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Objective: Sepsis is one of the leading causes of the deaths in hospitals. During sepsis, 
patients are exposed to endotoxemia, which may contribute to the dysregulation of 
the immune system frequently observed in sepsis. This dysregulation leads to impaired 
pro-inflammatory responses and may increase the risk for secondary infections in sep-
sis. The experimental human endotoxemia model is widely used as a model system 
to study the acute effects of endotoxemia. Under physiological circumstances, the 
immune system is tightly regulated. Effector T-cells exert pro-inflammatory function and 
are restrained by regulatory T-cells (Tregs), which modulate pro-inflammatory effector 
responses. Endotoxemia may induce inadequate Treg activity or render effector T-cells 
dysfunctional. It was the aim of the study to investigate effector T-cell and Treg responses 
in an experimental human endotoxemia model.

Methods: In a cross-over designed placebo-controlled study, 20 healthy male volun-
teers received an intravenous injection of either lipopolysaccharide (LPS) (0.8 ng/kg body 
weight) or a placebo (saline 0.9%). CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and intra-
cellular cytokine profiles were measured with flow cytometry at baseline and at repeated 
points after LPS/placebo injection. Complete blood cell counts were obtained with an 
automated hematology analyzer and cytokines were quantified by ELISA.

results: Circulating neutrophils were significantly increased 2  h after LPS injection 
(p  <  0.001) while absolute number of CD3+ T-cells, CD4+ T-cells, and CD8+ T-cells 
decreased (p < 0.001). Effector T-helper-cells (THs) showed a significant—but transient—
decrease of pro-inflammatory IFNγ, interleukin (IL)-2, TNFα, and IL-17A production after 
LPS injection (p < 0.001). In contrast, the frequency of Treg and the capacity to produce 
IL-10 were unchanged (p = 0.21).

conclusion: Effector THs fail to produce pro-inflammatory Th1-/Th17-associated cyto-
kines after LPS challenge. In contrast, IL-10 production by Treg is not affected. Thus, 
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inTrODUcTiOn

Sepsis is one of the leading causes of deaths in hospitals. Thera­
peutic options for sepsis patients are limited and mortality rates 
remain high (1–3). This life­threatening syndrome develops as a 
result of a dysregulated immune response to a pathogen (4). In this  
case, the clearance of the pathogen is inefficient and there is con­
tinuous activation of specific pro­inflammatory pathways (5). 
At the same time, the effector response of the immune system is 
disturbed; and the innate as well as the adaptive immune system 
are hypo­responsive (4, 5). In addition, a post­mortem study by 
Boomer et al. revealed that patients with fatal clinical course of 
sepsis showed signs of severe immunological dysfunction (6). 
Splenocytes had a reduced capacity to produce pro­inflammatory 
cytokines upon stimulation, and splenic T­cells were diminished 
in numbers (6). This so­called “immunoparalysis” is a severe 
immunosuppressive state that makes the host susceptible for 
secondary infections (4, 5, 7). Experimental human endotoxemia, 
in which lipopolysaccharide (LPS) is administered to healthy 
volunteers, has been established as a model to study the diverse 
effects of endotoxemia (8–12). In this model, features of dys­
functional immunity can be observed. Leukocytes from healthy 
volunteers with LPS exposure show reduced responsiveness to  
ex vivo stimulation with LPS and other toll­like­receptor agonists 
(7–11, 13). Therefore, the human experimental endotoxemia model  
was also used in a double­blind placebo­controlled pilot study 
to investigate agents, which may reverse immunoparalysis (7). 
Recent studies emphasize the growing importance of effector 
T­cells and regulatory T­cells (Tregs) in sepsis (14). Effector T­cell 
subsets have pro­inflammatory function, are classified according 
to signature cytokines, and have pivotal role in defense against 
pathogens—Th1  cells produce interferon gamma (IFNγ) and 
interleukin (IL)­2 to support cell­mediated immunity; Th17 cells 
produce IL­17 (Th17) and have a crucial role in the inflammatory 
response against parasites, extracellular, and fungal pathogens 
(15, 16). Treg subsets with anti­inflammatory capacity limit pro­ 
inflammatory T­cell responses (17). Tregs balance T­cell homeo­
stasis, activation, and function via numerous different mechanisms 
including secretion of IL­10 (17, 18). IL­10 has been suggested as 
an important regulator in sepsis (4, 19).

It has not been well studied which type of T­cell subsets are 
affected by endotoxemia, and the kinetics of the T­cell dysfunction 
are not exactly known. The aim of this study was to characterize 
T­cell responses during endotoxemia. Therefore, T­cell function 
of pro­inflammatory effector T­cells and anti­inflammatory Tregs 
was analyzed in a human endotoxemia model.

MaTerials anD MeThODs

Participants
The study is a single­center, placebo­controlled, randomized,  
and single­blinded trial in a cross­over study design. Healthy 

men aged 18–40 years were recruited by public advertisement.  
The extensive screening and safety procedure consisted of per­
sonal interview, conducted by a physician, a physical examination 
including an assessment of blood and clinical chemistry param­
eters (complete blood cell count, C­reactive protein, coagulation 
factors, lactate­dehydrogenase, myoglobin, creatinkinase, liver 
enzymes, renal, and hormonal parameters). Laboratory screen­
ing was conducted before each study day (LPS vs. placebo) and  
up to 1 week after completing the study. Participants were exc­
luded with reported or current medical and psychological condi­
tions, body mass index (BMI) <19.0 or ≥ 27.0 kg/m2, current 
medication, smoking, regular and/or high alcohol consumption, 
severe allergies, or depression scores exceeding published cut­ 
offs of the Beck Dep ression Inventory (BDI, 14). Additional 
excluding factors were extensive sport exercises 24 h before and 
after the study days and vaccinations within the last 2 months. 
One participant did not complete the +72 h time point within  
the LPS condition due to a case of family related acute gastroen­
teritis. The study protocol was approved by the local ethics com­
mittee of the University Hospital Essen, Germany (permission 
sign: 15­6533­BO). All volunteers provided written informed 
consent in accordance with the Declaration of Helsinki and 
received financial reimbursement for their participation in the 
study.

study Protocol
The study comprised a placebo and a LPS condition, i.e., parti­
cipants received either LPS or placebo on two otherwise iden­
tical study days. The participants either started with the placebo  
condition followed by the LPS condition or with the LPS con­
di tion followed by the placebo condition, with a minimum of  
7 days between study conditions. The order of study days was ran­
domized and counterbalanced (www.randomizer.org was used  
for randomization). The study took place in a medically equip ped 
room under supervision of an internal physician. After the arrival 
of the participants, an intravenous catheter was inserted in a cubi­
tal vein for repeated blood drawing and endotoxin injection. 
After a rest of 30 min, vital signs including heart and breath­
ing rate, pulse oximetry (Kernmed Oled, Ettlingen, Germany), 
and blood pressure (Dinamap Compact T, Critikon, Nor derstedt, 
Germany) were measured. One hour after arrival, subjects 
received an intravenous injection of 0.8 ng LPS/kg of body weight  
(Eschericha coli LPS 200 ng/ml, LOT HOK354, USP The United 
States Phar macopeial Convention, Inc., Rockville, MD, USA as 
previously described) under continuous vital sign monitoring 
(20). LPS had been consigned to the German federal Agency for 
Sera and Vaccination (Paul­Ehrlich Institute, Langen, Germany) 
for a microbial safety testing and was stored in endotoxin­free 
borosilicate tubes (Pyroquant Diagnostik, Mörfelden­Walldorf, 
Germany) at −20°C until use. At study days, blood samples for 
complete blood counts and cytokine analysis were collected in 
EDTA­coated tubes at defined time points: before (baseline), as 
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well as +1, +2, +3, +4, +6, +24, +48, and +72 h after the injection 
of endotoxin (LPS) or placebo, respectively. EDTA plasma was 
separated by centrifugation and stored at −80°C. Venous blood 
was collected in heparinized tubes at the following time points: 
baseline, +3, +24, +48, and +72 h. Following each blood samp­
ling, body temperature, blood pressure, heart rate, and breathing 
rate were assessed.

White Blood cell count
Complete blood counts containing white blood cell (WBC), 
neutrophils, mono­/lymphocytes, and platelets were obtained via 
automated hematology analyzer (KX­21N, Sysmex Deutschland 
GmbH, Norderstedt, Germany) using EDTA­anticoagulated peri­
pheral blood samples.

PBMc isolation
PBMC isolation was facilitated by Ficoll density gradient centri­
fugation. The gradient was a commercially available Ficoll sepa­
ration medium (Lymphoprep, STEMCELL Technologies, Köln, 
Germany). PBMCs were resuspended in RPMI 1640 medium 
with Glutamax (Gibco Life Technologies, Darmstadt, Germany) 
supplemented with 10% heat­inactivated fetal calf serum (Greiner 
Bio­One, Frickenhausen, Germany), 2% of penicillin and strep­
tomycin, as well as with non­essential amino acids (MEM NEA) 
and sodium pyruvate (all from Gibco Life Technologies).

antibodies and Flow cytometry
The fluorescently conjugated antibodies were supplied by BD 
Biosciences (BD Biosciences, Erembodegen, Belgium), eBiosci­
ence (ebioscience, Schwerte, Germany), Biolegend (Biolegend, 
London, United Kingdom), Invitrogen (Invitrogen, Schwerte, 
Germany), and Beckman Coulter (Beckman Coulter, Krefeld, 
Germany). Following dyes were used for the Treg surface pheno­
typing: anti­CD4 (mouse IgG1, PerCP), anti­CD8 (mouse IgG1, 
APC­H7), anti­CD25 (mouse IgG1, PE­Cy7), anti­CD127 (mouse 
IgG1, FITC), and appropriate isotype controls. Cytokine assess­
ment included: anti­CD3 (mouse IgG1, HorV450), anti­CD8 
(mouse IgG1, APC­H7), anti­IL­2 (mouse IgG1, PE), anti­IL­10 
(rat IgG1, APC), anti­IL­17A (mouse IgG1, PerCP), anti­IFNγ 
(mouse IgG1, FITC), anti­TNFα (mouse IgG1, PE), and anti­
CD69 (mouse IgG1, PE­Cy7). We carried out flow cytometry 
acquisition on a 3­laser Navios instrument (Beckman Coulter), 
equipped to detect 10 fluorescent parameters. Compensation 
and data analyses were done with Kaluza Analysis 1.5a software 
(Beckman Coulter).

T-cell Quantification
Absolute counts of CD3+ T­cells, CD4+ T­cells, and CD8+ T­cells 
were assessed in lysed whole blood immediately after collection. 
100 µl of an undiluted blood sample was stained with premixed 
multitest antibody anti­CD3 (mouse IgG1, PE­PC7), anti­CD4 
(mouse IgG1, PE), and anti­CD8 (mouse IgG1, FITC) (Beckman 
Coulter), vortexed and lysed (Beckman Coulter). 100 µl AccuCheck 
Counting Beads (Thermo Fisher scientific, Schwerte, Germany)  
were mixed with the sample to allow absolute quantification by 
flow cytometry.

T-cell analysis
Surface phenotyping and intracellular cytokine analyses of T­cells  
were performed with freshly isolated PBMC. PBMCs were sta­
ined with antibodies for 30 min and analyzed immediately after 
washing with Dulbecco’s phosphate­buffered saline (DPBS 1×;  
Gibco, Life Technologies) in case of surface phenotyping. Isotype 
controls were used to confirm specificity of staining and to dis­
criminate background staining.

To assess cytokine production of T­cells, PBMCs were 
stimulated with a stimulation cocktail (plus protein transport 
inhibitors; Ebioscience) for 4 h. Stimulation cocktail consists of 
phorbol­12­myristate 13­acetate (PMA), ionomycin, brefeldin A,  
and monensin as protein transport inhibitors. Surface staining,  
fixation, and permeabilization (CytoFix/CytoPerm kit; BD Bio­
sciences) followed. After fixation and permeabilization, PBMCs 
were stained intracellularly for IFNγ, IL­2, IL­10, IL­17A, and/
or TNFα. Unstimulated PBMC served as controls. Stimulation 
induces a downregulation of CD4, thus CD4+ T­helper­cells 
(THs) were defined as CD3+CD8neg T­cells.

Peripheral cytokine level
EDTA plasma concentrations of IL­10, TNFα, and IP­10 were 
measured by ELISA (Human Quantikine ELISA, R&D Systems, 
Wiesbaden­Nordenstadt, Germany) at room temperature on a 
Fluostar Optima microplate reader (BMG Labtech, Offenburg, 
Germany). The sensitivity of the assays was 3.9 pg/ml for IL­10, 
0.7 pg/ml for TNFα, and 4.46 pg/ml for IP­10.

statistical analysis
Mean values, their ±SEM and ranges, and normal distribution 
of data were calculated for each variable using the SPSS Software 
(SPSS 22.0, SPSS Inc., Chicago, IL, USA). Grubbs’ test was used 
to identify outliers. The graphs were made using GraphPad 
Prism® 6 (Version 6.01, GraphPad Software, Inc., La Jolla, CA, 
USA). Repeated measures (e.g., cytokine concentrations) were 
compared between LPS and placebo conditions using two­way 
repeated measure ANOVA with the repeated factors time and 
condition (i.e., LPS, placebo). To compare single measurement 
points separately between LPS and placebo, post hoc paired t­tests 
were calculated with Bonferroni corrections for multiple testing, 
if not otherwise indicated. The p­values <0.05 were considered  
to be statistically significant.

resUlTs

Demographic and clinical characteristics
Twenty healthy volunteers of Caucasian ethnicity with a mean  
age of 26.1  ±  0.9  years (range: 18–34) and a mean BMI of 
24.2 ± 0.5 kg/m2 (range: 19.3–26.9) were included in this cross­
over study. There was no difference with respect to the time to 
switch conditions comparing the two groups (LPS/placebo vs. 
placebo/LPS, 32 ± 11.4 days vs. 33 ± 8.4 days, p = 0.86). We did 
not observe differences between participants who received LPS 
before or after saline in any dependent variable (data not shown). 
Endotoxin injection induced a transient systemic inflamma­
tory response in all participants, which was characterized by a 
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TaBle 1 | Clinical parameters at baseline and 3 h after LPS/placebo injection.

Variables lPs condition (n = 20) Placebo condition (n = 20) interaction p-value

Body temperature (°C) 36.2 (±0.1) vs. 37.6 (±0.1)** 36.3 (±0.1) vs. 36.4 (±0.1) <0.001
BP systolic (mmHg) 130.0 (±2.6) vs. 116.4 (±6.0) 131.2 (±3.0) vs.127.3 (±2.6) 0.248
BP diastolic (mmHg) 68.1 (±1.6) vs. 63.1 (±1.9) 70.5 (±1.8) vs. 66.0 (±1.8) 0.844
HR (bpm) 72.3 (±2.5) vs. 85.2 (±3.2)** 73.2 (±2.9) vs.68.5 (±2.3) <0.001
Respiratory rate (ipm) 14.3 (±0.4) vs.16.0 (±0.5)** 14.8 (±0.4) vs.14.4 (±0.4) <0.001
WBC count (×103/μl) 5.3 (±0.3) vs.8.3 (±0.5)** 5.1 (±0.2) vs. 5.7 (±0.2)** <0.001
HCT (%) 39.1 (±0.5) vs. 38.8 (±0.7) 39.9 (±0.9) vs. 38.4 (±0.8)* 0.120

Data were presented as mean ± SEM. Data were analyzed with two-way ANOVA, followed by exploratory paired t-tests.
LPS, lipopolysaccharide; HR, heart rate; BP, blood pressure; WBC, white blood cell; HCT, hematocrit.  
Interaction p-values in italics are significant.
Asterisks indicate the significance level of the paired t-test: *<0.05, **<0.005, no asterisk, not significant.
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significant increase in WBC count. In addition, body temperature, 
heart rate, and respiratory rate increased after LPS administration 
(all p < 0.001, ANOVA interaction effects, Table 1).

cellular response to lPs injection
LPS application led to a significant increase in total neutrophil 
count peaking at 6 h post­injection (F = 92.51, p < 0.001; ANOVA 
interaction effect, Figure  1A), while monocytes (F  =  14.16; 
p  <  0.001; ANOVA interaction effect, data not shown) and 
lymphocytes (F  =  108.8; p  <  0.001; Figure  1A) significantly 
decreased. Maximum reduction of lymphocyte and monocyte 
counts occurred 4 or 2 h after LPS injection. Cell counts were nor­
malized after 24 h for lymphocytes and after 4 h for monocytes. 
The absolute numbers of circulating T­cells were diminished 3 h 
after LPS challenge and recovered at 24 h (Figure 1B).

soluble systemic il-10 and iP-10 levels 
increase after lPs challenge
Low­dose LPS injection induced significant changes in plasma 
concentrations of the pro­inflammatory cytokines interferon­
induced protein 10 and TNFα (IP­10, F  =  72.0, p  <  0.001, 
Figure 2A; TNFα, F = 26.2, p < 0.001, both ANOVA interaction 
effects), as well as in the anti­inflammatory cytokine IL­10 
(F = 21.5, p < 0.001; Figure 2B). The maximum IP­10 concentration  
was reached 4 h after LPS administration, whereas the IL­10 peak 
concentration occurred earlier at 2 h after LPS injection. IP­10 
and IL­10 levels returned to baseline after 24 h (Figure 2).

effector T-cells Fail to Produce  
Pro-inflammatory cytokines after lPs 
challenge Whereas anti-inflammatory 
Treg remain Unaffected
Total number of CD3+ T­cells (F = 42.4, p < 0.001; Figure 1B), 
CD4+ T­cells (F = 40.4, p < 0.001; Figure 1B), and CD8+ T­cells 
(F = 22.3, p < 0.001, all ANOVA interaction effects; Figure 1B) 
showed a significant reduction 3 h after LPS injection and 
norma lized after 24 h. In the placebo condition, changes in T­cell 
subset counts were observable according to the circadian rhythm 
(21). Interestingly, the percentage of IL­2 (F  =  2.2, p  =  0.08, 
Figure 3), IFNγ (F = 3.7, p < 0.001, Figure 3), TNFα (F = 3.87, 
p  =  0.007, data not shown), and IL­17A (F  =  7.4, p  <  0.008,  
Figure  3; Table  2) producing THs decreased 3  h after LPS 

injection as compared to baseline and placebo (all ANOVA 
interaction effects). IFNγ and IL­17A production by THs were 
fully restored 24 h after LPS injection (Figure 3). In contrast, the 
relative fraction of Treg was stable and remained unchanged after 
LPS injection (F = 1.8, p = 0.13; Figure 4). The absolute numbers 
of Treg were reduced due to the drop of total T­cell numbers after 
LPS challenge. Nevertheless, the capacity of Treg to produce IL­10 
was not affected by LPS challenge (F = 0.7, p = 0.57; ANOVA 
interaction effects, Figure 4).

DiscUssiOn

This study reveals new insights into the differential effects of 
endotoxemia on anti­ and pro­inflammatory T­cell responses. 
Overall, absolute T­cell numbers were decreased sharply after 
LPS challenge within 3 h after injection. Pro­inflammatory effec­
tor THs lost the capacity to produce IL­17A, IL­2, TNFα, and 
IFNγ as early as 3 h after LPS injection and regained function 
post endotoxemia. The relative number of anti­inflammatory 
Tregs and its capacity to produce IL­10 remained stable and did 
not change during endotoxemia.

In contrast to murine experimental endotoxemia, humans are  
highly sensitive to LPS (2, 4). Thus, healthy participants challenged 
with LPS respond with a rise of body temperature and fever, 
elevated heart, and breathing rate partially leading to tachycardia/ 
tachypnea, decreased blood pressure, and neutrophilia (11, 22–25).  
Human experimental endotoxemia is a well­investigated model 
for systemic inflammation (7–13, 26, 27). This model is advanta­
geous over patient studies, as it is not biased by pretreatment 
or comorbidities. The experimental human endotoxemia model 
has been used in low and high dose settings to address different 
immunological questions regarding innate and cellular immune 
res ponses during systemic inflammation (0.4–4.0  ng/kg body­
weight) (7, 11, 14, 22, 24–27).

In our cohort, LPS challenge in the lower dosage range caused 
a clinical and an immunological response of the subjects, which 
was absent under placebo conditions indicating the efficacy of 
our model.

There was a differential effect on T­cell populations in our 
model. The capacity of effector T­cells to produce pro­inflam­
matory cytokines such as IFNγ, TNFα, IL­2, or IL­17A was 
diminished 3 h after LPS injection. Impaired IFNγ production by 
T­cells has been described after administration of higher doses  
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FigUre 1 | Dynamics of neutrophils, lymphocytes, and T-cells over time after lipopolysaccharide (LPS) challenge. (a) Neutrophils were significantly increased 
between 2 and 6 h after LPS application and normalized after 24 h, while lymphocytes showed a significant decrease between 2 and 6 h. Neutrophil and 
lymphocyte counts remained unchanged in the placebo condition. (B) After 3 h of LPS injection, all T-cell subsets showed a significant decrease of absolute T-cells 
counts with normalization after 24 h. In the placebo condition, T-cell subset counts were increased 3 h after placebo injection as compared to baseline, following the 
circadian rhythm (nadir of naïve CD4+T-cells/naïve CD8+ cytotoxic T-cells at 11:00 a.m., peak of naïve CD4+ T-cells/CD8+ T-cells around 2:00 a.m.) Data are given as 
mean (±SEM). Two-way ANOVA analysis with repeated measures was performed followed by post hoc Bonferroni-corrected paired t-tests. *p < 0.05, **p < 0.01, 
***p < 0.001, results of post hoc Bonferroni-corrected t-test. For results of ANOVA see text.
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of LPS (2.0 and 4.0 ng/kg bodyweight); in line with our study, 
IFNγ production normalized after 24 h (13, 22). Whereas in these  
studies, cytokine concentrations in supernatants were deter­
mined, we clearly demonstrated a lack of function and impair­
ment of the circulating CD4+ TH compartment to produce IFNγ 
on single­cell level (13, 22). Van de Veerdonk et  al. reported 
deficient Candida­specific IL­17A+ T­cell responses in healthy 
subjects receiving a relatively high dose of LPS (2 ng/kg body­
weight) and in patients with gram negative sepsis (28). We found 
that even a lower dose of LPS led to a reduced capacity of effector 
T­cells to produce IL­17A; however, this effect was transient and 
effector T­cells recovered 24 h after LPS challenge.

We further studied potential causes for the dysfunction of the 
effector TH compartment. Increased numbers of or enhanced 
activity of anti­inflammatory Treg may lead to potent inhibition  
of effector T­cells (18, 19). LPS exposure may have a direct effect  

on Treg and is reported to promote Treg function (29, 30). Interes­
tingly, neither the relative fraction nor the functional capacity 
of Treg to produce IL­10 was altered after LPS administration in 
our study. Ronit et al. observed a relative increase of Treg, which 
returned to baseline 24 h after LPS injection (14). In addition, 
the authors reported a marked suppression of a broad range of 
cytokines, including IL­10, when whole blood was stimulated with 
the T­cell mitogen phytohemagglutinin. These results conflict 
with our findings. We found IL­10 production to be unaffected 
on single T­cell level and demonstrated that the relative fraction 
of Treg remained stable after LPS challenge. However, there are  
several methodological differences between the study of Ronit 
et al. and ours, which may explain the observed discrepancies. First, 
the dosage of LPS administered to healthy volunteers was much 
lower in our study. Second, we chose, in contrast to Ronit et al.,  
a placebo­controlled cross­over study design and followed a 
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FigUre 3 | Circulating effector T-helper-cells (THs) are diminished after 
lipopolysaccharide (LPS) challenge. THs producing IL-2 (a), IFNγ (B), and 
IL-17A (c) after LPS- (gray boxes) or placebo administration (black circles) 
are given as mean ± SEM over 72 h. IFNγ and IL-17A producing THs were 
significantly decreased 3 h after LPS injection and returned to baseline 
after 24 h. Two-way ANOVA were performed with repeated measures 
followed by post hoc Bonferroni-corrected paired t-tests. *p < 0.05, 
**p < 0.01, ***p < 0.001, results of post hoc Bonferroni-corrected paired 
t-tests. For interaction p-values of ANOVA, see text. Asterisks in 
parentheses indicate results from post hoc paired t-test, which remain 
non-significant after Bonferroni-correction.

FigUre 2 | IP-10 and IL-10 plasma concentrations increased after 
lipopolysaccharide (LPS) challenge. (a) Pro-inflammatory cytokine plasma 
levels of IP-10 and (B) of the anti-inflammatory cytokine IL-10 increased after 
LPS (0.8 ng/kg, gray boxes) challenge. Placebo administration (black boxes) 
did not alter IP-10 or IL-10 plasma levels. Mean ± SEM are shown. Two-way 
ANOVA analysis was performed with repeated measures followed by 
post hoc Bonferroni-corrected paired t-tests. *p < 0.05, **p < 0.01, 
***p < 0.001, results of post hoc Bonferroni-corrected paired t-tests. For 
results of ANOVA, see text. Asterisks in parentheses indicate results from 
post hoc paired t-test, which remain non-significant after Bonferroni 
correction.
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higher number of healthy volunteers in a longitudinal manner. 
Finally, we determined and characterized T­cells on a functional 
single­cell level, whereas Ronit et al. did not determine the func­
tional capacity of T­cells but instead measured cytokines in super­
natants of stimulated whole blood cultures (14). Nevertheless, 
in our cohort systemic levels of the anti­inflammatory cytokine, 
IL­10 increased significantly during endotoxemia and might 
be derived from other cells than T­cells. Accordingly, LPS also 
promotes IL­10 secretion by neutrophils (29, 30). Thus, impaired 
capacity of T­cells to exert pro­inflammatory function might be 
caused by soluble factors such as IL­10 released by LPS­triggered 
neutrophils or monocytes. In line with this observation, T­cell 
capacity to produce IFNγ or IL­17A was normalized after 24 h 
when systemic IL­10 levels had returned to their baseline. It has 
to be considered that other cell subsets not being investigated in 

our study, such as unconventional T­cell subsets, may mediate 
additional anti­inflammatory effects (31, 32).

Alternatively, it has to be considered that pro­inflammatory 
T­cells were not rendered anergic but were simply depleted from 
the circulation by increased apoptosis, pooling in the spleen, or 
increased adhesion to vessel walls (4, 33, 34). In addition, T­cells 
may migrate to peripheral tissues such as lung or liver during 
systemic inflammation. Depletion or migration of T­cells would 
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FigUre 4 | Treg numbers and IL-10 production by T-helper-cells (THs) are 
not impaired after lipopolysaccharide (LPS) challenge. CD4+CD25hiCD127low 
Treg (a) and IL-10 producing THs (B) after LPS-(gray boxes) or placebo 
administration (black circles) are depicted as mean percentages (±SEM) over 
72 h. Two-way ANOVA with repeated measures were performed. The p-value 
compares the interaction between time and condition.
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have prevented detection of pro­inflammatory T­cell subsets in 
our ex vivo assay.

The limitation of our study is that a single endotoxin chal­
lenge was administered; thus, we investigated in our model the 
immune response to an acute challenge of LPS which does not 
resemble sepsis. Accordingly, immunosuppression in our experi­
mental human endotoxemia model was transient and short­lived 
in contrast to persistent, long­lasting immunoparalysis in sepsis 
(4, 7, 11, 14). Kox et  al. studied earlier the effect of repeated 
LPS challenges in healthy volunteers (35). A diminished in vivo 
response to LPS in terms of attenuated TNFα­, IL­6, and IL­10 
serum levels was observed upon re­challenge. The ex vivo T­cell 
response has not been assessed in these kinds of studies, and it 
will be of interest to know whether repeated LPS challenges have  
similar impact on T­cell function. Furthermore, immunoparalysis  
is usually observed days after onset of sepsis whereas transient 
immunosuppression in the human endotoxemia model is already 
detectable after hours. Therefore, the immunological response to 
a single endotoxin challenge in the human experimental endo­
toxemia model reflects a physiological mechanism to limit the 
immune response after an initial pro­inflammatory phase rather 
than a dysregulation of the immune system. Notwithstanding,  
the mechanisms inducing the immunosuppressive state are 
assumed to be similar and thus, this model is also used in interven­
tional trials to assess pharmacological interventions to abrogate 
immunoparalysis (7). Our findings that Th1 and Th17 cells are 
profoundly suppressed by endotoxemia whereas IL­10 pro duction 
by T­cells remains unaffected, may add to the understanding dys­
regulated immunity sepsis. Indeed, a post­mortem study revealed 
that production of Th1­associated cytokines by splenic T­cells 
from septic patients was significantly reduced (6). In addition, 
diminished Th17 cell responses have been reported in patients 
with sepsis (28). Another study assessed T­cell­derived IL­10 
production and found no difference between septic patients and 
controls, which is in line with our data (36). Altogether, this may 
suggest that restoration of pro­inflammatory immunity is more 
important than abrogation of anti­inflammatory immunity as 
future therapeutic strategy to break immunoparalysis.

In conclusion, we could demonstrate that even a low dose 
of LPS induces potent suppression of pro­inflammatory T­cell 

TaBle 2 | Immunological characterization: T-cell cytokine production after LPS/placebo injection.

intracellular cytokine production lPs condition (n = 20) Placebo condition (n = 20) interaction p-value

0 vs. +3 h 0 vs. +3 h

0 vs. +24 h 0 vs. +24 h

IL-2 (% of THs) 45.4 (±2.0) vs. 37.2 (±2.2)** 43.9 (±2.1) vs. 44.1 (±2.1) 0.008
46.0 (±2.1) vs. 37.8 (±2.4)** 44.5 (±2.1) vs. 43.6 (±2.8) 0.023

IL-10 (% of THs) 0.84 (±0.1) vs. 0.71 (±0.1) 0.84 (±0.1) vs. 0.83 (±0.1) 0.399
0.83 (±0.1) vs.0.64 (±0.1) 0.84 (±0.1) vs. 0.76 (±0.1) 0.249

IL-17A (% of THs) 1.15 (±0.1) vs. 0.63 (±0.1)** 1.28 (±0.1) vs. 1.30 (±0.1) 0.002
1.15 (±0.1) vs. 1.18 (±0.1) 1.30 (±0.1) vs. 1.11 (±0.1) 0.075

IFNγ (% of THs) 17.3 (±1.5) vs. 5.0 (±0.7)** 19.9 (±1.7) vs.19.3 (±1.8) <0.001
17.3 (±1.5) vs. 14.2 (±1.6) 20.3 (±1.7) vs. 17.2 (±2.0) 0.961

Data were presented as mean ± SEM. The percentage of THs producing IL-2, IL-10, IL-17A, or IFNγ is given. Data were analyzed with two-way ANOVA, followed by exploratory paired t-tests.
Asterisks indicate the significance level of the paired t-test: *<0.05, **<0.005, no asterisk, not significant.  
Interaction p-values in italics are significant.
LPS, lipopolysaccharide; IL, interleukin; THs, T-helper-cells.
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subsets and does not affect the capacity of anti­inflammatory Treg 
to produce IL­10.
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