactive oxygen and nitrogen 
intermediates (6, 7), and restriction of nutrient availability (8, 9). Furthermore and akin to their 
mammalian counterparts, these fish M1 macrophages produce a plethora of inflammatory cytokines, 
chemokines, and lipid mediators (9). In a recent effort to gain insights into the alternatively polarized/
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FigURe 1 | Functional polarization of mammalian and bony fish macrophages.
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M2 fish macrophages, researchers have examined functional mac-
rophage parameters such as arginase gene expression and activity 
(10) and their expression of immunosuppressive cytokines such 
as il10 and tgfβ (11–13). Indeed, the functional analogs of the 
mammalian M1/M2a–c macrophage subsets appear to be present 
in teleosts. However, defining the regulatory mechanisms govern-
ing the polarization of these effector populations is a far more 
challenging goal as gene-specific and whole genome duplication 
events have endowed disparate fish species with unique multi-
copy repertoires of those genes, which in mammals are though to 
dictate macrophage polarization and functionality (14).

In this review, we focus on the current understanding of 
the molecular mechanisms of fish macrophage antimicrobial 
responses to prokaryotic and eukaryotic pathogens.

MACROPHAge ONTOgeNY

Macrophage Sources and Fates
Until recently, tissues macrophages were believed to arise from 
circulating monocyte precursors in response to tissue entry and 
accompanying stimuli (15). However, more recent research has 
challenged this notion and suggests that while mammalian blood 
monocytes may enter into tissues and become macrophages 
under certain inflammatory conditions, these events are infre-
quent (15–17). Instead, mammalian resident tissue macrophages 

are now thought to be seeded during embryonic hematopoiesis 
and replenish resident populations locally (16–18). While the 
presence of self-renewing fish tissue macrophage populations 
requires further investigation (19), recent reports showed that 
fish lacking functional c-myb transcriptional regulator of adult 
hematopoiesis, nonetheless possess tissue macrophages suggest 
that this process may be conserved in teleosts (20).

Teleost Monopoiesis and the Colony-
Stimulating Factor-1 Receptor (CSF-1R)
The differentiation and functionality of most vertebrate 
macrophages are controlled by engagement of the CSF-1R, 
which is expressed on committed myeloid precursor cells and 
their derivative populations (21–23). The csf1r (fms) genes 
of different vertebrate species exhibit poor sequence identi-
ties, particularly in their extracellular domains (24–26). By 
contrast, the catalytic tyrosine kinase domains of CSF-1Rs are 
highly conserved (27, 28). The divergence of the extracellular 
portions of the CSF-1R molecules likely reflects the selective 
pressure onto this receptor of diverging (and in some cases 
multiple) ligands of these receptors, as these exhibit low amino 
acid sequence conservation. The mammalian, reptilian, avian, 
and teleost fish CSF-1Rs all branch into phylogenetically 
separate clades (26), presumably reflecting the many distinct 
aspects of macrophage functionality across these divergent 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Grayfer et al. Macrophage Antimicrobial Immunity

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1105

species. In turn, these differences may reflect distinct func-
tional contributions of these respective ligands and receptor 
systems to the macrophage ontogeny and functionality of the 
evolutionarily diverged vertebrate species.

Colony-Stimulating Factor-1
Unlike birds and mammals that have a single alternatively spliced 
csf1 gene (29, 30), many teleost fish species have two distinct 
csf1 genes (csf1.1 and csf1.2), which (for the most part) do not 
appear to undergo alternative splicing (25). Like its mammalian 
counterpart, the fish CSF-1 (CSF-1.1) also appears to be an 
important macrophage growth and differentiation factor (31, 32). 
Interestingly, while the mammalian CSF-1 is known for driving 
alternative/M2 macrophage differentiation (28), the cyprinid 
(goldfish) CSF-1.1 appears to facilitate the functional differentia-
tion of inflammatory/M1-like macrophages with highly upregu-
lated pro-inflammatory components (32). This is supported by 
the reports that a soluble goldfish CSF-1R (19) down-regulates 
macrophage pro-inflammatory responses by reducing available 
soluble CSF-1 (33, 34) (see section below). As teleosts possess 
multiple csf1 genes and at least some fish species also encode two 
distinct csf1r genes (35), this suggests that teleost fish may have 
adopted more elaborate macrophage differentiation strategies to 
those seen in mammals.

interleukin-34 (iL-34) as Possible Sources 
of Macrophage Functional Heterogeneity
Inflammatory (M1) macrophages produce multiple inflamma-
tory mediators that coordinate antimicrobial responses, while the 
alternatively activated (M2) macrophages secrete immunosup-
pressive and angiogenic compounds that control the resolution 
of inflammation [reviewed by Zhou et  al. (4) and Hodgkinson 
et  al. (3)]. The mammalian CSF-1 induces the differentiation/
polarization of M2 macrophages (28), whereas the teleost CSF-1 
elicits an M1-like macrophage phenotype (32). Notably, the IL-34 
cytokine also ligates and activates the CSF-1R (36–38), regulating 
the development of mammalian osteoclasts (39, 40), Langerhans 
cells (41, 42), microglia (41), and B  cell-stimulating myeloid 
cells (43). Recent work using the amphibian Xenopus laevis 
model indicated that frog macrophages differentiated by the  
X. laevis CSF-1 are highly susceptible to the emerging Frog Virus 3 
Ranavirus whereas macrophages derived by IL-34 are important 
antiviral effectors (26, 44, 45). The antiviral roles of IL-34-derived 
macrophages remain to be fully elucidated in other vertebrates, 
and it is likely that akin to CSF-1, IL-34 likewise contributes to 
macrophage functional heterogeneity.

To date, there have been a limited number of studies addressing 
the contribution of IL-34 to the fish macrophage biology. Recent 
work indicates that the grouper IL-34 plays an important role in 
the fish immune response against Cryptocaryon irritans infec-
tions, as the expression of this gene was highly upregulated in the 
parasite-infected fish gill and skin tissues (46). This is consistent 
with the roles of the mammalian IL-34 in the differentiation and 
functionality of tissue resident macrophages and Langerhans 
cells (41, 42) and may reflect an evolutionarily conserved role for 
IL-34 in controlling the development of this macrophage-lineage 
cell type.

The trout il34, csf1.1, and csf1.2 are differentially expressed in 
fish tissues and as well as in a number of trout-derived cell lines, 
suggesting disparate biological roles for these CSF-1R ligands (47). 
Notably, the trout il34 exhibited high baseline tissue expression 
in which the authors attributes to a possible homeostatic role and 
that indeed could reflect the conserved role of this growth factor 
in tissue macrophage and Langerhans cell biology. Moreover, 
whereas stimulation of primary trout kidney macrophage cul-
tures with a number of pathogen-associated molecular patterns 
(PAMPs) failed to elicit increases in csf1.1 or csf1.2 gene expres-
sion, these stimuli readily upregulated the expression of il34 by 
these cells (47). Notably, the viral dsRNA mimic poly I:C elicited 
a particularly robust increase the macrophage il34 expression, 
possibly reflecting a conserved role for the fish IL-34 in antiviral 
immunity, akin to the amphibian counterpart.

Soluble CSF-1R
Cyprinid fish control their CSF-1 (and presumably IL-34) stimu-
lation of macrophages by production of a soluble CSF-1 receptor 
(sCSF-1R) (33, 34, 48, 49). This soluble form of the receptor 
arises through alternative splicing, and is capable of ablating 
macrophage proliferation (48) and macrophage-mediated 
inflammatory responses (33, 49). The sCSF-1R is produced by 
mature macrophages, but not monocytes, in response to classical 
M2-polarizing stimuli such as apoptotic cells (34) and efficiently 
ablates an array of inflammatory events including leukocyte infil-
tration (34), macrophage chemotaxis, phagocytosis, production 
of reactive oxygen intermediates and recruitment of leukocytes 
(33). Moreover, sCSF-1R dampens fish macrophage chemokine 
and inflammatory cytokine expression, neutrophil recruit-
ment while promoting the expression of the anti-inflammatory 
cytokine, interleukin-10 (49). It will be interesting to learn 
whether other fish besides cyprinids have adopted this strategy 
for controlling their macrophage inflammatory responses.

MOLeCULAR CONTROL OF 
MACROPHAge ANTiMiCROBiAL 
ARMAMeNTARiUM

Pattern Recognition Receptors (PRRs) of 
Teleost Macrophages
During injury and/or infection, resident macrophages detect 
tissue damage and/or infiltrating pathogens by either extracel-
lular or intracellular pattern recognition receptors (PRRs). The 
existence of immune PRRs was first proposed by Charles Janeway 
over 20 years ago (50). The known PRRs can be classified into five 
groups based on their structure and function: toll-like receptors 
(TLRs), C-type lectins, nucleotide-binding domain-leucine-rich 
repeat containing receptors (NLRs or NOD-like), retinoic acid 
inducible gene 1 (RIG1)-like receptors (RLRs), and absence in 
melanoma (AIM)-like receptors (ALRs) [reviewed by Hansen 
et  al. (51)]. Neutrophils, monocytes, macrophages, dendritic 
cells (DCs), and specific epithelial and endothelial cells have 
PRRs (51).

In addition to specific recognition of distinct pathogen com-
ponents (e.g., LPS, dsRNA, and flagellin), PRRs also detect tissue 
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damage-associated molecular patterns (52–54). The human TLRs 
1, 2, 4, 5, 6, and 10 are membrane bound while the TLRs 3, 7, 8, 
and 9 are located in endosomes (55). By contrast, the NLRs, RLRs, 
and ALRs are exclusively cytosolic (55).

Members of the TLR family share the intracellular toll-interleu-
kin-1 receptor motifs (56). Initially identified in Drosophila spp. 
for controlling dorso-ventral patterning (57) and subsequently 
attributed to its anti-fungal properties (58), members of this 
family are now widely believed to be indispensable for immune 
recognition by most metazoans. Humans are currently known to 
have 10 TLRs (TLR 1–10) and mice possess 12 TLRs (51, 59). 
Birds also possess 10 TLRs, of which some are counterparts of 
the mammalian receptors (TLR 3–5, 7, and two forms of each 
TLR 1 and 2) (59). Some birds (TLR15, 16, and 21) are not found 
in higher vertebrates (60), and amphibians may have up to 20 
TLRs (61). Bony fish possess 17 distinct TLRs, including some 
that are unique to fish, such as TLR 20–23 (62–64). Interestingly, 
not all fish have TLR4 and zebrafish TLR4 does not recognize LPS 
and negatively regulates NF-kB signaling (51, 65, 66). Additional 
research will be required to fully elucidate the function of TLRs 
in lower vertebrates, which will undoubtedly shed new light 
on the evolutionary history of these important innate immune 
receptors. The biology of fish TLRs has recently been a subject to 
several excellent review articles (67–70).

Other PRR families have also been identified in aquatic 
vertebrates. Although, gene synteny analyses identified a number 
of RLRs in birds and fish (71, 72), certain RLR genes are either 
absent or diverged beyond recognition. The evidence of func-
tional conservation of fish RLRs exists (73, 74).

The NLRs were originally discovered in plants as R-proteins, 
which share nucleotide binding site and leucine rich repeat 
domains and can detect proteins delivered by pathogenic bac-
teria to trigger rapid activation of host defense (75, 76). The 
first identified mammalian NLR was the human NOD1 (also 
known as CARD4) by Bertin et al. (77) and Inohara et al. (78). 
The NOD1/CARD4 contained the typical NOD domain (also 
referred as the NACHT domain), which is a critical structural 
feature of NLRs (79–81), and NOD2/Card15 was identified 
searching for NOD1 homologs in genomic databases (82), and 
at present there are 23–34 NLRs known to exist in humans and 
mice, respectively.

There are several orthologs of mammalian NLRs as well as a 
unique NLR subfamily of receptors in bony fish (83). The first 
reported teleost NLRs were identified in zebrafish genome (84). 
Three subfamilies of NLRs were present in zebrafish, the first 
resembled mammalian NODs, the second resembled mammalian 
NLRPs, and the third was reported to be a unique subfamily of 
genes having similarities to both mammalian NOD3 and NLRPs 
(83). The existence of NLRs has been reported in grass carp (85), 
rainbow trout (86), channel catfish (87, 88), common carp (89, 
90), orange-spotted grouper (91), goldfish (92), Japanese founder 
(93, 94), miiuy croaker (95, 96), and Japanese pufferfish (97). The 
results of these studies indicated the presence of inducible NLRs 
and that teleost NLRs shared the conserved structural domains 
with their mammalian counterparts. Studies on most of teleost 
macrophage NLRs primarily focused on the examination of 
gene expression induced by different immune stimuli and/or fish 

pathogens (87, 88, 92) and to a lesser extent on NLR signaling 
pathways in fish macrophages (98–102).

The Type ii interferon System(s) of  
Bony Fish
The classical/M1 macrophage activation corresponds to mac-
rophage upregulation of an array of inflammatory, microbicidal, 
and antigen presentation components, and is linked due to Th1-
biased cytokine stimulation of these cells (103, 104). Specifically, 
this classical macrophage activation is thought to predominantly 
occur in response to the type II interferon cytokine, IFNγ, which 
is produced by Th1 helper cells and activated NK cells (105, 106). 
The induction of the mammalian M1 macrophages requires the 
co-stimulation of cells with IFNγ and TNFα (107). Conversely, 
these classically activated macrophages may be generated follow-
ing macrophage activation through pathogen PRRs (108). While 
teleost fish have numerous PRRs (83, 109), the roles of fish PRRs 
(see previous section) in teleost M1 macrophage polarization 
remains to be fully addressed.

The mammalian IFNγ cytokine has been linked to an vast array 
of immunological processes, and was first identified from the 
supernatants of PHA-activated lymphocytes (110). In addition to 
its modest antiviral capacities, IFNγ appears to be particularly 
important to vertebrate host defenses against obligate and fac-
ultative intracellular pathogens (111–115). These include several 
important macrophage pathogens such as Listeria monocytogenes 
(116), Leishmania major (117), and Mycobacterium (118). This 
underlines the importance of this cytokine to macrophage immu-
nity (111, 119–122).

The mammalian IFNγ binds the interferon gamma recep-
tor 1 (IFNGR1), which results in the formation of a receptor 
complex composed of this ligand binding chain as well as the 
IFNGR2 signal propagation chain, ensuing in the downstream 
signaling cascade (123). The assembly of this signaling complex 
(IFNγ:IFNGR1:IFNGR2) activates Janus kinases (Jak)-1 and -2 
(124), upon which phosphorylation activates signal transducer 
of activation-1 (Stat1) transcription factor (125). Under certain 
cellular conditions, stimulation with IFNγ may also activate Stat2 
(126) albeit to a much lesser extent than Stat1. Moreover, IFNγ 
signaling typically results in the activation and nuclear transloca-
tion of several other transcriptional complexes including ISGF3 
and Stat1-p48, composed of Stat1: Stat2: IRF-9 and Stat1: Stat1: 
IRF-9 (126–129). IFNγ signaling occurs in temporal phases, where 
the first sets of interferon gamma stimulated transcripts are seen 
after 30 min of the initial IFNγ receptor activation, and many of the 
products of these mRNAs then modulate subsequent IFNγ-related 
(IFNγrel) signaling events within the stimulated cell (130).

Teleost fish are widely known to possess ifng genes (131–135) 
and the functional roles attributed to the mammalian IFNγs appear 
to be conserved to these fish cytokine counterparts. For example, 
the trout IFNγ elicits the expression of a number of immune genes 
such as γip10, mhcIIb, and stat1 (136), c-type lectin, il1b, ifng, tap1, 
tapasin, irf1, ikb, and junb in the monocyte/macrophage RTS11 
cell line (137). Fish IFNγ enhances reactive oxygen species (ROS) 
production by primary kidney phagocytes of trout (136), goldfish 
(138), and carp (139). The goldfish IFNγ primes kidney-derived 
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monocyte ROS responses in a concentration dependent manner 
(138) and akin to its mammalian counterpart (140, 141), the gold-
fish IFNγ synergizes with the goldfish TNFα (138) to prime the fish 
monocyte ROS response. The goldfish IFNγ also induces modest but 
significant increases in kidney macrophage nitric oxide responses, 
which are further enhanced by co-stimulation with TNFα2 (138). 
Interestingly, the carp IFNγ elicits significant NO responses in 
fish kidney phagocytes only in conjunction with a high dose of 
LPS (139). The large yellow croaker IFNγ enhances the primary 
kidney phagocyte respiratory burst and nitric oxide responses and 
upregulates the gene expression of inflammatory genes such as tnfa, 
il1b, stat1, and irf1 in these cells (142). Likewise, the black seabream 
and the zebrafish IFNγs induce the expression of jaks, stats, and 
interferon-stimulated genes such as irf1 and mx (143, 144).

Goldfish kidney-derived macrophages stimulated with IFNγ 
upregulate their expression of several inflammatory genes includ-
ing tnfa isoforms 1&2, il1b isoforms 1&2, il12 subunits p35 & p40, 
ifng, il8 (CXCL-8), ccl1, and viperin (138). Carp kidney phago-
cytes treated with IFNγ and LPS increase their gene expression 
of tnfa, il1b, and il12; (subunits p35 & p40) (139). Carp IFNγ 
also induced the expression of a CXCL-10-like chemokine (cxclb) 
and inhibited LPS-induced expression of cxcl8 (139). Together, it 
would appear that for the most part, the inflammatory roles of 
IFNγ such as its synergism with LPS and TNFα (see below) are 
conserved in teleosts.

Functional Dichotomy of Fish Type ii iFNs
In fish, Igawa et al. (132) identified two genes encode ifng isoforms, 
located next to the fish il22 and il26 genes, that have the exon/
intron organization of ifng genes of other vertebrates and possess 
the IFNγ signature motif ([IV]-Q-X-[KQ]-A-X2-E-[LF]-X2-[IV]). 
These two ifng sequences were initially coined IFNγ1 and IFNγ2 
but following a reevaluation of vertebrate ifng genes and because 
the fish IFNγ2 possesses the hallmark features of the mammalian 
IFNγs, it was renamed as simply IFNγ (145). Since IFNγ1 appears 
to be structurally related to the mammalian IFNγ, but is missing 
a nuclear localization signal (NLS) motif, it has been coined as 
IFNγrel. The presence of multiple ifng isoforms have now been 
confirmed in siluriformes and other cypriniformes, including the 
identification of ifngrel and ifng in catfish (133), common carp 
(146), zebrafish (147), and the goldfish (138).

The siluriform IFNγrel proteins have not been functionally 
characterized. However, the cyprinid IFNγrels have been exam-
ined in some detail across several species. For example, freshly 
laid zebrafish eggs possess ifngrel transcripts, indicating maternal 
supply of these mRNAs (147). Also, while the gene expression 
of the zebrafish ifng is not detected until much later in develop-
ment, the mRNA levels of IFNγrel continue to increase during the 
embryonic zebrafish development (147). Moreover, injection of 
zebrafish embryos with mRNAs encoding IFNγ or IFNγrel results 
in increased expression of genes typically activated by the mam-
malian IFNγ (147). Notably, morpholino knock-down of either 
ifng or ifngrel resulted in compromised Yersinia ruckeri-infected 
zebrafish embryo survival while the combined knock-down of 
both cytokines further decreased embryo survival (147), suggest-
ing that IFNγ or IFNγrel confers at least partially non-overlapping 
immune roles.

The goldfish IFNγ and IFNγrel appear to confer distinct 
effects on macrophages (138, 148). For example, while IFNγ 
stimulation of goldfish monocytes results in long-lasting ROS 
priming, IFNγrel elicits a short-lived priming effect on these 
cells, followed by complete monocyte unresponsiveness to ROS 
priming by other inflammatory cytokines (IFNγ or TNFα2). 
Moreover, the goldfish IFNγ only modestly enhances fish mono-
cyte/macrophage phagocytosis and nitric oxide responses (138, 
148). By stark contrast, IFNγrel induced significantly greater 
phagocytosis, iNOS (isoforms A and B) gene expression, and 
nitric oxide production in goldfish monocytes and macrophages. 
Interestingly, these goldfish type II IFNs also elicit the expression 
of distinct immune genes in goldfish monocytes. Both recombi-
nant cytokines induce goldfish monocyte Stat1 phosphorylation, 
however, nuclear translocation of Stat1 was only seen in cells 
treated with IFNγ, but not with IFNγrel. This was confirmed 
by more recent report, indicating that the zebrafish IFNγ and 
IFNγrel utilize distinct signaling pathways (143). It is interesting 
that while the recombinant ginbuna crucian carp IFNγ forms a 
dimer in solution, the recombinant IFNγrel appears to be mono-
meric (149, 150), akin to the functional forms of type I rather than 
type II IFNs. Moreover, an additional isoform of the ginbuna carp 
IFNγrel has been identified and shown to possess a functional 
NLS, which contrasts the other fish IFNγrel proteins (150). With 
the growing evidence indicating functional dichotomies of the 
cyprinid type II IFNs, it will be interesting to learn the roles of 
these distinct macrophage-activating factors in their target cells’ 
antimicrobial responses to different fish pathogens.

Fish Type ii iFN Receptors
While the bony fish type II IFN ligands have become a subject of 
active research, the functional roles of the type II IFN receptors 
remain to be clearly defined. The trout IFNGR1 and IFNGR2 
chains were initially identified and shown to exhibit conserved 
gene synteny across vertebrates (151). All fish IFNGR1 sequences 
have Jak1 and Stat1 binding sites, that are also required for func-
tional mammalian IFNγ (152–154), and the expression of the 
IFNGR2 chain appears to be essential to the trout IFNγ-induced 
signaling (151).

The fish IFNγ and IFNγrel cytokines structural, functional, 
and intracellular signaling differences were thought to reflect the 
presence of distinct IFNγ receptors, dedicated to these respective 
moieties. As predicted, gene synteny analyses of the vertebrate 
ifngr1 genes (encoding the ligand binding chain), revealed two 
distinct zebrafish ifngr1 genes, located on distinct chromosomes 
(155). The presence of corresponding ifngr isoforms was confirmed 
in goldfish, and by means of in vitro recombinant protein binding 
studies, we demonstrated that IFNγrel (IFNγ1) and IFNγ each 
bound to their own cognate IFNγ receptor chains, the IFNGR1-1 
and IFNGR1-2, respectively. Morpholino knock-down of the 
zebrafish ifngr1-1, ifngr1-2, or ifngr2 (signal propagation chain) 
abolished the fish IFNγ function (156). Notably, only the knock-
down of ifngr1-1, but not ifngr1-2 or ifngr2, abrogated IFNγrel 
stimulation, suggesting that zebrafish IFNγ signals through a het-
erodimer (IFNGR1-1 and IFNGR1-2) and a IFNGR2 homodimer 
whereas the IFNγrel binds to homo-dimeric IFNGR1-1 and a dis-
tinct unknown receptor 2 chain. The discrepancy between these 
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finds and our studies, which indicated IFNγ-IFNGR1-2 but not 
IFNγ-IFNGR1-1 interactions, could be explained in several ways. 
Aside from the possible species-specific differences, it may be that 
IFNGR1-1 binds IFNγ with lower affinity, explaining our inability 
top detect this interaction in vitro by western blot. Conversely, 
the presence of ifngrel mRNA in fresh zebrafish embryos (147), 
suggests that this cytokine may plays roles during zebrafish (and 
presumably other cyprinid fish) development. If is the case, 
morpholino knock down of its cognate receptor encoding gene, 
ifngr1-1 may manifest in reduced IFNγ function, as an indirect 
consequence of the abrogated IFNγrel-mediated immune devel-
opment rather than through direct IFNγ–IFNGR1-1 interactions.

It is notable that using HeLa cells transfected with the ginbuna 
carp ifngr1-1 and ifngr1-2 encoding plasmids, it was shown that 
the carp IFNγ isoform 1 exclusively signals through the IFNGR1-2 
whereas the IFNγ isoform 2 signals through the IFNGR1-1 (149). 
It is well established that both the mammalian and fish IFNγ signal-
ing requires IFNGR2 chains (123, 156) while the fish Jak and Stat 
proteins have significantly diverged from (and are present in mul-
tiple forms as compared to) the mammalian counterparts (157).

While all other vertebrates examined to date encode indi-
vidual type II IFNs and IFNGR1 genes, it is intriguing that certain 
fish possess two distinct IFN gamma-receptor binding chains 
(IFNGR1-1 and IFNGR1-2) as well as multiple type II IFNs  
(148, 149, 156). This suggests that these fish have adopted very 
unique strategies surrounding their principal M1 macrophage-
activating cytokine system(s) and it will be exciting to learn what 
are the functional consequences of these differences.

Teleost TNFα
The mammalian TNFα is involved in a broad array of immuno-
logical roles (158–160). The name of this cytokine stems from 
its discovery in tumoricidal sera of Bacillus Calmette-Guerin-
primed, endotoxin-treated mice (161). During vertebrate inflam-
matory response, TNFα promotes the chemotaxis of neutrophils 
and monocytes/macrophages to the sites of inflammation (162, 
163), enhance macrophage phagocytosis (164–166), primes 
reactive oxygen and reactive nitrogen responses (167, 168), 
facilitates the chemotaxis of fibroblasts (169) and the release of 
platelet activating factors (170–172). Mammalian TNFα confers 
its immune effects either as a 17 kDa soluble protein or a 26 kDa 
type II trans-membrane protein (173–175) and most effects are 
induced after binding of homotrimerized TNFα to either the 
TNF-R1 or TNF-R2 (176, 177).

Tumor necrosis factor-alpha orthologs, possessing the TNF 
family signature [LV]-x-[LIVM]-x3-G-[LIVMF]-Y-[LIMVMFY]2-
x2-[QEKHL] have been identified in several teleosts (178), 
underlining the evolutionary conservation of this cytokine. Like 
its mammalian counterpart, the teleost fish TNFα is a reliable 
marker of fish M1 macrophages (179, 180). Most fish species pos-
sess multiple TNFα isoforms (178, 181–188). These TNFα isoforms 
confer pro-inflammatory effects such as enhancing inflammatory 
gene expression, macrophage chemotaxis and phagocytosis, and 
eliciting phagocyte reactive oxygen and nitrogen intermediate pro-
duction (183–185, 189–194). The in vivo roles of TNFα during fish 
inflammatory and M1 macrophage immune responses have also 
been confirmed in zebrafish (179), sole (195) and trout (196, 197).

Teleost TNFα Receptors
Bobe and Goetz (198) were first to report the presence of a death 
domain-containing TNF receptor in zebrafish and coined this 
gene the ovarian TNF receptor (otr), while putative zebrafish 
tnfr1 and tnfr2 gene sequences were deposited to GenBank, with 
the zebrafish tnfr1 sharing high sequence identity with otr. We 
identified the goldfish tnfr1 and tnfr2 cDNAs (199) and showed 
that the putative amino acid sequences of these goldfish receptors 
share many conserved regions with their respective mammalian 
counterparts. Goldfish TNF-R1 has a death domain with a con-
served motif (W/E)-X31-L-X2-W-X12-L-X3-L and six residues that 
are essential to TNF-R1-mediated cytotoxicity (200).

Our in vitro binding studies using recombinant version of the 
respective goldfish proteins indicate that both goldfish TNFα1  
and TNFα2 bind either TNF-R1 or TNF-R2 (199). Notably, recom-
binant sea bream TNFα (191), and the goldfish recombinant 
TNFα1, TNFα2, TNF-R1, and TNF-R2 all adopt homo-dimeric 
conformations and associate as dimers as opposed to the trimeric 
confirmations seen in the mammalian TNF ligands and receptors 
(199). Similarly, the grass carp TNFα ligand and TNF-R1 also 
associate as dimers (201). Interestingly, dimerized forms of the 
mammalian TNF-R1 have been observed (202–204) while the 
mammalian TNF receptor superfamily member, neurotrophin 
receptor (p75/NTR), is structurally similar to the teleost TNF-R1 
and binds to the NTR ligand as a dimer (205, 206).

By studying the TNF systems of teleost fish, we may garner 
greater insights into the evolutionary origins of these important 
and evolutionarily conserved cytokines and receptors. Indeed 
the importance of the teleost TNFα proteins to their immune 
defenses is underlined by the fact that a number of diverse viral 
fish pathogens encode decoy TNF receptors (207–210).

Macrophages and Acute Phase Proteins 
(APPs) of Bony Fish
During inflammation, activated macrophages secrete cytokines 
and oxidative radicals that modulate the production of APPs 
by hepatic cells [reviewed by Gruys et  al. (211)]. These APPs 
opsonize pathogens, activate complement, neutralize enzymes, 
and scavenge free hemoglobin and radicals.

Acute phase proteins rapidly increase in the blood early after 
exposure to pathogens or during early inflammatory response. For 
example, blood levels of C-reactive protein (CRP) may increase 
as much as 1000-fold and 50% increases in complement proteins 
and ceruloplasmin (Cp) have been observed. The activation of 
hepatocytes also results in decreased levels of serum transferrin, 
cortisol-binding globulin, zinc, iron, albumin, and retinol, as well 
as reduction of free hormones in the blood (212).

While viral infections induce modest acute phase responses 
(213), bacterial infections elicit potent production of these 
soluble mediators (211, 214–216). Upon recognition of LPS, 
monocytes and macrophages also produce gratuitous amounts 
of pro-inflammatory cytokines (214, 216–219). The termination 
of APP production is controlled by pro-inflammatory cytokines 
secreted by macrophages (220, 221).

Bony fish have fully functional repertoires of APPs, which are 
shared with their mammalian counterparts, as well as additional 
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APPs that are unique to teleosts. The serum-CRP levels of 
salmonids have been used as indicators of stress in response to 
xenobiotics (222–224), and protozoan infections (225). The infec-
tion of goldfish with Trypanosoma carassii increased expression 
of Cp, crp, and serum amyloid A (saa), in the liver, particularly 
during the early phases of the infection (first 14 days of infection) 
(225). Serum amyloid-A (SAA) and a serum amyloid P-CRP-like 
pentraxin proteins have also been identified in salmonids (226), 
and goldfish (227). Aeromonas salmonicida infection of salmon 
also induced increased levels of SAA protein (226), while goldfish 
recombinant SAA was shown to induce increased gene expres-
sion of il12p40 and il1b, and was chemotactic to primary goldfish 
macrophages (227). It has also been demonstrated that similar to 
mammals, trout CRP was capable of activating complement (228).

The salmon saa was shown to be upregulated in hepatocytes after 
their exposure to supernatants from LPS-activated macrophages, 
or recombinant TNFα, IL-1β, or IL-6 (229). Interestingly, while 
LPS stimulations increased the expression of the fish pentraxin, 
A. salmonicida infections downregulated the expression of this gene, 
suggesting that pentraxin may be a “negative” APP (226, 230).

A selective subtractive hybridization (SSH) study of hepatic 
transcripts in unchallenged and bacterially challenged trout 
confirmed that a fully functional, broad-repertoire acute phase 
response exists in teleosts (378). Furthermore, after exposure to 
distinct pathogens, trout produce overlapping but partially distinct 
profiles of APPs (231). Catfish also have a well-developed acute 
phase response following bacterial infections leading to a 50-fold 
increase in the expression of some of the genes that encode APPs 
(232). In zebrafish, SSH analysis revealed that zebrafish infected 
with A. salmonicida and Staphylococcus aureus possess overlapping 
as well as unique APPs to those reported in mammals (233).

Macrophages and Complement
During a pathogen insult or PAMPs-induced inflammatory 
responses, there is a significant increase in blood complement levels 
[reviewed by Mastellos et al. (234) and Markiewski and Lambris 
(235)]. Most of the mammalian complement components exist in 
bony fish [reviewed by Nonaka (236)]. When compared with mam-
mals, birds, and amphibians; teleosts have a full set of complement 
genes with the exception of Factor D, and the absence of MASP-1 
and MASP-2 (236). Thus bony fish have multiple forms of several 
complement components including C3 and C5 proteins (237–241).

Fish complement components have similar pro-inflammatory 
roles akin to those of mammals. The anphylatoxin, C5a, has 
chemo-attractive activity (237, 240) and trout C3a enhances fish 
leukocyte phagocytosis (238, 241). In addition trout C3a, C4a, 
and C5a has been shown to be chemo-attractive to head kidney 
phagocytes and PBLs, and enhance phagocytosis of kidney 
leukocytes (242). The teleost complement biology has been fully 
addressed in a review by Sunyer et al. (243).

ANTiMiCROBiAL ROLeS OF TeLeOST M1 
MACROPHAgeS

Phagocytosis
Phagocytosis is the primordial defense mechanism of all meta-
zoan organisms. During the inflammatory response monocytes/

macrophages and neutrophils, undergo phagocytosis mediated via 
phagocytic receptors or hydrophobic interactions of the phagocyte 
membrane and the target particles. Once activated, phagocytes 
release numerous preformed or newly synthesized inflammatory 
mediators, and are equipped with an armamentarium of antimi-
crobial responses primarily focused on the pathogens enclosed in 
the phagolysosomes. Potent antimicrobial compounds generated 
by activated phagocytes include degradative enzymes (proteases, 
nucleases, phosphatases, and lipases) and antimicrobial peptides 
(basic proteins and neutrophilic peptides), which mediate the 
destruction of phagocytosed pathogens (244–249).

Respiratory Burst Response
Macrophage ROS response is a hallmark of these cells’ antimi-
crobial armamentarium and the efficacy of this response often 
reflects on the ability of macrophages to destroy internalized 
microorganisms. This response culminates from the assembly of 
a multicomponent enzymatic complex, the nicotinamide adenine 
dinucleotide phosphate (NADPH, Figure 2) oxidase on the plasma 
and phagosome membranes, resulting in the transfer of electrons 
from NADPH to molecular oxygen and thus the production of a 
superoxide anion (250). In turn, the generated superoxide anions 
may be converted into other antimicrobial ROS such as hydrogen 
peroxide (H2O2), hydroxyl radical (OH⋅), and hypercholorus 
acid (251, 252). The NADPH oxidase complex has six interactive 
subunits including the cytosolic phagosome oxidases (p40phox, 
p47phox, and p67phox), and a guanosine triphosphatase Rac 1 or 
Rac 2, which are mobilized to the gp91phox and p22phox subunits 
that are located in the plasma membrane (253–258). All of these 
NADPH oxidase components have been identified in teleosts and 
fish macrophage ROS responses has been well documented in 
contexts of PAMP stimulation (259–262), antimicrobial responses 
(263–265), and recombinant cytokines stimulation such as with 
TNFα (183, 184, 266), IFNγ (136, 138, 148), and CSF-1 (32).

Tryptophan Degradation
Another hallmark of M1 macrophages is their capacity to deplete 
local tryptophan levels through their upregulated expression of 
the indoleamine 2,3-dioxygenase (IDO) enzyme (267) (Figure 1), 
which catalyzes this process (268). IDO-mediated tryptophan 
degradation is closely linked to macrophage antimicrobial 
responses but also to their immunoregulatory functions, as this 
tryptophan degradation results in the production of metabolites 
such as kynurenins ((269), Figure 3), which may inhibit T cell 
proliferation. IFNγ-stimulation of macrophages has been closely 
linked to inducing the mammalian macrophage IDO response 
(270–273).

The teleost IDO orthologs (renamed proto-IDOs) are less effec-
tive at tryptophan degradation than the mammalian IDOs (274), 
bringing to question whether these fish enzymes have distinct 
substrates. Interestingly, Mycobacterium marinum-challenged 
goldfish macrophages upregulate their proto-ido gene expression 
(275), suggesting a possible M1 role for this fish enzyme.

Nitric Oxide Response
Classically activated M1 macrophages possess high levels of the  
inducible nitric oxide synthase enzyme (iNOS/NOS2), which 
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catalyzes the conversion of L-arginine to L-citrulline, resulting 
in the production of nitric oxide (NO) (276) (Figure  4). As 
such, iNOS expression serves as a marker of M1 macrophage 

activation, which may be enhanced by macrophage stimulation 
with IFNγ, TNFα, and/or microbial compounds (e.g., LPS) (106). 
The parallel production of superoxide and NO can also result 
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in the formation of peroxynitrite (ONOO-), which is a potent 
antiparasitic/antimicrobial agent (277). The immune mechanism 
governing the teleost macrophage inducible nitric oxide (NO) 
appears to be well conserved to those described in mammals.

Akin to its mammalian counterpart, the fish iNOS has puta-
tive binding sites for heme, calmodulin, flavine mononucleotide, 
flavine adenine dinucleotide tetrahydrobiopterin, and NADPH, 
indicating that this is a highly conserved enzyme (278). The fish 
macrophage iNOS gene is induced by antimicrobial and inflam-
matory stimuli such as PAMPs/pathogen recognition (10, 11,  
278, 279), pro-inflammatory cytokines (138, 139, 183, 187) and 
cleaved transferrin products (280, 281). In turn, effective fish 
macrophage nitric oxide production is integral to fish antimicro-
bial immunity to a range of pathogens (282–287).

Sequential induction of Macrophage 
Antimicrobial Responses
While mammalian macrophages are thought to be able to undergo 
simultaneous ROI and NO responses (288), there are several 
reports suggesting that teleost (primarily cyprinid) fish mount 
and sequentially deactivate their antimicrobial responses (138, 
184, 260, 289, 290). We are aware of only one report describing 
sequential mammalian macrophage production of ROS followed 
by NO (291). However, the interdependence of the respective 
mammalian macrophage respiratory burst, tryptophan degrada-
tion, and nitric oxide responses suggest that sequential regulation 
of macrophage antimicrobial responses is not a strategy that is 
unique to teleosts and may be a predetermined fail-safe compo-
nent of all vertebrate macrophage antimicrobial responses.

The respiratory burst and nitric oxide responses are thought 
of, as two independent macrophage microbicidal mechanisms, 

where in the induction of one does not depend on the induction 
of the other (288). However, both responses may be linked to 
tryptophan degradation. IDO activation requires reduction of its 
ferric (Fe3+) heme to ferrous (Fe2+) heme and there has been some 
contention regarding the source(s) of electrons used toward this 
reduction of the IDO heme (292, 293). Interestingly, a prevail-
ing theory suggests that the superoxide anion, derived from the 
respiratory burst response, is in turn shunted into this enzymatic 
pathway, serving as this electron source (270, 273, 294, 295). It 
is interesting to consider that the sequential induction of the 
respiratory burst response before tryptophan degradation would 
ensure sufficient quantities of superoxide as a substrate for IDO 
activity and in turn would repurpose any remaining superoxide 
anions that had not reacted with the pathogen, thereby also 
minimizing bystander host cell damage. This notion is supported 
by the fact that the metabolites from tryptophan degradation are 
potent scavengers of ROS (296, 297). This in mind, simultane-
ous induction of macrophage tryptophan degradation and the 
respiratory burst response would thus be an overall inefficient 
microbicidal strategy, as the ROS would be actively scavenged 
by tryptophan catabolites. Thus, sequentially mounting these 
responses (Figure 5) would maximize the targeted effects of the 
respective responses.

Notably, macrophage tryptophan degradation appears to 
also be coupled to production of nitric oxide. Picolinic acid, a 
catabolite of tryptophan degradation (Figure 3), synergizes with 
IFNγ to induce nitric oxide production in murine macrophages 
(298–302). Picolinic acid exerts this nitric oxide inducing poten-
tial via a hypoxic responsive element located in the 5’ flanking 
region of the murine iNOS gene, while mutation or deletion of 
this promoter sequence impairs picolinic acid-induced gene 
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transcription of iNOS without affecting induction of nitric oxide 
synthase by LPS (300). Thus, we propose that staggering the 
kinetics of macrophage tryptophan degradation and nitric oxide 
production would ensure sufficient quantities of picolinic acid 
toward the synergistic induction of nitric oxide. In turn, if the 
respiratory burst response was concomitantly induced with nitric 
oxide production, then picolinic acid could not exert its nitric 
oxide inducing effects, as the respiratory burst creates an extremely 
hyperoxic microenvironment. We thus suggest that the induction 
of tryptophan degradation before nitric oxide production would 
facilitate the establishment of a hypoxic microenvironment due 
to the tryptophan catabolites actively scavenging reactive oxygen 
intermediates, permitting picolinic acid to augment nitric oxide 
production by macrophages.

Nitric oxide appears to be the terminal microbicidal response 
of vertebrate macrophages. In addition to its potent killing 
effects, nitric oxide is a deactivator of specific enzymes involved 
in macrophage cytotoxic reactions. Interestingly, NO inhibits 
both protein kinase C (needed for initiating the ROI response; 
Figure  2) and IDO enzymes involved in the activation of the 
respiratory burst and tryptophan degradation, respectively (303, 
304). Moreover, nitric oxide acts as a negative feedback inhibitor 
of its own synthesis (305, 306). Therefore, simultaneous induc-
tion of nitric oxide, respiratory burst and tryptophan degradation 
responses would antagonize PKC and thus NADPH oxidase acti-
vation (Figure 2) and the IDO enzyme. By sequentially inducing 
the nitric oxide response, subsequent to the respiratory burst 
and tryptophan degradation responses would ensure that each of 
these responses would be maximally induced and terminated in 
a timely manner, thus maximizing these respective antimicrobial 
responses and minimizing off-target effects of each response.

Based on the above and as outlined in Figure 5, we propose 
that such sequential induction and deactivation of macrophage 
antimicrobial responses may represent an important and presently 
poorly explored component of macrophage defenses. As activated 

macrophages are highly cytotoxic, the interdependence and tem-
poral segregation of their individual microbicidal responses likely 
represents an inherent way to minimize host cell damage and 
concomitantly to maximize pathogen elimination. For example, 
pathogenic microorganisms that are susceptible to ROI are rapidly 
killed upon phagocytosis by activated macrophages while those 
pathogens that are resistant to oxidative burst, are often susceptible 
to subsequent nutrient deprivation and/or antimicrobial attacks. 
Indeed, ablating the macrophage respiratory burst response while 
shunting the produced superoxide anion into tryptophan degra-
dation and the subsequent utilization of the picolinic acid from 
this response toward NO production (Figure 5) would maximize 
the effectiveness of each respective response. This would allow 
macrophages to divert and target their metabolic energy into 
distinct, targeted and timely antimicrobial assaults.

The proposed model shown in Figure  5 does not define 
macrophage activation in the context of a given individual mac-
rophage, and indeed individual macrophages do not necessarily 
have to cycle through all of the above responses. Moreover, while 
much contention remains regarding the functionality of dipartite 
mammalian macrophage subsets, teleosts clearly possess mac-
rophage sub-populations exhibiting dramatically different kinet-
ics of activation and distinct antimicrobial capacities (9, 148, 184, 
290). Notably, cyprinid kidney-derived monocyte-like cultures 
are considerably more proficient producers of ROS whereas the 
maturation of these cultures into predominantly macrophage-like 
cells coincides with their loss of respiratory burst capacities and 
a concomitant gain of significantly more robust NO responses 
(184). Presumably, sub-populations of macrophages with distinct 
antimicrobial potentials coordinate the sequential induction of 
macrophage antimicrobial responses in vivo.

It is unclear why despite considerably more rigorous investi-
gation of the mammalian macrophage, there is more evidence 
of sequential macrophage antimicrobial responses in teleosts. 
The central M1/classical activation strategies of mammals and 
teleosts are best framed by their respective functional polariza-
tion by IFNγ. As described above, mammalian species possess 
single IFNγ molecules that are important for the activation of 
M1 macrophage ROI and NO responses (Figure 1). Intriguingly, 
many teleost fish possess multiple distinct IFNγ proteins, some of 
which appear to be potent elicitors of the macrophage ROS, but 
not NO responses whereas others elicit robust NO production 
but meager ROIs (148). Thus, we argue that these fish species 
may have evolved to generate multiple distinct M1 macrophage 
populations, here denoted as M1a and M1b (Figure  1). As an 
extension of this notion, we argued that fish may have evolved 
this relatively elaborate classical macrophage activation strategy 
in order to better coordinate, and when needed, segregate their 
respective macrophage antimicrobial responses.

ACTivATiON OF ALTeRNATive/M2 
TeLeOST MACROPHAgeS

interleukin-4/13
M2 macrophages have ‘anti-inflammatory’, or ‘pro-healing’ phe-
notypes and the most extensively characterized M2-polarizing 
agents (sometimes called M2a) are the IL-4 and IL-13 cytokines 
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(Figure 1), which are typically produced by Th2 cells, eosinophils, 
basophils, NK-T  cells and certain macrophages subsets (307). 
IL-4 binds to the IL-4 receptor-alpha and either the IL-4 receptor-
gamma or the IL-13 receptor-alpha1 chains, culminating in Jak1, 
Jak3, and Stat6 downstream signaling (104). IL-13 also ligates 
the IL-13 receptor-alpha2 chain (104). Either of these M2 stimuli 
result in increased of expression/production of a number of hall-
mark M2 macrophage components including transglutaminase 
2, prostaglandin-endoperoxide synthase, transcription factors 
IRF4, macrophage mannose receptor, and suppressor of cytokine 
signaling 1 (SOCS1), all of which are present in fish but await 
to be functionally linked to teleost M2 macrophages (308–313).

Teleost possess IL-4/13A and IL-4/13B genes with sequence 
homology to both the mammalian IL-4 and IL-13 cytokines (314). 
These fish cytokines are thought to have arisen from genome/
gene duplication events, and are present in distinct copies in 
different fish species (315). Paralogs of IL-4Rα, IL-13Rα1 and 
IL-13Rα2 have also been identified in teleosts (316, 317), while 
the recombinant fish IL-4/13A induces B and T cell expansion 
in an IL-13Rα-dependent manner (318, 319), suggesting that the 
roles of these fish cytokines possess the immune roles of their 
mammalian counterparts. The fish IL-4/13A and IL-4/13B are 
thought to play the M2/anti-inflammatory roles attributed to the 
mammalian IL-4 and IL-13 (320) and the trout, seabass, grass 
carp and goldfish recombinant IL-4/13A and IL-4/13B possess 
many of these anti-inflammatory roles including the upregula-
tion of immunosuppressive genes (TGF-β, IL-10, SAP1, and 
SOCS3); dampening of pro-inflammatory cytokine gene expres-
sion (TNFα, IL-1β, and IFNγ); as well as elevating macrophage/
kidney phagocyte arginase gene expression and arginase activity 
(321–324). Notably, a true Th2 locus has been identified in spotted 
gar, consisting of RAD50, IL-4/13 and IL-3/IL-5/GM-CSF (IL-5) 
(325) while the constitutively high expression of trout and salmon 
IL4/13A in the thymus, skin and gill tissues have been attributed 
to immunological tolerance and thus a Th2-like response (320).

Arginase
The enhanced capacity to metabolize L-arginine marks an impor-
tant paradigm between M1 and M2 macrophages and underlines 
the M2 macrophage. This is intuitive, as M1 macrophage 
armamentarium is known for its elevated iNOS enzyme, which 
converts L-arginine to L-citrulline and NO. By contrast, the M2 
macrophage arginase enzyme converts L-arginine to L-ornithine 
and urea (326, 327). The tissue repair capacities of these M2 mac-
rophages in turn reflect their production of L-ornithine, which 
serves as a precursor for polyamines and proline components 
of collagen, during tissue repair (328). Notably, the products of 
these iNOS and arginase enzymatic pathways serve as reciprocal 
inhibitors of these antagonistic enzymes, promoting the respec-
tive M2 or M1 macrophage phenotypes (329).

Mammals possess two arginase isoforms, of which the mac-
rophage gene expression of arginase-1 is induced by IL-4 and 
IL-13 (330). By contrast, macrophage arginase-2 gene expression is 
upregulated by IL-10 and LPS (331). Fish possess both arginase-1 
and arginase-2 (332) and like mammals the fish M1/M2 paradigm 
is outlined by respectively elevated macrophage inos and arginase 
genes (10, 11, 279). By contrast to the mammalian M2 macrophages, 

carp alternative macrophage activation results in the induction of 
arginase-2 rather than arginase-1 expression (10). The facets of fish 
macrophage M2 polarization and the roles of arginase-2 to in this 
process have been thoroughly reviewed (190, 333).

gCs and interleukin-10
Glucocorticoids and IL-10 stimulation of macrophages culmi-
nates in a unique regulatory macrophage phenotype, otherwise 
known as M2c. GCs diffuse across plasma membranes, resulting 
in alterations to the expression of a plethora of immune-related 
genes, which results in these M2c macrophage transcriptional 
profiles that are distinct from those seen in IL-4/IL-13-stimulated 
macrophages (334, 335). These M2c macrophage transcriptional 
changes include decreased inflammatory cytokine gene expres-
sion and dampening of ROS production. In line with the immu-
nosuppressive nature of GCs, cortisol increases fish susceptibility 
to diseases (335, 336) and inhibits fish macrophage NO produc-
tion (337). Moreover, the simultaneously of fish macrophage 
cell lines with combined pro-inflammatory stimuli and cortisol 
results in elevated il10 gene expression (13), indicating that the 
cortisol treatment overrides the inflammatory stimuli.

The mammalian IL-10 cytokine signals through a recep-
tor complex composed of IL-10 receptors 1 (IL-10R1) and 2 
(IL-10R2), leading to downstream STAT3 activation, which 
results in decreased gene expression of pro-inflammatory 
cytokines (338). Macrophage IL-10 production may be elicited 
by TLR agonists, GCs, and C-type lectins (307). Fish IL-10R1 
has been identified in several cyprinids (339, 340), while the 
IL-10R2 has been reported in salmonids (341). Consistent with 
the mammalian counterpart, the goldfish recombinant IL-10 
down-regulates macrophage ROS responses and inflammatory 
gene expression (275).

THe MACROPHAge BRiDge BeTweeN 
THe iNNATe AND ADAPTive iMMUNiTY

In addition to their roles in early antimicrobial responses, 
macrophage-lineage cells are crucial to bridging the innate and 
adaptive arms of the vertebrate immune response. To this end, 
mammalian macrophages present intracellular pathogen-derived 
antigens to conventional CD8+ cytotoxic T cells via the MHC I 
pathway (342); extracellular antigens to CD8+ T  cells in the 
context of MHCI by means of antigen cross-presentation (343) 
and extracellular antigens to conventional CD4+ T helper cells by 
means of MHCII complex (344). In addition, myeloid cells may 
present non-protein antigens to unconventional lymphocytes, 
such as lipid antigens in the context of non-classical MHCI 
(CD1) to invariant T  cells and NK-T  cells (345). Moreover, 
macrophages readily clean up antibody-opsonized pathogens 
through Fc-receptor-mediated phagocytosis (346). The molecular 
mechanisms by which teleost fish macrophages bridge the innate 
and adaptive arms of their respective immune responses are by 
far the most poorly understood.

Teleost Antigen Presentation
The fish (salmonid) MHCI peptide-loading complex appears to 
be fundamentally and functionally similar to that of mammals 
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and the macrophage-like (RTS11) trout cell line has been demon-
strated to assemble this antigen presentation complex (347–349). 
Moreover, trout appear to possess an alternatively spliced variant 
of MHCI loading glycoprotein, tapasin (349), which is believed 
to serve as additional regulatory mechanisms in the fish MHCI 
antigen presentation pathway. While some fish species such as 
medaka, sharks (350) and zebrafish (351) possess considerable 
polymorphism within their respective MHCI loci, other species 
such as Atlantic salmon do not have significant polymorphisms 
within their classical MHC I antigen processing genes (352). 
Interestingly, some of the other salmon MHC I assembly and 
antigen processing genes have been retained as functional dupli-
cates (352). It is thought that these duplicated gene originated 
from the second vertebrate genome duplication event and are 
now providing various fish (and some tetrapods such as frogs 
and birds) with the potential of several different peptide-loading 
complexes (352).

Several teleost lineages have independently lost key com-
ponents associated with mammalian antigen presentation and 
immunological memory including MHCII and CD4 (353–355), 
although these species exhibit effective immune responses, 
suggesting that they have evolved alternative immunological 
strategies for dealing with repeat infections. Moreover, recent 
genome assembly efforts concomitant with expression analyses 
have yielded the reconstruction of the evolutionary history of 
the MHCI (356) and MHCII (357) gene families, demonstrating 
that teleosts MHC loci have undergone a complex series of gene 
and genome duplications, culminating in extensive variation in 
MHC structure and diversity across these animals (358). These 
distinct teleost species have undoubtedly evolved distinct antigen 
presentation strategies coinciding with their great diversity across 
MHCI and II loci. Little is presently know regarding the roles of 
professional antigen presenting cells such as macrophages in these 
respective species and it will be most interesting to learn how 
such cells are integrated within these diverse immune systems.

Distinct fish species also possess several disparate lineages of 
non-classical MHCs (358), the linkage of which is now believed to 
have separated before the emergence of tetrapods (359). However, 
the roles of teleost macrophages and other professional antigen 
presenting cells in presenting novel antigens in the context of 
these molecules remain to be explored.

Teleost DCs
Myeloid-lineage DCs represent heterogeneous populations 
of professional antigen presenting cells that share a common 
myeloid progenitor (macrophage-dendritic cell progenitor) with 
macrophages and are integral to linking the innate and adaptive 
immune responses (360). Teleosts appear to possess functional 
analogs to the mammalian DCs and in particular, salmonids 
have been documented to possessing putative DCs. For example, 
salmon possess DC-like cells that express MHCII and CD83 
(DC marker), are highly phagocytic and exhibit characteristic 
DC morphology (361). Trout also clearly possess DC-like cells 
expressing MHCII and other antigen presentation components, 
many DC markers (362) and exhibiting robust antigen presenta-
tion and lymphocyte activation capacities (363). Moreover, trout 
appear to possess DCs with cross-presentation capacities that 

express the same hallmark markers seen on the mammalian DCs 
specialized to antigen cross-presentation (364, 365). Similarly, the 
cyprinid zebrafish have been shown to possess cells expressing 
hallmark DC markers and displaying the capacity to present 
antigens and induce the proliferation of fish CD4+ T cells (366).

The Link Between Teleost innate and 
Antibody Responses
It is presently not clear what roles teleost antibodies play in the 
opsonization of pathogens that enhance macrophage phagocy-
tosis and the canonical Fc receptors responsible for this process 
in mammals have not been fully elucidated in teleosts (367). 
However, there are at least five distinct immunoglobulin domain-
containing multi-gene receptor families with some structural 
and signaling motifs seen in the mammalian Fc receptors (368). 
Moreover, as members of at least one of this family (LITRs) appear 
to play roles in phagocytosis (369, 370), it is conceivable that 
members of this, as well as the other receptor families may func-
tion as fish phagocytic receptors for antibody-opsonized targets.

While teleost orthologs to the mammalian Fc receptors remain 
elusive, teleosts are now known to encode poly Ig receptors 
(pIgRs) that are capable of binding to fish antibodies (371, 372)  
and appear to be involved in phagocytosis (373) but are not 
expressed on fish macrophages or B cells (371). It will be inter-
esting to learn whether distinct subsets of fish phagocytes may 
acquire the expression of pIgRs immune stimuli.

It is notable that cartilaginous fish (sharks) possess IgM-
mediated opsonization and cytotoxicity, which is mediated 
by granulocytes rather than macrophages (374). Turbot mac-
rophage phagocytosis of yeast and beads was greatly enhanced 
by opsonization with turbot Ig-containing serum fraction 
however, Ig-opsonized microsporidian spores were not taken 
up at a greater rate than non-opsonized spores (375). Similarly, 
brook trout macrophages phagocytosis of A. salmonicida was not 
enhanced when following opsonization of the bacteria by specific 
fish antibodies although complement-mediated opsonization sig-
nificantly enhanced bacterial uptake (376). It will be interesting to 
learn whether the teleost macrophage apparent lack of hallmark 
Fc receptors reflects in the above observations or whether bony 
fish macrophages are capable of undergoing antibody-mediated 
phagocytosis under distinct conditions and through distinct 
molecular mechanisms.

CONCLUDiNg ReMARKS

Akin to the vast heterogeneity of functionally desperate mac-
rophage subsets observed across mammals, teleost fish appear 
to possess both a spectrum of functionally distinct macrophage 
subsets as well as a plethora of potential molecular drivers 
of these distinct lineages. Moreover and in consideration of 
the strikingly distinct teleost physiologies, evolutionary and 
pathogenic pressures as well different repertoires of candidate 
macrophage differentiation factors, these organisms may well 
utilize (at least partially) distinct macrophage differentiation 
and activation strategies. It is notable that while many fish 
species possess multiple isoforms of key macrophage cytokines, 
functional studies of these moieties have often been limited to 
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one of the several isoforms and have addressed similarities to 
the mammalian counterparts whilst overlooking some potential 
functional differences. Indeed, distinct whole genome duplica-
tion events and the ploidy of respective fish species can be seen 
in disparate cytokine copy-number repertoires amongst even 
closely related fish species (377). These differences are exempli-
fied in copy numbers of hallmark macrophage cytokines such 
as IFNγ and TNFα across distinct fish. It  is generally assumed 
that the roles of these respective molecules are conserved 
to those of mammals. However, it is likely that the retention 
of multiple isoforms within a particular fish species and the 
often seen expression differences between these fish cytokine 
isoforms indicate non-overlapping and possibly novel roles for 
these respective immune mediators. A greater understanding 
of the mechanisms of fish macrophage antimicrobial immunity 
is warranted toward aquacultural applications and for the sake 
of fundamental research. With greater availability of both 

fish-specific reagents and genomic resources, the time is ripe 
for advancing our understanding of these processes.
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