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Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. 
Despite recent advances in the understanding of its pathophysiology, asthma remains 
a major public health problem and, at present, there are no effective interventions 
capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based ther-
apy mitigates lung inflammation in experimental allergic asthma; however, its ability to 
reduce airway remodeling is limited. We aimed to investigate whether pre-treatment 
with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in 
experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite 
(HDM) extract was intranasally administered to induce severe allergic asthma in mice. 
Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final 
HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity 
in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were 
analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resol-
vin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor 
(TGF)-β1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimu-
lated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, 
alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and colla-
gen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage 
counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental 
allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory 
mediators (RvD1, PGE2, IL-10, and TGF-β), modulation of macrophages toward an 
anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, 
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inTrODUcTiOn

Allergic asthma is a chronic inflammatory disease characterized 
by airflow obstruction and airway hyperresponsiveness driven 
by immune responses to allergens (1). The imbalance between 
tissue injury and repair caused by chronic inflammation leads 
to the hallmark features of the chronic lung remodeling  process 
in asthma (2). At present, no therapeutic approaches can reverse 
 airway remodeling. Inhaled or systemic corticosteroids can 
decrease chronic inflammation, but do not halt or reverse the 
remodeling process in the lungs (3, 4), and long-term use of 
high-dose corticosteroids can cause systemic side effects (5). 
Therefore, there is an unmet need for novel therapeutic strategies 
that can repair damaged tissue, while simultaneously mitigating 
the inflammation and remodeling process.

Several studies have demonstrated that mesenchymal stromal 
cells (MSCs) have strong immunomodulatory properties and 
are able to secrete soluble paracrine factors (6–8). Systemic or 
intratracheal administration of MSCs derived from bone mar-
row, adipose, and other tissues has been shown to significantly 
reduce inflammation and improve airway hyperresponsiveness 
in different models of allergic asthma (6, 9–11). However, their 
ability to reverse airways remodeling is only marginal (7, 12, 13). 
Given this limitation, recent studies have tried to potentiate the 
therapeutic effects of MSCs by using physical, biological, and/or 
chemical pre-stimulation to enhance cell survival and regenera-
tive properties (14–17).

Omega-3 fatty acids are polyunsaturated essential fatty acids, 
mainly found in fish oil, that have immunomodulatory properties 
(18, 19). In particular, eicosapentaenoic acid (EPA) has been found 
to inhibit inflammatory responses in human asthmatic alveolar 
macrophages more efficiently than docosahexaenoic acid (20). 
Some reports have also shown that EPA reduces mucus hyper-
secretion and levels of several inflammatory mediators as well 
as can enhance the regulatory T-cell response (21). Additionally, 
EPA serves as a substrate during cellular stress to produce anti-
inflammatory mediators, such as eicosanoids and resolvins (18), 
and suppress tissue remodeling by reducing collagen deposition 
in the airways (22). However, the effects of EPA on MSCs remain 
unknown, as well as whether pre-incubation of MSCs with EPA 
could enhance the therapeutic effects of MSCs in asthma.

The present study aimed to investigate whether exposure 
of MSCs to EPA could potentiate their effects in experimental 
allergic asthma by enabling them to further reduce inflammation 
and airway remodeling. For this purpose, unstimulated and EPA-
stimulated MSCs were administered in a murine model of house 
dust mite (HDM)-induced allergic asthma to comparatively eval-
uate their therapeutic effects on lung mechanics, histology, pro-
tein levels of pro-inflammatory biomarkers and cellularity in the 
bronchoalveolar lavage fluid (BALF), thymus, mediastinal lymph 
nodes (mLNs), and bone marrow. Furthermore, the effects of EPA 

on lipid body formation, and interleukin (IL)-10, transforming 
growth factor (TGF)-β1, resolvin-D1 (RvD1), and prostaglandin 
E2 (PGE2) secretion by MSCs were evaluated in vitro.

MaTerials anD MeThODs

experimental Protocol
Seventy-two C57BL/6 mice (64 females and 8 males, weight 
20–25 g, age 8–10 weeks) were used. MSCs were harvested from 
male mice and characterized. Thirty-two females were used to 
evaluate lung mechanics and histology, while the remaining 32 
were used to analyze biomarker secretion, total and differential 
cell counts in BALF, and cell counts in bone marrow, lymph 
nodes, and thymus (n = 8/group).

All animals were randomly allocated across two groups 
(Figure S1 in Supplementary Material). In the HDM group, mice 
were challenged with intranasal instillation of 25  µg protein 
(diluted in 25 µL of phosphate-buffered saline [PBS]) presented 
in HDM extract, on 3 days/week for 3 weeks (13, 23). The control 
(CTRL) group received intranasal instillation of sterile PBS under 
the same protocol. Twenty-four hours after the last challenge, the 
HDM group was subsequently randomized into three subgroups 
to receive sterile saline (50 µL, SAL) or MSCs (105 cells per mouse) 
unstimulated or stimulated with EPA via the intratracheal route. 
Three days after therapy, mice were euthanized, and all data 
analyzed. Investigators were blinded to experimental groups for 
all in vivo and in vitro measurements.

Mscs stimulation and characterization
Male C57BL/6 mice (weight 20–25  g, age 8–10  weeks) were 
anesthetized with intravenous ketamine (25 mg/kg) and xylazine 
(2 mg/kg) and used as cell donors. Bone marrow cells were obtained 
from femurs and tibias as described (7, 24). After isolation, bone 
marrow-derived cells were cultured (37°C, 5% CO2 in humidified 
atmosphere) with Dulbecco’s Modified Eagle Medium (DMEM; 
Invitrogen, CA, USA) containing 15  mM HEPES (Sigma, MO, 
USA), 15% inactivated fetal bovine serum (FBS) (Invitrogen, CA, 
USA), 100 U/mL penicillin, and 100 mg/mL streptomycin antibi-
otic solution (Gibco, NM, USA). Upon reaching 80% confluence, 
adherent cells were passaged with 0.05% trypsin-EDTA solution 
(Gibco, NM, USA) and then maintained in DMEM with 10% FBS 
and penicillin/streptomycin. Third-passage MSCs were stimulated 
for 6  h with EPA (10  µM, CAS 10417-94-4, Cayman Chemical, 
Ann Arbor, MI, USA), and then washed in 1× PBS and trypsinized. 
Viable cells were concentrated at 1 × 105 in 50 µL of sterile saline 
solution for therapeutic injection. MSCs were characterized on the 
basis of the following criteria: (1) MSCs must be plastic-adherent 
when maintained in standard culture conditions using tissue culture 
flasks; and (2) 95% of the MSC population must express specific 
surface antigens. MSCs were phenotyped by flow cytometry using 

these modifications may explain the greater improvement in lung mechanics obtained. 
This may be a promising novel strategy to potentiate MSCs effects.

Keywords: inflammation, remodeling, lung mechanics, histology, resolvin
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commercially available antibodies against CD24 (heat stable 
antigen), CD31 (endothelial cell marker), CD44 (hyaluronic 
acid receptor), CD45 (hematopoietic marker), CD49e (integrin 
alpha-5), MHC class II, and stem cell antigen-1 (Sca-1) (all from 
BD Biosciences, USA). All data were acquired in a FACSCalibur 
flow cytometer (Becton Dickinson Biosciences Immunocytometry 
Systems, San Jose, CA, USA) and analyzed using FlowJo X 10.0.7 
software (Tree Star Inc., Ashland, OR, USA).

lung Mechanics
Three days after saline or MSCs administration, the animals 
were sedated (diazepam 1  mg/kg intraperitoneally), anesthetized 
(thiopental sodium 20  mg/kg intraperitoneally), tracheotomized, 
paralyzed (vecuronium bromide, 0.005  mg/kg intravenously), 
and ventilated using a constant-flow ventilator (Samay VR15; 
Universidad de la Republica, Montevideo, Uruguay) with the 
following settings: frequency 100 breaths/min, tidal volume (VT) 
0.2  mL, and fraction of inspired oxygen 0.21. The anterior chest 
wall was surgically removed and a positive end-expiratory pressure 
(PEEP) of 2 cmH2O applied. Airflow and tracheal pressure (Ptr) 
were measured (25). Lung mechanics were analyzed by the end-
inflation occlusion method (26). In an open chest preparation, Ptr 
reflects transpulmonary pressure (PL). Briefly, after end-inspiratory 
occlusion, there is an initial, precipitous drop in PL (ΔP1,L) from 
the pre-occlusion value down to an inflection point (Pi), followed 
by a slow pressure decay (ΔP2,L), until a plateau is reached. This 
plateau corresponds to the elastic recoil pressure of the lung (Pel). 
ΔP1,L selectively reflects the pressure used to overcome the airway 
resistance. ΔP2,L reproduces the pressure spent by stress relaxation, 
or viscoelastic properties of the lung, together with a small contri-
bution of pendelluft. Static lung elastance (Est,L) was determined 
by dividing Pel by VT. Lung mechanics were measured 10 times in 
each animal (27). All data were analyzed using ANADAT software 
(RHT-InfoData, Inc., Montreal, QC, Canada).

lung histology
Immediately after determination of lung mechanics, lapa-
rotomy was performed and heparin (1,000 IU) was injected into 
the vena cava. The trachea was clamped at end-expiration 
(PEEP = 2 cmH2O), and the abdominal aorta and vena cava were  
transected to cause death by exsanguination. Lungs were then 
removed and flash-frozen by immersion in liquid nitrogen. 
The left lung was fixed with Carnoy’s solution and paraffin-
embedded (28). Sections (4-µm thick) were cut and stained with 
hematoxylin-eosin for morphometric analysis of lung structure 
(27, 29). Lung morphometry analysis was performed using 
an integrating eyepiece with a coherent system consisting of a 
grid with 100 points and 50 lines of known length coupled to a 
conventional light microscope (Olympus BX51, Olympus Latin 
America-Inc., Brazil). The volume fraction of collapsed and 
normal pulmonary areas and magnitude of bronchoconstriction 
were determined by the point-counting technique (7, 27) across 
10 random, non-coincident fields of view per mouse. Specific 
staining methods to quantify elastic and collagen fibers (Weigert’s 
resorcin-fuchsin method with oxidation and Masson’s trichome 
method, respectively) were also used. These fibers were quantified 
in airways and alveolar septa using ImagePro Plus 6.0 software 

(7). Data are expressed as percentage of elastic and collagen fibers 
per total tissue area. Finally, the presence of mucus-filled cells 
in each airway was revealed by periodic acid–Schiff-staining and 
scored on a scale of 0–4. The average of values obtained from 6 
to 10 airways was taken as the overall mucus score per mouse, as 
previously described (13).

immunohistochemistry for α-smooth 
Muscle actin (sMa)
Right lungs were fixed and embedded in paraffin for immuno-
histochemistry using a monoclonal antibody against α-smooth 
muscle actin (α-SMA; Dako, Carpinteria, CA, USA) at a 1:500 
dilution. Analysis was performed by application of the point-
counting technique (29). Using a 121-point grid, the volume 
proportion of α-SMA was calculated as the ratio of points falling 
on actin-stained vs. non-stained tissue.

immunohistochemistry for analysis  
of Macrophage Phenotype
Sections from the right lungs were deparaffinized and hydrated, 
and the slides incubated with 10 mM sodium citrate. Endogenous 
peroxidase activity was blocked with 3% hydrogen peroxide. 
Slides were washed in TBS with 0.05% Tween-20 (Sigma,  
St. Louis, MO, USA), blocked with serum-free protein block (Dako, 
Carpinteria, CA, USA), and immunostained with Vectastain 
ABC (Vector Laboratories, Inc., Burlingame, CA, USA). This was 
followed by incubation with antibodies for CD68 (1:100 dilution, 
total macrophage marker), iNOS (1:350 dilution, M1 marker), 
and CD163 (1:100 dilution, M2 marker) in TBS/Tween buffer, 
overnight at 4°C. Staining was developed with 3,3′-diamin-
obenzidine tetrahydrochloride (Vector Laboratories, Inc.) and 
counterstained with hematoxylin. An isotype immunoglobulin 
G was used as negative control (24, 30). Data are presented as 
percentage of macrophages stained positive for iNOS and CD163 
per total number of macrophages (CD68+) in lung tissue.

Total and Differential cell count
Bronchoalveolar Lavage Fluid
Bronchoalveolar lavage fluid was obtained by gentle aspiration of 
400 mL of PBS 1× (final volume 1.2 mL) injected into the airways 
via a tracheal cannula. BALF was centrifuged at 250 g for 10 min 
at 4°C. Cell pellets were resuspended in PBS 1×.

Bone Marrow
Bone marrow was obtained by gentle lavage of the right femur of 
each animal with 1 mL of PBS 1×.

Lymph Nodes
Mediastinal lymph nodes were carefully extracted and placed in 
1 mL of PBS 1×. Cell suspensions were obtained after mechanical 
homogenization.

Thymus
The thymus of each animal was carefully extracted and placed 
in 1 mL of PBS 1×. Again, cell suspensions were obtained after 
mechanical homogenization.
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Total leukocytes from BALF, bone marrow, lymph nodes, 
and thymus were obtained as previous described (23) and then 
counted in a Neubauer chamber after dilution with Turk’s solu-
tion (2% acetic acid). Thereafter, BALF and bone marrow cells 
were pelleted onto glass slides by cytocentrifugation and stained 
by the May–Grünwald–Giemsa method for differential cell counts 
as described elsewhere (7, 23).

lipid Body staining and counting
Mesenchymal stromal cells were cultured in 12-well plate  
(105 cells/well) for 24 h. Subsequently, cells were stimulated or 
not with EPA for 6  h. After stimulation, MSCs were fixed in 
3.7% formaldehyde Ca2+/Mg2+-free HBSS medium (pH 7.4) and 
stained with 1.5% OsO4, as previously described (31). Lipid bod-
ies were enumerated by light microscopy using an oil-immersion 
objective lens in 50 consecutively scanned MSCs.

analysis of Multiple soluble Factors 
In Vivo and after In Vitro stimulation
Levels of vascular endothelial growth factor (VEGF), IL-4, IL-13 
(PeproTech, Rocky Hill, NJ, USA), and IL-10 (Biolegend, San 
Diego, CA, USA) were quantified by ELISA in BALF. Additionally, 
levels of IL-10, TGF-β, RvD1, and PGE2 were quantified in the 
supernatants of unstimulated or EPA-stimulated MSCs. For this 
purpose, in vitro experiments were performed: 105 MSCs were 
added to a 12-well plate and cultured for 24 h under normal con-
ditions (DMEM–High Glucose medium  supplemented with 10% 
FBS, 1,000 U/mL penicillin/streptomycin, and 2 mM l-glutamine; 
Invitrogen Life Technologies, Grand Island, NY, USA). The next 
day, MSCs received conditioned medium (FBS-free) and were 
stimulated or not with EPA for 6 h. After stimulation, the super-
natants were collected and levels of IL-10, TGF-β (Biolegend, 
San Diego, CA, USA), RvD1, and PGE2 (Cayman Chemical, Ann 
Arbor, MI, USA) were analyzed by ELISA or EIA, respectively, 
as per manufacturer instructions. The 15-lipoxygenase inhibitor 
nordihydroguaiaretic acid (15-LO inhibitor 1, Cayman Chemical, 
Ann Harbor, MI, USA, 20 ng/mL) was added to culture medium 
to confirm the EPA-induced lipid mediator production. Results 
are expressed as pg/mL.

Y-chromosome Dna Detection
Three days after MSCs administration, Y-chromosome DNA in 
lung tissue was quantified by real-time polymerase chain reac-
tion, as described elsewhere (30, 32).

statistical analysis
Sample size was based on pilot studies and on our experience with 
models of allergic asthma (7, 13). Data were tested for normality 
using the Kolmogorov–Smirnov test with Lilliefors’ correction, 
while the Levene median test was used to evaluate homogene-
ity of variances. If both conditions were satisfied, differences 
between groups at in vivo analysis were assessed using one-way 
ANOVA followed by Tukey’s test. For nonparametric results, the 
Kruskal–Wallis test followed by Dunn’s test was used. For results 
of in  vitro analysis, the Student’s t-test and Mann–Whitney U 
test were used as appropriate. Parametric data were expressed as 

mean ± SD, while nonparametric data were expressed as median 
(interquartile range). All tests were carried out in GraphPad 
Prism version 6.07 (GraphPad Software, La Jolla, CA, USA). 
Significance was established at p < 0.05.

resUlTs

ePa affected neither Msc Morphology 
nor Msc-specific cell-surface Markers
Unstimulated and EPA-stimulated MSCs similarly displayed the 
characteristic spindle-shaped morphology, adherence to plastic 
culture dishes, and expression of MSC-specific cell-surface mark-
ers by flow cytometry (similarly negative for CD31, CD45, and 
MHCII and positive for CD24, CD44, CD49e, and Sca-1), ruling 
out any possibility that these cells could be fibroblasts (Figure S2 
in Supplementary Material). Considering that the differentiation 
potential of unstimulated MSCs had been previously character-
ized (7, 13, 24) and that EPA-stimulated MSCs exhibited the char-
acteristic morphology, adherence, and surface-marker expression 
profile, we did not evaluate the differentiation potential of EPA-
stimulated MSCs into osteocytes, chondrocytes, and adipocytes.

ePa stimulated lipid Body Formation in 
Mscs and Modulated Biomarker secretion 
by Mscs
LBs are dynamic and functionally active cytosolic organelles in 
which polyunsaturated fatty acids and enzymes responsible for their 
metabolism congregate to produce lipid mediators such as eicosa-
noids (31, 33). Compared to unstimulated MSCs, EPA-stimulated 
MSCs presented higher LB count (1.35-fold increase), as well as 
increased levels of RvD1 (2.17-fold increase) and PGE2 (1.51-fold 
increase) (Figures  1A–D). Administration of 15-LO inhibition 
(i15-LO) abrogated the increased in RvD1 levels in EPA-stimulated 
MSCs, confirming the central role of 15-LO in RvD1 generation. 
Increased PGE2 levels were also inhibited by i15-LO, suggesting an 
autocrine role for its metabolites in the promotion of PGE2 genera-
tion. Increased production of RvD1 suggests a more pronounced 
anti-inflammatory profile. In fact, EPA-stimulated MSCs produced 
increased levels of IL-10 and TGF-β compared to unstimulated 
MSCs (14- and 1.56-fold increase, respectively) (Figures 1E,F).

ePa-stimulated Mscs led to greater 
Modulation of Biomarker secretion and 
reduction in BalF cellularity Than 
Unstimulated Mscs
The HDM-SAL group demonstrated higher levels of IL-4, 
IL-13, VEGF, and IL-10 in BALF than the CTRL group 
(Figures  2A–D). The HDM-MSC group demonstrated lower 
BALF levels of IL-13 and VEGF compared to the HDM-SAL 
group. Compared to HDM-MSC animals, HDM-MSC-EPA 
mice demonstrated an even greater reduction in protein  levels 
of IL-13 and VEGF, as well as a reduction in IL-4, and an 
increase in IL-10 level in BALF. Total and differential cell counts 
in BALF were higher in HDM-SAL mice than in CTRL mice  
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FigUre 1 | EPA-stimulated lipid body formation in MSCs and modulated secretion of biomarkers by MSCs. (a) LB (red arrow) in MSCs and EPA-MSCs stained with 
OsO4. (B) Quantification of LB per MSC. Levels of (c) RvD1 and (D) PGE2, assessed by EIA, and (e) IL-10 and (F) TGF-β, assessed by ELISA, in cells stimulated or 
not with EPA for 6 h. MSC, unstimulated MSCs; MSC-EPA, EPA-stimulated MSCs. Student’s t-test (B), Kruskal–Wallis test followed by Dunn’s test (c,D), and 
Mann–Whitney U (e,F) were used for statistical comparison. (B) Data presented as mean + SD of five independent experiments. (c–F) Boxes show the interquartile 
(25–75%) range, whiskers denote the range (minimum–maximum), and horizontal lines represent the median of five independent experiments. *Significantly different 
from MSC (p < 0.05). **Significantly different from MSC-EPA (p < 0.05). Abbreviations: EPA, eicosapentaenoic acid; MSCs, mesenchymal stromal cells; LB, lipid 
bodies; N, nucleus; C, cytoplasm; RvD1, resolvin D1; PGE2, prostaglandin E2; IL, interleukin; TGF-β, transforming growth factor-β; i15-LO, inhibitor of 15-lipoxygenase.
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(Figures  2E–I). Both the HDM-MSC and HDM-MSC-EPA 
groups showed reductions in total and differential  cellularity in 
BALF compared to HDM-SAL; however, reductions were more 
pronounced in HDM-MSC-EPA mice. Stimulation of MSCs 
with EPA produced an increase in their capacity to modulate 
inflammatory markers in HDM-challenged mice, strengthening 
the in vitro findings.

ePa-stimulated Mscs induced 
Macrophage Polarization to the  
M2 rather Than the M1 Profile
To evaluate macrophage polarization as a potential anti-inflam-
matory mechanism for EPA-stimulated MSCs, expressions of the 
M1 marker, iNOS, and the M2 marker, CD163, were analyzed. 
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FigUre 2 | EPA-stimulated MSCs led to greater modulation of biomarker secretion and reduction in bronchoalveolar lavage fluid (BALF) cellularity than unstimulated 
MSCs. Protein levels of (a) IL-4, (B) IL-13, (c) VEGF, (D) IL-10, (e) total leukocytes, (F) eosinophils, (g) macrophages, (h) lymphocytes, and (i) neutrophil counts 
in BALF. CTRL, saline-challenged mice; HDM, HDM-challenged mice; SAL, HDM mice treated with saline; MSC, HDM mice treated with unstimulated MSCs; 
MSC-EPA, HDM mice treated with EPA-stimulated MSCs. Kruskal–Wallis test followed by Dunn’s test (a–D) and one-way ANOVA followed by Tukey’s test  
(e–i) were used for statistical comparison. (a–D) Boxes show the interquartile (25–75%) range, whiskers denote the range (minimum–maximum), and horizontal 
lines represent the median of eight animals/group. (e–g) Data presented as mean + SD of eight animals/group. *Significantly different from CTRL (p < 0.05). 
**Significantly different from HDM-SAL (p < 0.05). #Significantly different from HDM-MSC (p < 0.05). Abbreviations: EPA, eicosapentaenoic acid; MSCs, 
mesenchymal stromal cells; HDM, house dust mite; IL, interleukin; VEGF, vascular endothelial growth factor.
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iNOS- and CD163-positive cell counts were increased in the lung 
sections of HDM-SAL animals as compared to CTRL animals 
(Figure 3; Figure S3 in Supplementary Material). HDM-SAL and 
HDM-MSC mice presented similar iNOS- and CD163-positive cell 
counts in lung tissue. In contrast, the CD163-positive cell count was 
increased, and the iNOS-positive cell count decreased in HDM-
MSC-EPA group.

ePa-stimulated Mscs led to greater 
reduction in Bone Marrow, lymph node, 
and Thymus cellularity Than 
Unstimulated Mscs
HDM-SAL mice presented higher total cell count in bone marrow 
(Figure 4A), mLNs (Figure 4E), and thymus (Figure 4F) compared 
to CTRL animals. The HDM-MSC and HDM-MSC-EPA groups 
had similarly reduction in eosinophil and macrophage counts 
in bone marrow (Figures  4B,D) and total cell count in thymus 
(Figure  4F), comparable to those of CTRL mice. However, only 
the HDM-MSC-EPA group presented a decrease in total cell and 
neutrophil counts in bone marrow (Figures 4A,C) and total cell 
count in lymph nodes (Figure 4E).

ePa-stimulated Mscs led to greater 
reductions in lung Morphological 
changes, remodeling, and Mucus 
hypersecretion Than Unstimulated Mscs
The HDM-SAL and HDM-MSC groups demonstrated a higher 
fractional area of alveolar collapse and bronchoconstriction index 
compared to CTRL (Table 1; Figure S4 in Supplementary Mate-
rial). These morphological changes were only reduced in HDM- 
MSC-EPA mice, which exhibited levels similar to those of CTRL mice.

Compared to CTRL group, the HDM-SAL group demonstrated 
increased elastic and collagen fiber content in alveolar septa and 
airways, as well as increased α-SMA expression in lung tissue 
(Figures  5A–E; Figure S5 in Supplementary Material). Elastic 
fiber content was similarly reduced in HDM-MSC and HDM-
MSC-EPA mice compared to HDM-SAL mice (Figures 5A,B). 
In addition, the HDM-MSC-EPA group, but not the HDM-MSC 
group, exhibited lower collagen fiber content (Figures 5C,D) as 
well as α-SMA expression (Figure 5E) in lung tissue.

Very few mucin-containing cells were observed in the lung 
 tissue of CTRL mice, whereas the number of cells was significantly 
increased in the HDM-SAL group (Figure 5F). HDM-MSC-EPA 
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FigUre 4 | EPA-stimulated MSCs led to greater reductions in bone marrow, lymph nodes, and thymus cellularity than unstimulated MSCs. (a) Total leukocytes,  
(B) eosinophils, (c) neutrophils, (D) macrophages in bone marrow, (e) total leukocytes in mediastinal lymph nodes, and (F) total leukocytes in thymus. CTRL, 
saline-challenged mice; HDM, HDM-challenged mice; SAL, HDM mice treated with saline; MSC, HDM mice treated with unstimulated MSCs; MSC-EPA, HDM mice 
treated with EPA-stimulated MSCs. One-way ANOVA followed by Tukey’s test was used for statistical comparison. Data are presented as mean + SD. n = 8 
animals/group. *Significantly different from CTRL (p < 0.05). **Significantly different from HDM-SAL (p < 0.05). #Significantly different from HDM-MSC (p < 0.05). 
Abbreviations: EPA, eicosapentaenoic acid; MSCs, mesenchymal stromal cells; HDM, house dust mite.

FigUre 3 | EPA-stimulated MSCs induced macrophage polarization toward an M2 rather than M1 profile. (a) M1-macrophage (iNOS+) and (B) M2-macrophage 
(CD163+) counts in lung tissue. CTRL, saline-challenge mice; HDM, HDM-challenged mice; SAL, HDM mice treated with saline; MSC, HDM mice treated with 
unstimulated MSCs; MSC-EPA, HDM mice treated with EPA-stimulated MSCs. The Kruskal–Wallis test followed by Dunn’s test was used for statistical comparison. 
Boxes show the interquartile (25–75%) range, whiskers denote the range (minimum–maximum), and horizontal lines represent the median of eight animals/group. 
*Significantly different from CTRL (p < 0.05). **Significantly different from HDM-SAL (p < 0.05). #Significantly different from HDM-MSC (p < 0.05).  
Abbreviations: EPA, eicosapentaenoic acid; HDM, house dust mite; MSCs, mesenchymal stromal cells.

7

Abreu et al. EPA Potentiates MSCs in Asthma

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1147

mice, but not HDM-MSC mice, demonstrated a decreased num-
ber of mucin-containing cells.

ePa-stimulated Mscs led to greater 
improvement in lung Mechanics  
Than Unstimulated Mscs
The HDM-SAL group demonstrated higher Est,L, ΔP1,L, and 
ΔP2,L (Figures  6A–C) compared to the CTRL group (1.47-, 
2.06-, and 2.11-fold increase, respectively). The HDM-MSC 
and HDM-MSC-EPA groups exhibited decreased ΔP1,L and 

ΔP2,L; however, these reductions were more pronounced in the 
HDM-MSC-EPA mice. In addition, Est,L was reduced in HDM- 
MSC-EPA, but not in HDM-MSC mice.

ePa Did not enhance Msc engraftment in 
lung Tissue
Three days after MSCs administration, very little Y-chromosome 
DNA was detected in lung tissue in the HDM-MSC and HDM-
MSC-EPA mice with no differences between the groups (Figure S6  
in Supplementary Material).
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TaBle 1 | Lung morphometry.

groups normal (%) collapse (%) contraction index

CTRL 97.67 ± 1.32 2.33 ± 1.32 2.45 ± 0.24

HDM SAL 92.65 ± 2.32* 7.15 ± 2.32* 3.69 ± 0.62*
MSC 95.84 ± 1.14* 4.16 ± 1.14* 3.39 ± 0.25*
MSC-EPA 97.21 ± 0.63** 2.79 ± 0.63** 2.97 ± 0.41**

The volume fraction of collapsed and normal pulmonary areas and the magnitude 
of bronchoconstriction (contraction index). CTRL, saline-challenged mice; HDM, 
HDM-challenged mice; SAL, HDM mice treated with saline; MSC, HDM mice treated 
with unstimulated MSCs; MSC-EPA, HDM mice treated with EPA-stimulated MSCs. 
One-way ANOVA followed by Tukey’s test was used for statistical comparison. Data are 
presented as mean ± SD of eight animals/group.
*Significantly different from CTRL (p < 0.05).
**Significantly different from HDM-SAL (p < 0.05).
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DiscUssiOn

In the model of HDM-induced allergic asthma used herein, 
EPA-stimulated MSCs, compared to unstimulated MSCs, yielded 
greater therapeutic effects by further reducing bronchoconstric-
tion, alveolar collapse, total cell count in BALF, bone marrow, 
and lymph nodes, and collagen fiber content in airways, while 
increasing BALF IL-10 levels and M2 macrophage counts in lungs. 
Furthermore, in the in vitro experiments, EPA-stimulated MSCs 
exhibited an increase in LB count and in the levels of IL-10, TGF-
β1, RvD1, and PGE2 secreted compared to unstimulated MSCs.

Although ovalbumin is widely used to induce allergic asthma 
in animal models, it requires peripheral sensitization and the use 
of adjuvants to obtain a successful experimental protocol (34). 
HDM has been considered a more clinically relevant allergen, as 
it affects ~85% of asthmatic patients worldwide and the experi-
mental syndrome exhibit inflammatory (eosinophilia and Th2 
pro- inflammatory cytokine increase) and ultrastructural changes 
in the airway and lung parenchyma, which closely mimic the 
hallmark features of human disease (13, 35). In our study, MSCs 
were administered 24  h after the last HDM challenge, when 
changes in lung mechanics, inflammation, and remodeling were 
already established. This contrasts with some previous studies, in 
which cell-based therapy was administered prophylactically (9–11, 
36–38). In addition, MSCs were obtained from bone marrow, since 
this source has been shown to yield greater therapeutic responses 
compared to MSCs from other sources (7, 13). MSCs were admin-
istered intratracheally because cells would be directly delivered to 
the injured environment by this route, which could potentiate their 
therapeutic properties (39).

Mesenchymal stromal cells can secrete potent combinations of 
trophic factors that modulate cellular responses in the injured envi-
ronment to induce anti-inflammatory and pro-resolution responses 
(6, 8, 40). In the present study, administration of unstimulated 
MSCs modulated BALF levels of IL-13, thereby decreasing total 
and differential cell count in BALF. In agreement with our find-
ings, MSCs have been shown to mitigate inflammation by reducing 
secretion of pro-inflammatory mediators in different models of 
allergic asthma and at different levels of severity (7, 9–13, 36–38).

Even though both systemic and intratracheal administration 
of MSCs results in significant anti-inflammatory effects in the 
lungs, these effects are limited in terms of ability to repair tissue 

damage and revert the remodeling process (7, 12, 13). Therefore, 
recent studies have attempted to potentiate MSCs actions in vivo 
through in vitro preconditioning with physical, biological, and/or  
chemical stimuli to enhance cell survival and regenerative 
prop erties, and boost the secretion of trophic factors (15). 
In this line, EPA may be an interesting MSC enhancer, as it 
modulates several aspects of inflammatory lipid mediator 
synthesis and activity (19, 41, 42). EPA may also serve as a 
substrate for the synthesis of 3-series prostaglandins and 
5-series leukotrienes, which have lower agonistic activity 
at eicosanoid receptors than their arachidonic acid-derived 
counterparts (43). Sequential metabolism of EPA by 5-LO 
and 15-LO produces resolvins, which induce pro-resolution 
effects in asthma models when exogenously administered (44). 
Thus, exposure of MSCs to EPA could enhance the production 
of anti-inflammatory and pro-resolution mediators. In our 
in  vitro experiments, EPA enhanced LB formation in MSCs, 
which suggests an increase in EPA mobilization to act as direct 
receptor ligands or for further metabolism into lipid mediators 
(31, 33). In addition, EPA enhanced IL-10, TGF-β, RvD1, and 
PGE2 secretion by MSCs, which may induce anti-inflammatory 
and pro-resolution responses in allergic asthma (19). As a proof- 
of-concept, we treated MSCs with i15-LO to block EPA 
metabolism (19, 41), which abrogated the increased secretion 
of RvD1 and PGE2 in EPA-stimulated MSCs.

Mobilization of omega-3 fatty acid-derived biosynthetic path-
ways enhances the generation of lipid-derived pro-resolution 
mediators, including RvD1, and accelerates the catabasis of Th2- 
mediated inflammation (45). In this line, EPA-stimulated MSCs 
reduced secretion of both IL-4 and IL-13 and further decreased 
total and differential cellularity in the BALF compared to 
unstimulated MSCs.

Increased secretion of PGE2 and IL-10 by EPA-stimulated MSCs 
may also help resolve the inflammatory process in HDM-induced 
allergic asthma. Previous studies have shown that PGE2-induced 
EP4 receptor activation mitigates airway inflammation (46) and 
IL-10 inhibits eosinophilia by suppressing Th2 cytokine produc-
tion (47), which is in line with the anti-inflammatory effects of EPA-
stimulated MSCs in HDM-challenge mice. Importantly, MSCs 
may alter macrophages metabolic status via a PGE2-dependent 
mechanism by promoting anti-inflammatory M2 rather than 
inflammatory M1 polarization (48); this, in turn, contributes to 
enhanced IL-10 secretion in the lungs (7, 11, 13, 48). In mouse 
models of Duchenne muscular dystrophy and myocardial infarc-
tion, EPA was described as an inhibitor of muscle damage through 
inhibition of M1 and promotion of M2 macrophage polarization 
when administered systemically (49, 50). Thus, EPA-stimulation 
of MSCs may provide a more targeted delivery of EPA and/or 
EPA-derived mediators to modulate macrophage polarization.

Several studies have indicated that the therapeutic effects of 
MSCs are independent of cell engraftment in the injured tissue 
(39, 51, 52). In particular, MSCs were found neither in mLNs nor 
in thymus and bone marrow of mice on the first and third day 
after MSCs administration via intratracheal route in the same 
model used in this study (13). Additionally, in this study, EPA 
stimulation did not enhance MSCs engraftment in lung tissue. 
It is possible that intratracheal administration of MSCs induced 
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FigUre 5 | EPA-stimulated MSCs led to greater reductions in lung remodeling and mucus hypersecretion than unstimulated MSCs. Elastic fiber content in  
(a) lung parenchyma and (B) airway, collagen fiber content in (c) lung parenchyma and (D) airway, (e) α-SMA expression, and (F) mucus-filled cell count in lung 
tissue. CTRL, saline-challenged mice; HDM, HDM-challenged mice; SAL, HDM mice treated with saline; MSC, HDM mice treated with unstimulated MSCs; 
MSC-EPA, HDM mice treated with EPA-stimulated MSCs. The Kruskal–Wallis test followed by Dunn’s test was used for statistical comparison. Boxes show the 
interquartile (25–75%) range, whiskers denote the range (minimum–maximum), and horizontal lines represent the median of eight animals/group. *Significantly 
different from CTRL (p < 0.05). **Significantly different from HDM-SAL (p < 0.05). #Significantly different from HDM-MSC (p < 0.05). Abbreviations: EPA, 
eicosapentaenoic acid; MSCs, mesenchymal stromal cells; HDM, house dust mite; SMA, smooth muscle actin.
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an anti-inflammatory response in the airways, which then had 
an indirect impact on inflammatory cell counts in other tissues.

IL-4 and IL-13 play important roles not only in the inflamma-
tory process but also in lung remodeling by inducing fibroblast 
proliferation and increasing extracellular matrix deposition  
(53, 54). VEGF also contributes to tissue remodeling by 
increasing angiogenesis and vascular permeability, as well as 
smooth muscle cell hyperplasia (2, 55). Taken together, these 
factors led to alveolar collapse and impairment of lung func-
tion observed in HDM-challenge mice. EPA-stimulated MSCs 
administration reduced α-SMA expression and elastic and 

collagen fiber content in both lung parenchyma and airways 
in HDM-challenge mice, leading to a significant improvement 
in lung mechanics. Unstimulated MSCs similarly reduced 
elastic fiber deposition but were inefficient at reducing α-SMA 
expression and collagen fiber content, thus failing to improve 
lung function as much as EPA-stimulated MSCs. This fact may 
be attributed to the lower capacity of unstimulated MSCs of 
reducing secretion of pro-fibrotic mediators, including IL-4 
and VEGF, in HDM-challenge mice. In addition, increased 
PGE2 secretion may inhibit α-SMA expression and myofibro-
blast differentiation (56). Previous studies have also shown that 
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FigUre 6 | EPA-stimulated MSCs led to greater improvement in lung 
mechanics than unstimulated MSCs. (a) Static lung elastance (Est,L),  
(B) resistive (ΔP1,L) pressure, and (c) viscoelastic (ΔP2,L) pressure. CTRL, 
saline-challenged mice; HMD, HMD-challenged mice; SAL, HDM mice treated 
with saline; MSC, HDM mice treated with unstimulated MSCs; MSC-EPA, 
HDM mice treated with EPA-stimulated MSCs. One-way ANOVA followed  
by Tukey’s test was used for statistical comparison. Data are presented as 
mean + SD. n = 8 animals/group. *Significantly different from CTRL 
(p < 0.05). **Significantly different from HDM-SAL (p < 0.05). #Significantly 
different from HDM-MSC (p < 0.05). Abbreviations: EPA, eicosapentaenoic 
acid; MSCs, mesenchymal stromal cells; HDM, house dust mite.
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administration of unstimulated MSCs has only marginal ability 
to reverse the remodeling process, mainly in the airways (7, 12, 
13), which is in line with our results.

Goblet cell hyperplasia and hypertrophy is also a major event 
in the remodeling process of asthma (2). HDM-challenged mice 
presented an increased bronchoconstriction index, which may 
be attributable both to mucus-producing cells and to smooth 
muscle cell hyperplasia and hypertrophy. IL-13 has been 

shown to drive epithelial cell differentiation in goblet cells and 
upregulate MUC5AC expression (57). In the current study, 
we observed increased IL-13 secretion and mucin-containing 
cell counts in HDM-challenged mice; however, the reduction 
in IL-13 secretion after administration of unstimulated MSCs 
was not accompanied by a reduction in mucus hypersecretion, 
which suggests the involvement of other mediators or pathways 
to resolve this morphological abnormality. In this context, 
increased secretion of RvD1 in EPA-stimulated MSCs may be 
implicated in the reduction of mucus-filled cell counts observed 
in HDM-challenge mice. This is supported by the finding that 
mucus hypersecretion decreased markedly after RvD1 was exog-
enously administered in a model of ovalbumin-induced allergic 
asthma (58).

This study has some limitations that should be addressed. 
First, total cell counts and levels of pro- and anti-inflammatory 
mediators were not evaluated in blood, as a mouse weighing 25 g 
has a total blood volume of approximately 1.2 mL, which would 
make such a wide range of analyses impossible. Nevertheless, 
the systemic effects of MSCs (intratracheally administered) were 
evaluated by quantifying total cell count in bone marrow, lymph 
nodes, and thymus. Second, the biodistribution of unstimulated 
and EPA-stimulated MSCs was not assessed, even though EPA 
did not alter MSCs homing.

cOnclUsiOn

Eicosapentaenoic acid stimulation enhances the effects of MSC 
therapy in experimental allergic asthma, leading to increased 
secretion of pro-resolution and anti-inflammatory mediators, 
modulation of macrophages toward an anti-inflammatory pheno-
type, and reductions in elastic and collagen fiber content, α-SMA 
expression, and mucin-containing cell counts. Taken together, 
these modifications may explain the greater improvement in 
lung mechanics observed after administration of EPA-stimulated 
MSCs in HDM-challenged mice. This may be a promising novel 
strategy for MSCs potentiation.
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