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Absent in melanoma 2 (AIM2)-like receptors (ALRs) are a newly characterized class of 
pathogen recognition receptors (PRRs) involved in cytosolic and nuclear pathogen DNA 
recognition. In recent years, two ALR family members, the interferon (IFN)-inducible 
protein 16 (IFI16) and AIM2, have been linked to the pathogenesis of various autoim-
mune diseases, among which systemic lupus erythematosus (SLE) has recently gained 
increasing attention. SLE patients are indeed often characterized by constitutively high 
serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal 
response to pathogens and/or incorrect self-DNA recognition process. Consistently, we 
and others have shown that IFI16 is overexpressed in a wide range of autoimmune 
diseases where it triggers production of specific autoantibodies. In addition, evidence 
from mouse models supports a model whereby ALRs are required for IFN-mediated 
host response to both exogenous and endogenous DNA. Following interaction with 
cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through 
association with the adaptor ASC [apoptosis-associated speck-like protein containing 
a caspase recruitment domain (CARD)] and with procaspase-1. Importantly, inflam-
masome-mediated upregulation of IL-1β and IL-18 production positively correlates with 
SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways 
represents a promising alternative therapeutic approach for SLE and other systemic 
autoimmune diseases.

Keywords: iFN-inducible protein 16, absent in melanoma 2 (AiM2)-like receptor, inflammasome, interferon, 
systemic lupus erythematosus

iNTRODUCTiON

Inflammation is an innate immune response largely mediated by phagocytic cells whose goal is to 
protect the body from invading bacteria and viruses (1, 2). Pattern recognition receptors (PRRs) 
constitute a large family of molecules expressed on the cell surface and in the cytoplasm of various 
cell types, such as macrophages and antigen presenting cells (APC), able to interact with evolu-
tionarily conserved pathogenic structures [i.e., pathogen-associated molecular patterns (PAMPs)], 
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thus giving rise to multimeric protein complexes termed inflam-
masomes, which are then responsible for mediating a caspase-
1-dependent inflammatory response (3–6). These so-called 
“canonical inflammasomes,” which can be triggered by a wide 
variety of ligands, consist of nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs) and absent in melanoma 2  
(AIM2)-like receptors (ALRs) (7–10). More recently, “non-
canonical inflammasomes,” containing caspase-11 in mice and 
caspase-4/5 in humans, have also been described (11, 12).

Chronic inflammatory responses, which could last for weeks or 
even years, are characterized by episodes of tissue injury and heal-
ing resulting in severe tissue damage, which can eventually lead 
to the development of autoinflammatory/autoimmune diseases 
such as systemic lupus erythematosus (SLE) (13–15). This latter 
is an autoimmune disease characterized by a wide range of clini-
cal and serological manifestations accompanied by a polyclonal 
autoimmune response against various nuclear autoantigens (16). 
Although genetic and environmental factors such as infections 
are known to be involved in the pathogenesis of SLE, the clear 
etiology of this disease still remains to be fully established (17).

Despite this gap in knowledge, it is now clear that ALRs, espe-
cially the IFN-inducible protein 16 (IFI16, Figure 1), along with 
other inflammasome-induced inflammatory responses, contrib-
ute to the development of SLE. In this review, we will summarize 
recent advances on the role of the inflammasome and ALRs in 
SLE, which could ultimately provide the rationale for the design 
and development of novel therapeutic tools for the treatment of 
patients affected by SLE or other systemic autoimmune diseases.

THe iNFLAMMASOMe

The canonical inflammasome is a multimodular complex that, 
upon induced oligomerization, stimulates the activation of 
caspase-1, an enzyme primarily responsible for the release of 
the pro-inflammatory cytokines IL-1β and IL-18 (6). Strongly 
associated with the activation of the inflammasome, pyroptosis 
is a caspase-1-dependent type of inflammatory cell death mainly 
seen during intracellular infections (18). Inflammasomes specific 
for intracellular PAMPs involve different classes of cytoplasmic 
PRRs. Classically, the NLR, such as NLRP3, and the retinoic acid 
inducible gene I (RIG-I)-like receptor (RLR) families (Figure 2).

NLRP3 holds a C-terminal leucine-rich repeat domain, a 
central nucleotide-binding and oligomerization domain (NOD 
or NACHT), and an N-terminal pyrin domain (PYD). The NLR-
associated PYD interacts with the PYD of the adaptor apoptosis-
associated speck-like protein containing a caspase recruitment 
domain (CARD) (ASC). ASC is then able to engage caspase-1 
through its CARD domain causing the oligomerization of several 
caspase-1 molecules that, in turn, cleave and activate each other 
(8). RIG-I is made of two N-terminal CARDs, a central RNA 
helicase domain and a C-terminal regulatory domain (CTD). 
As for ASC, the RIG-I CARD is a sticky domain responsible for 
recruiting adaptor proteins and triggering downstream pathways 
(19). Whereas the RNA helicase domain contains a conserved 
Asp–Glu–Ala-Asp motif, also known as DEAD box, and exerts 
ATPase activity, the CTD is responsible for binding dsRNA PAMPs 
(20). Following dsRNA binding and associated conformational 

changes, RIG-I interacts with mitochondrial outer membrane 
proteins called mitochondrial antiviral signaling (MAVS) through 
CARD–CARD interactions (21). Depending on the adaptors 
involved, RIG-I–MAVS interaction then results in either type I 
IFN (IFN-I) or pro-inflammatory cytokines production (22).

Interestingly, recent studies have shown that there also exist 
non-canonical inflammasomes, which, through recruitment 
of caspase-4/5 in human or caspase-11 in mouse, can induce  
caspase-1-dependent maturation and secretion of IL-1β and IL-18 
(23–25). In particular, non-canonical inflammasomes appear 
to promote pyroptosis in a TLR4- and caspase-1-independent 
fashion in response to cytoplasmic Gram-negative bacteria 
infection (26). Although the innate immune response mediated 
by caspase-4/5 resembles, at least in term of outcomes, that driven 
by caspase-1, studies on macrophage-mediated inflammatory 
responses have revealed that they are indeed two quite different 
processes (12, 27, 28). In human cells, in fact, the CARD motif 
allows pro-caspase-4/5 to directly interact with lipopolysaccha-
ride (LPS) through the lipid A moiety leading to pro-caspase-4/5 
oligomerization and induction of pyroptosis coupled with secre-
tion of IL-1β and IL-18. Adding complexity to this scenario, recent 
evidence has shown that murine caspase-11 activation triggers 
an NLRP3–ASC–caspase-1-dependent signaling pathway, also 
known as “non-canonical NLRP3 inflammasome activation 
pathway,” which is different from the aforementioned “canonical 
NLRP3 inflammasome activation pathway” (29). However, even 
though it appears that caspase-4/5 and -11 can directly detect 
intracellular LPS derived from Gram-negative bacteria (24, 30), 
the exact mechanism of the non-canonical inflammasome activa-
tion is not totally understood.

Recently, a new family of inflammasome-associated PRRs 
has been described, including AIM2 and IFI16, grouped as 
ALRs. ALRs can assemble inflammasomes that respond to DNA 
molecules in both the cytosol and nucleus (31–33). AIM2 and 
IFI16 display an N-terminal PYD and one (AIM2) or two (IFI16, 
Figure  1) phylogenetically conserved hematopoietic interferon 
(IFN)-inducible nuclear protein with a 200-amino-acid repeat 
(HIN200) domains at the C-terminus, thus the other name PYHIN 
(or PYHIN200) previously given to these proteins. Interestingly, 
the HIN200 domain, which consists of two oligonucleotide/
oligosaccharide-binding (OB) folds (34), appears to be the major 
DNA recognition site (35, 36). However, due to the lack of a 
dedicated ATP-dependent oligomerization domain, it appears 
that ALRs require a longer stretch of double-stranded DNA 
(dsDNA) compared with that required by NLRs to bind effec-
tively and promote oligomerization (37, 38). Notably, since DNA 
is a common genetic material, pathological stimulation of these 
nucleic acid-recognizing inflammasomes by self-DNA can lead 
to autoinflammatory/autoimmune diseases as well (Figure  2). 
In this regard, aberrant immune responses involving ALRs have 
long been involved in the pathogenesis of SLE, Sjogren’s syndrome 
(SjS), psoriasis, and systemic sclerosis (SSc) (39–45).

iNFLAMMASOMe AND AUTOiMMUNiTY

Although adaptive and innate responses are often opposite to 
each other in the immunological spectrum, they are essentially 
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FigURe 1 | Domain organization of the IFN-inducible protein 16 (IFI16). From the N- to the C-terminal (left to right), IFI16 comprises a pyrin domain (PYD) involved in 
protein–protein interactions, a linker region containing four nuclear localization signal motifs (NLS) and two hematopoietic interferon-inducible nuclear protein with 
200-amino-acid repeats (HIN200) domains, which is an hallmark of the absent in melanoma 2-like receptors/PYHIN proteins. The HIN200 domains include two 
tandem b-barrels, known as oligonucleotide–oligosaccharide-binding (OB) fold, which allow DNA docking in a non-sequence-specific manner. They are separated 
by serine/threonine/proline-rich (S/T/P) repeats, which are regulated by alternative mRNA splicing. The numbers represent the amino acid positions based on NCBI 
Reference Sequence NP_005522.2.
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integrated in a complex system (i.e., the human body) as innate 
immune dysregulation (i.e., the classical driver of autoinflamma-
tory diseases) induces autoreactive T and B cell responses (i.e., auto-
immunity) (13, 46). Indeed, classical autoinflammatory diseases, 
such as inflammatory bowel disease (IBD), are also characterized 
by the presence of autoantibodies, whereas classical autoimmune 
conditions, such as SLE, can also display organ-specific inflamma-
tion, as in the case of lupus nephritis (LN) (47, 48).

An additional feature encompassing the full inflammatory 
spectrum is inflammasome activation, which is usually essential 
for host defense against microbes. However, recent studies have 
also found this activation to be responsible for or simply be 
associated with the pathogenesis of several diseases featuring 
autoinflammatory/autoimmune traits such as type 1 and type 2 
diabetes, IBD, multiple sclerosis (MS), rheumatoid arthritis (RA), 
and SLE (49–55).

Genetic polymorphisms (SNPs) associated with autoimmune 
diseases have been identified in components of both NLR and 
ALR inflammasomes, including NLRP1, NLRP3, CARD8, IFI16, 
and AIM2 (52, 56–61). Several studies, most of which related 
to ethnicity, have highlighted an association between SNPs in 
inflammasome end products and autoimmune diseases such as 
SLE, RA, and MS (62–64). Furthermore, inflammasomes have 
been directly involved in autoimmunity. For example, NLRP1 is 
overexpressed in T and Langerhans cells in the leading edge of 
vitiligo skin, leading to increased IL-1β production and activa-
tion of the Th17 axis (65). Furthermore, NLRP3 expression and 
NLRP3-mediated IL-1β secretion are increased in RA patients 
(66), and NLRP3 is involved in the pathogenesis of experimental 
autoimmune encephalomyelitis (51). Moreover, APC with an 

activated NLRP3 inflammasome can trigger CD4 T cell-mediated 
upregulation of the chemokine receptor CCR2, which is elevated 
in the peripheral blood of MS patients during relapse (67). With 
regard to ALR family members, AIM2 is directly activated by 
cytoplasmic DNA (68), and a strong correlation between AIM2 
overexpression and disease severity has been described in both 
SLE patients and mouse models (61, 69). Finally, SLE is character-
ized by AIM2 inflammasome-mediated production of IL-1β, trig-
gered by accumulation of cytosolic self-DNA and IFI16-induced 
IFN-I release (40).

Systemic lupus erythematosus is a systemic autoimmune 
disease characterized by a polyclonal autoimmune response 
against various nuclear autoantigens (16). Although genetic and 
environmental factors, such as infections, have been linked to 
the pathogenesis of SLE, the exact etiology of this disease is still 
unknown (17). SLE is characterized by hyperactive autoreactive 
immune cells and production of many autoantibodies, immune 
complex (IC) formation, organ inflammation and damage. More 
than 200 different autoantibodies including those against single-
stranded DNA and dsDNA, Ro/La antigens, and ribonuclear 
protein have been described in lupus patients (70, 71). Among 
these, the so-called antinuclear antibodies (ANAs) and anti-
dsDNA antibodies, which seem to play an important role in the 
pathogenesis of LN, represent valuable diagnostic and prognostic 
markers of disease (72, 73).

Along with elevated production of autoantibodies, 50–75% 
of SLE adults and up to 90% of SLE children display increased 
IFN-I production and enhanced expression of IFN-inducible 
genes, which is therefore regarded as a gene expression signature 
of SLE (74). Notably, a few studies have shown that patients with 
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FigURe 2 | An overview of the different classes of cytoplasmic and nuclear pathogen recognition receptors (PRRs) and their involvement with inflammasome 
activation. From left to right, a nucleotide-binding oligomerization domain-like receptor (NLR, e.g., NLRP3), an absent in melanoma 2 (AIM2)-like receptor  
(ALR, e.g., IFI16), and a retinoic acid inducible gene I (RIG-I)-like receptor (RLR, e.g., RIG-I), with their commonest ligands. See text for details. Abbreviations:  
ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD); MAVS, mitochondrial antiviral signaling protein.
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enhanced IFN-I signature can be considered a distinct subset of 
SLE patients. In this context, an association between IFN signa-
ture and some clinical manifestations, such as nephritis and CNS 
disease, has been reported (75).

Recent studies have defined the role of autologous dsDNA in 
SLE pathogenesis [reviewed in Ref. (72)]. Briefly, in physiological 
conditions, dsDNA is localized in the nucleus and mitochondria; 
however, once it relocalizes into the cytoplasm and endosomes, it 
is rapidly degraded by DNases. In SLE patients, impaired dsDNA 
degradation activity coupled with defective clearance of both 
apoptotic cell bodies and neutrophil extracellular traps (NETs) 
results in self-dsDNA accumulation (76, 77). In the meantime, 
self-dsDNA released by apoptotic cells in the germinal center is 
processed by follicular dendritic cells as non-self-antigen and 
presented to autoreactive B cells, which as a result will survive and 
expand instead of being eliminated (78). Afterward, self-dsDNA 
together with autoantibodies triggers the formation of ICs that 
in turn will mediate tissue damage, stimulate pro-inflammatory 
cytokine production and an array of IFN-inducible genes  
(i.e., IFN signature). Noteworthy, self-dsDNA is mainly sensed by 
plasmacytoid dendritic cells (pDCs) by means of different DNA 

sensors, which ultimately lead to elevated IFN-I production and 
inflammasome activation (70).

Type I IFNs are endowed of several immune functions rang-
ing from dendritic cell differentiation and maturation to T cells 
activation and induction of antibody production by B cells. IFN-I 
pleiotropic activities underscore the critical function of these 
molecules in the pathogenesis of autoimmune diseases, in par-
ticular SLE (70, 75). In parallel, inflammasome activation leads to 
the release of inflammatory cytokines including IL-1β and IL-18, 
which contributes to the maintenance of the inflammatory state 
followed by cell death.

However, the association between SLE and IL-1β produc-
tion is highly debated. Animal models of SLE (MRL/lpr mice) 
have shown that IL-1β gene expression, and protein secretion is 
increased in the glomerular macrophages and mesangial cells of 
LN (79), whereas polymorphisms studies on SLE patients have 
led to conflicting results (80).

Altogether, these observations stress the relevant role of IFN-I 
alongside the other inflammatory cytokines in fine-tuning both 
the innate and adaptive immune responses. One can therefore 
easily understand how slight perturbations of the signaling 
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pathways can lead to the dysregulation of the immune response 
that inevitably brings to the development of the autoimmune 
response.

ROLe OF AUTOLOgOUS dsDNA iN SLe

The major source of autologous dsDNA, which, as mentioned 
earlier, plays a pivotal role in SLE pathogenesis, is represented by 
cells dying by necrosis, apoptosis or NETosis, with the latter being 
a type of cell death mediated by NETs, extrusions of intracellular 
material to the surrounding extracellular medium to concentrate 
antibacterial substances and entrap invading microorganisms 
(81, 82). Intriguingly, also pyroptosis, that is the type of cell death 
induced by the inflammasome in response to both infectious and 
non-infectious stimuli, has been linked to SLE initiation (83).

Apoptosis, also known as programmed cell death, is an essen-
tial mechanism of tissue homeostasis during development and 
aging, characterized by cell shrinkage, cytoskeleton remodeling, 
chromatin condensation, nuclear breakup, plasma membrane 
blebbing and formation of typical apoptotic bodies (84). Under 
normal physiologic conditions, apoptotic cells directly undergo 
phagocytosis by specialized cells (i.e., professional phagocytes) 
and are degraded within the lysosomes with no signs of inflam-
mation or immune response. In physiological conditions, cellular 
membranes are well preserved and readily cleared by engulfing 
phagocytes (85). Unless properly cleared, the apoptotic cells 
undergo secondary necrosis characterized by cell membrane 
leakage with consequent release of intracellular contents, includ-
ing autologous dsDNA (86). Notably, release of intracellular 
material, which ultimately contributes to the development of 
autoimmune diseases, can also be triggered by primary necrosis 
due to exogenous factors, as demonstrated both in animal models 
and human infections (87, 88).

NETosis, a type of cell death first associated with neutrophils, 
causes the extrusion of nuclear DNA, histones and granular 
antimicrobial proteins entrapped leading to formation of NETs 
(81, 89). Yet, mounting evidence has shown that other cell types, 
including eosinophils and mast cells, can undergo cell death 
through a similar mechanism. Therefore, NETosis appears not be 
limited to neutrophils and should therefore be regarded as a new 
type of cell death that generally causes the release of extracellular 
traps (90). Physiologically, monocyte-derived phagocytes clear 
NETs efficiently thanks to C1q- and DNase I-mediated extracel-
lular preprocessing of NETs. After ingestion by phagocytes, NETs 
are degraded in the lysosomes. Remarkably, this entire process is 
immunologically silent since the uptake of NETs by macrophages 
does not seem to stimulate pro-inflammatory cytokine secre-
tion (91). On the other hand, impaired clearance of NETs by 
phagocytes can lead to the accumulation of several autoantigens 
including self-dsDNA (92), thereby increasing the chance of 
anti-dsDNA antibody formation, although a study on an animal 
model of SLE showed a protective role of NETs (93).

A particular type of NETosis, mitochondrial NETosis, causes 
the release of mitochondrial DNA (mtDNA) from neutrophils 
following the mitochondrial production of ROS. Since mito-
chondria share several features with bacteria, including a circular 
genome carrying unmethylated CpG dinucleotide repeats, 

mtDNA is similarly immunogenic and may promote inflamma-
tion through surface and endoplasmic TLR9 binding. Moreover, 
IL-1β production can also be driven by cytosolic release of 
mtDNA, dominantly acting on NLRP3/AIM2 inflammasomes 
(94). Interestingly, NETs from low-density granulocyte of SLE 
patients are highly enriched in mtDNA compared with NETs from 
healthy controls neutrophils (95), whereas abnormal extrusion 
of oxidized mtDNA from SLE patient neutrophils may triggers 
a pathogenic interferogenic response (96). Finally, mtDNA and 
autoantibodies against it are present in elevate levels in SLE and in 
particular in LN, where levels correlate with activity index better 
than anti-dsDNA (97).

Altogether, these findings indicate that cell death-originating 
self-dsDNA plays a crucial role in SLE pathogenesis.

eNviRONMeNTAL FACTORS  
TRiggeRiNg iFN-i PRODUCTiON AND 
iNFLAMMASOMe ACTivATiON iN SLe

We have beforehand described that DNA from dying cells, as well 
as DNA from microbial pathogens, is strong immune stimulants 
that can accumulate in the cytosol and activate the production 
of various immune system modulators, including IFN-I. This 
pathway is critically dependent on a protein known as stimulator 
of interferon genes (STING) (98), which indirectly responds to 
DNA through the cyclic dinucleotide 2′,3′-cGAMP, produced 
upon the stimulation of the enzyme cyclic GMP-AMP synthase 
(cGAS) (99). In turn, the 2′,3′-cGAMP-related activation of 
STING induces a conformational change which is thought to  
mediate the phosphorylation and activation of interferon regula-
tory factor 3 (IRF3), a transcription factor for various gene targets, 
including but not limited to IFN-I (100).

It is becoming increasingly clear how several environmental 
factors that can promote IFN-I production are also able to induce 
an SLE syndrome as well as cause a flare of this disease. One of 
these agents is represented by ultraviolet B (UVB) light, which 
has been shown to trigger SLE flares and induce severe systemic 
manifestations including cutaneous reactions (101). Interestingly, 
all UVB light-induced exacerbations are associated with enhanced 
levels of IFN-I and -III along with pro-inflammatory cytokines 
(102, 103). In this regard, UVB light can promote redistribution 
of nuclear antigens on the cell surface and keratinocyte apoptosis 
(104). Furthermore, additional inflammatory cells, recruited 
by type III IFN into the skin, are likely responsible for priming 
activated pDCs to produce higher levels of IFN-I. Consistently, 
UV irradiation of keratinocytes has been shown to activate the 
STING/IRF regulatory axis in response to cytosolic DNA due to 
the loss of the STING negative regulator Unc51-like kinase 1 (105).

Systemic lupus erythematosus onset along with disease flare 
is also frequently associated with infections. Although many 
viruses and bacteria have been implicated in SLE pathogenesis 
(88, 106, 107), no specific etiologic pathogen has thus far been 
identified. Inflammation, as part of the innate immune response, 
is triggered when PAMPs are recognized by PRRs, which can 
be either associated with the cell membrane or located within 
the cell in the cytosol or nucleus. There is a growing number of 
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identified PRRs, including toll-like receptors (TLRs) and vari-
ous intracellular nucleic acid receptors. The signaling pathway 
leading to IFN-I production or inflammasome activation strictly 
relies on the PRR repertoire of the responding cell type and the 
subcellular localization of the immunostimulatory nucleic acid. 
TLR3, TLR7/8, and TLR9, present in immune cells (i.e., pDCs and 
monocytes), sense dsRNA, ssRNA, and DNA containing CpG 
motifs (108, 109). Another group of PRRs (i.e., the RLRs) include 
the cytosolic RNA receptor RIG-I and the melanoma differentia-
tion factor 5, and are responsible of detecting dsRNA and ssRNA 
molecules in the cytoplasm of cells infected with RNA viruses 
(20, 110–112). In addition, several DNA sensors located in both 
the cytosol and the nucleus have been described. These include 
cGAS (113), DNA-dependent activator of IFN-regulatory fac-
tors (DAI) (114), AIM2 (115), IFI16 (116, 117), NLRs (118), and 
DEAD/H-box helicase 41 (DDX41) (119). Binding of these DNA 
sensors to their ligands activates signaling pathways, including 
TLR9-, STING-, and inflammasome-dependent pathways, which 
not only induce production of IFN-I but also promote inflamma-
tory gene expression and inflammasome-associated cell death (i.e., 
pyroptosis). In physiological conditions, these intracellular sensors 
and related pathways are tightly regulated to impede the develop-
ment of autoimmunity (120), which would otherwise take place 
due to uncontrolled recognition of self-nucleic acids (121, 122).

Upon PAMP recognition, the intracellular receptors assemble 
cytoplasmic platforms known as myddosomes and inflamma-
somes, which are supramolecular organizing centers regulating 
the inflammatory and immunoregulatory response following 
microbial detection. Specifically, TLRs initiate a toll/interleu-
kin-1 receptor domain-containing adapter protein (TIRAP)-
dependent assembly of the myddosome, which consists of the 
adaptor MYD88 and several serine/threonine kinases of the IL-1 
receptor-associated kinase family (123). As stated previously, the 
canonical inflammasome contains a DNA sensor protein, the 
adaptor protein ASC and procaspase-1. Upon inflammasome 
assembling, activation of caspase-1 converts the immature IL-1β 
and IL-18 into mature secreted forms (124). Importantly, differ-
ent NLR family members, such as NLRC4, NLRP1, and NLRP3 
and the two ALR family members AIM2 and IFI16 have been 
shown to be differentially stimulated in a ligand-specific fashion.

Recently, it has been demonstrated that the canonical inflam-
masome pathway can be by-passed by the non-canonical one, 
which as stated previously consists of a complex formed by pro-
caspase-11 and bacterial LPS activated in mouse macrophages. 
Consistently, caspase-4 and caspase-5, the human counterpart 
of mouse caspase-11, can interact directly with intracellular LPS 
and activate the non-canonical inflammasome in human myeloid 
cells (12, 23).

Two important features distinguish myddosomes from 
inflammasomes: (1) inflammasomes do not trigger gene activa-
tion at the transcriptional level, but rather induce inflammation 
by promoting the release of preexisting immature cytokines;  
(2) inflammasomes activating PRRs are localized in the host 
cytosol, which is rarely attacked by non-pathogenic bacteria. 
Therefore, inflammasomes are generally assembled when intra-
cellular PRRs interact with pathogenic bacteria in the cytosol. By 
contrast, TLRs, which are localized on the cell surface, cannot 

distinguish whether PAMPs originated from pathogenic or non-
pathogenic microorganisms.

Thus, taken together, these findings suggest a scenario where 
the redundancy of PAMPs sensing immune receptors may easily 
lead to dysregulation of the immune response when not regulated 
properly.

AiM2-LiKe ReCePTORS: 
iNFLAMMASOMe ACTivATORS AND  
iFN-i PRODUCTiON RegULATORS

The PYHIN (or PYHIN200) family encodes evolutionary related 
human (i.e., IFI16, IFIX, MNDA, and AIM2) and murine (i.e., 
Ifi202a, Ifi202b, Ifi203, Ifi204, Ifi205/D3, and Ifi206) proteins 
(116–118). Increasing evidence has shown that these proteins 
may act as regulators of a wide range of cell functions, such as 
differentiation, proliferation, senescence, apoptosis, and inflam-
masome assembly (117, 125–130). Recently, two members of 
the human family, IFI16 and AIM2, have been implicated in the 
recognition of pathogen DNA and classified into the ALR group, 
still maintaining their peculiarity. In normal conditions, expres-
sion of the nuclear phosphoprotein IFI16 is limited to vascular 
endothelial cells, keratinocytes, and hematopoietic cells (131). 
Following activation by pathogen DNA, IFI16 translocates into 
the cytoplasm, triggers type I IFN production, cytokines, and 
eventually cell death (Figure 3). By contrast, AIM2, upon binding 
DNA in the cytosol, stimulates inflammasome activation in the 
absence of type I IFN production.

From a structural point of view, IFI16 harbors an N-terminal 
PYD and two C-terminal HIN200 domains (see Figure  1 for 
details). While AIM2 uses its PYD to interact with the inflamma-
some component ASC, which also contains a PYD (31, 33, 68), the 
direct interaction between IFI16 and ASC is still matter of debate. 
Nevertheless, IFI16 has been reported to induce ASC-dependent 
inflammasome activation during infection with some nuclear 
DNA viruses (32, 132, 133). Following viral DNA recognition in 
the nucleus, the IFI16-ASC-procaspase-1 inflammasome forma-
tion is induced. The complex is then released in the cytoplasm, 
where processing of pro-IL-1β into active IL-1β occurs.

Moreover, IFI16 is also an inducer of IFN-β in response to 
intracellular DNA. RNA interference-mediated depletion of 
IFI16 or its presumed mouse ortholog p204 has revealed that both 
proteins are required for a functional IFN response to transfected 
dsDNA or infection with HSV-1 in various cell types, including 
human and mouse monocytic cell lines (134), mouse corneal epi-
thelial cells (135), human primary and immortalized fibroblasts 
(136, 137), human primary macrophages (138), neutrophils (139), 
and dendritic cells (140). In this regard, IFI16 has been shown 
to interact with STING, leading to phosphorylation and nuclear 
translocation of IRF3 via the IFI16–STING–TBK signaling axis, 
resulting in IFN-β production during HSV-1 infection (137). 
Moreover, IRF3 activation has been also demonstrated following 
direct cooperation between IFI16 and cGAS, by a mechanism in 
which cGAS promotes IFI16 stability in response to incoming 
nuclear HSV DNA, rather than through the production of 2′,3′-
cGAMP (141) (Figure 3).
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FigURe 3 | Role of IFN-inducible protein 16 (IFI16) as inflammasome regulator in viral infections and autoimmunity. In unstimulated cells, IFI16 is mainly nuclear 
(upper panel). Following viral DNA recognition and binding, IFI16 can induce the activation of the canonical inflammasome through the recruitment of ASC and 
pro-caspase 1, and the production of type I IFN (IFN-I) through the STING–IRF axis (middle panel). In the course of autoimmune (e.g., systemic lupus erythematosus) 
and autoinflammatory conditions, following the recognition of self-DNA, IFI16 might be responsible for the production of pro-inflammatory cytokines and IFN-I 
through the same pathways. Moreover, its aberrant expression can also lead to the extracellular leakage causing amplification of the inflammatory signals and 
production of protective autoantibodies (lower panel). See text for details. Abbreviations: cGAS, cyclic GMP-AMP synthase; IRF3, interferon regulatory factor 3;  
ISG, interferon stimulated genes; STING, stimulator of interferon genes; TBK1, TANK-binding kinase.
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As aforementioned, IFI16 is unique among DNA sensors as it 
shuttles between the nucleus and the cytoplasm and is predomi-
nantly nuclear at steady state. Furthermore, IFI16 is able to sense 
DNA in both compartments depending on the localization of  
its DNA ligands (134, 137, 138). Thus, the ability of IFI16 to detect 
DNA viruses, such as HSV-1 in the nucleus, appears to contradict 
the long-held assumption that foreign DNA is sensed merely 
because of its cytosolic localization. Interestingly, the conserved 
HIN200 domains of the IFI16 protein are responsible for the 
interaction with oligonucleotide/oligosaccharide moieties (142). 
To what extent IFI16/p204 is involved in the sensing of DNA 
during infection with viruses or intracellular bacteria in  vivo, 
and what domains are indispensable for recognition, awaits the 
generation of mice lacking this receptor. However, the structural 
studies elucidating the DNA binding of IFI16 have improved our 
understanding on non-self-DNA sensing and IFI16 localization. 
Few more issues concerning the nuclear/cytosolic interaction 
of STING and IFI16 and activation of inflammasome remain 
unanswered, mainly related to the different cellular and infection 
models analyzed so far.

IFN-inducible protein 16 has also been described to play a role 
in the DNA damage response (143, 144) and promote apoptosis 
and senescence (145–148). Recent reports have implicated IFI16 
in autoimmunity, pointing to a role of PYHIN proteins in the 
pathogenesis of human autoimmune disease. Since the IFN 
system is largely regarded as playing a key role in autoimmune 
disorders including SLE, SSc, and SjS (75, 149, 150), it is pos-
sible to hypothesize that also PYHIN may play a causative role in 
autoimmunity thanks to its ability to induce apoptosis and trigger 
an inflammatory response (Figure 3). It follows that during sys-
temic autoimmune conditions of tissue injury and apoptosis the 
exposure of autoantigens leads inevitably to breaking of tolerance 
and dysregulation of the immune response. Under physiological 
conditions, dead cells and tissue debris are normally cleared by 
the monocyte/macrophage system. However, under conditions 
that hamper clearance of apoptotic bodies by phagocytes, chronic 
exposure of autoantigens, including PYHIN proteins, may lead 
to the development of autoimmunity. Consistent with this sce-
nario, various autoantigens and corresponding autoantibodies 
have been identified in the sera of patients affected by different 
systemic autoimmune diseases, such as SLE, SjS, and SSc.

NOveL FUNCTiONS FOR iFi16  
TO TRiggeR iNFLAMMATiON

We have previously demonstrated that IFI16 is a key component 
for the tight regulation of cellular and viral promoters, through 
physical interaction with the nuclear transcription factor Sp1 

and regulation of NF-κB pathway (151, 152). As inducer of pro-
inflammatory molecules (e.g., ICAM-1, RANTES, and CCL20) 
and apoptosis in primary endothelial cells, IFI16 might be active 
during the initial phases of the inflammatory processes paving 
the way to the onset of autoimmunity (145). In addition, IFI16 has 
been shown to translocate in the cytoplasm of normal keratino-
cytes following UVB-induced cell injury and be subsequently 
released in the extracellular milieu (104). In vivo, the expression 
of IFI16 is significantly increased in all layers of the epidermis 
from patients affected by SLE or SSc, whereas in the epidermis 
from healthy control subjects IFI16 expression is only found in 
the basal layer. In the same setting, the dermal inflammatory 
infiltrate has been found positive for IFI16 staining indicating 
that IFI16 is aberrantly expressed also in lymphocytes, fibroblasts, 
and endothelial cells. Similarly, we and others have also recently 
demonstrated that IFI16 is aberrantly expressed in the intestinal 
mucosa of patients affected by IBD, where dysregulation of host–
microbial interactions has been shown to play a major pathogenic 
role (153, 154). In addition, we and others have evaluated the 
etiopathogenic role of PYHIN proteins in the development of SLE 
in human pathology as well as in mouse models (Table  1). In 
this regard, we have found that IFI16 overexpression in primary 
human umbilical vein endothelial cells (HUVECs) efficiently 
inhibits tube morphogenesis in  vitro, triggers production of 
pro-inflammatory molecules and leads to cell death by apoptosis, 
suggesting that IFI16 might induce inflammation along with 
other detrimental cellular pathways primarily involved in auto-
immunity (145, 155).

In another context, IFI16 has been shown to restrict human 
cytomegalovirus (HCMV) and papillomavirus replication through 
different mechanisms (152, 156). Interestingly, IFI16 has been 
observed entrapped in HCMV virions undergoing cell egression 
(116). Consistent with our results, Singh et al. have demonstrated 
that IFI16 is aberrantly expressed in the cytoplasm of KSHV 
latently infected cells, wrapped up in exosomes and then released 
extracellularly (133). However, since IFI16 was originally identified 
as a molecule localized in intracellular compartments, in particu-
lar the nucleus, all studies on IFI16 were subsequently limited to 
determine the biological and physiological activity of this protein 
exclusively within the cellular compartment, thus disregarding a 
possible role of extracellular IFI16 as pro-inflammatory trigger. 
To fill this gap, we sought to determine the effects of extracellular 
IFI16 protein on HUVECs. Surprisingly, we observed a cytokine-
stimulating activity of extracellular IFI16 (rIFI16) on primary 
endothelial cells, which led to the production and secretion of 
pro-inflammatory cytokines such as IL-6, IL-8, CCL2, CCL5, 
and CCL20. Moreover, we found that rIFI16 protein, alone or in 
synergy with LPS, acted by propagating “danger signals” through 
a MyD88-dependent TLR pathway (126).
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TAbLe 1 | Summary of IFN-inducible protein 16 (IFI16) correlations with systemic lupus erythematosus (SLE) and other autoimmune diseases.

Disease Observation Reference

Systemic lupus erythematosus First description of anti-IFI16 antibodies in the sera SLE patients (159)
Presence of anti-IFI16 antibodies detected by SEREX in the sera of SLE patients (43)
Increased expression of IFI16 in the skin of SLE patients and detection of anti-IFI16 antibodies by ELISA (41)
Increased IFI16 mRNA levels in leukocytes from SLE patients (55)
IFI16 overexpression and redistribution in the skin of SLE patients (104)
High significant levels of circulating IFI16 protein in the sera of SLE patients (155)
High serum titers of anti-IFI16 antibodies inversely correlated with proteinuria and C3 hypocomplementemia (158)

Sjögren’s syndrome Presence of anti-IFI16 antibodies detected by SEREX in the sera of Sjogren’s syndrome (SjS) patients (43)
Significant levels of circulating IFI16 protein in the sera of SjS patients (155)
De novo expression of IFI16 in ductal and acinar epithelial cells in salivary glands (39)
High serum titers of IFI16 antibodies against an epitope outside the N-terminus of the protein (160)

Systemic sclerosis Presence of anti-IFI16 antibodies detected by SEREX in the sera of systemic sclerosis (SSc) patients (43)
Increased expression of IFI16 in the skin of SSc patients and detection of anti-IFI16 antibodies by ELISA (41)
Anti-IFI16 antibodies associated with the limited cutaneous form of the disease in patients negative for the  
classical serological markers

(161)

Significant levels of circulating IFI16 protein in the sera of SSc patients (155)

Rheumatoid arthritis (RA) Presence of anti-IFI16 antibodies detected by SEREX in the sera of RA patients (43)
High levels of circulating IFI16 protein in the sera of RA patients (155)
Increased levels of both anti-IFI16 antibodies and circulating IFI16 in the sera of RA patients,  
IFI16 protein correlating with RA-related pulmonary disease

(157)

Inflammatory bowel disease De novo overexpression of IFI16 in colonic epithelial cells of inflammatory bowel disease (IBD) patients (153, 154)
Detection of anti-IFI16 antibodies by ELISA in the sera of IBD patients (153)

Psoriasis IFI16 upregulation in psoriatic skin lesions, with cytoplasmic localization (44)
IFI16 upregulation in keratinocytes is induced by psoriasis-related cytokines, including IFN-γ, TNF-α, IL-17, and IL-22 (45)
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Altogether, these results unveil a novel function of extracel-
lular IFI16 at the endothelial interface, which might explain the 
ability of this protein to induce endothelial cell activation and 
injury during systemic inflammation.

In summary, IFI16 can promote inflammation by (1) acting 
as regulator of transcription factors to activate expression of 
genes encoding pro-inflammatory cytokines; (2) activating type 
I IFN production following translocation into the cytoplasm; and  
(3) binding to cells such as endothelial cells and keratinocytes, 
once released in the extracellular milieu, to activate production 
of pro-inflammatory chemokines and cytokines. Concomitantly, 
IFI16 leakage into the extracellular milieu leads to tolerance 
breaking and autoantibody production.

ANTi-iFi16 ANTibODieS AND THeiR 
ReLATiON TO SLe CHARACTeRiSTiCS

We and others have previously reported the presence of anti-IFI16 
antibodies in sera of patients suffering from various autoimmune 
diseases such as SLE, SjS, AR, SSc, and IBD (39, 41, 153, 157–161) 
(Table 1). Among these latter, SLE stands out as the disease where 
IFI16 autoantibodies have been more thoroughly characterized. 
This aspect is of paramount importance in view of the prognostic 
and diagnostic relevance of other SLE autoantibodies such as 
ANAs and autoantibodies against Ro/SSA and La/SSB ribonu-
cleoproteins (162). However, not all autoantibodies seem to 
play a causative role in autoimmunity as autoantibodies against 
chromatin molecules, such as HMGB1, exert a protective effect in 
animal models of autoimmune disease (163). Thus, new criteria 

for autoantibodies classification based on both their functionality 
and ability to trigger or dampen immunologic disturbances are 
clearly needed.

With regard to IFI16, it is conceivable to hypothesize that the 
previously described over- or aberrant expression and mislocali-
zation of this nuclear protein, earlier in the cytoplasm and later 
on in the extracellular milieu, might lead to loss of tolerance and 
development of anti-IFI16 antibodies, as demonstrated in skin 
lesions from SLE patients and in keratinocytes cultured in vitro 
under conditions of UVB light-induced cell injury (104).

Although the occurrence of anti-IFI16 antibodies in SLE 
patients has long been known, their associations with clinical and 
serological parameters of SLE are still under debate. To address 
this aspect, we have recently set out to determine the prevalence 
of anti-IFI16 autoantibodies in a population of SLE patients from 
northern Italy (158). Specifically, in a cross-sectional study, we 
compared anti-IFI16 antibody levels of SLE patients at various 
stages of disease with those of patients with non-SLE primary 
glomerulonephritis (GN) or healthy individuals. Remarkably, we 
measured significantly higher anti-IFI16 titers in SLE patients 
compared with both disease and control groups, and, according 
to cutoff levels, we were able to estimate that more than 60% of the 
SLE patients tested positive for anti-IFI16 autoantibodies com-
pared with just 24% of patients with primary non-SLE GN and 
5% of healthy individuals. Of note, in this SLE cohort, univariate 
analysis showed that autoantibodies to IFI16 were inversely asso-
ciated with proteinuria, whereas multivariate analysis confirmed  
a reduced risk of proteinuria for anti-IFI16-positive patients despite 
renal function. Furthermore, an inverse association between  
anti-IFI16 and C3 hypocomplementemia was also observed.  
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In this regard, the association of anti-IFI16 antibodies with 
reduced C3 hypocomplementemia was independent of the dis-
ease activity parameters SLEDAI and anti-dsDNA. The described 
inverse associations between anti-IFI16 positivity, proteinuria, 
and C3 hypocomplementemia, together with the observation that 
nephritis does not occur in other systemic autoimmune diseases 
characterized by high titers of anti-IFI16 antibodies such as SjS 
and SSc, imply that ultimately these antibodies do not play a 
relevant role in the pathogenesis of renal inflammation in SLE, 
but rather most likely prevent complement consumption. Thus, 
based on these findings, it is likely that the occurrence of IFI16 
autoantibodies might protect from the detrimental activity of 
the free circulating IFI16 protein, exerting beneficial functional 
effects rather than pathogenic ones.

Consistent with the data obtained in SLE patients, in previous 
studies, we found a significant prevalence of anti-IFI16 antibod-
ies in SSc, which was more evident in the more benign limited 
cutaneous form of this disease (42). More recently, we have shown 
that enhanced titers of anti-IFI16 in IBD patients undergoing 
infliximab therapy correlates with a more favorable outcome of 
the disease (153), which can be partly explained by the protective 
role exerted by these antibodies against the progression of the 
autoimmune process.

CONCLUSiON AND PeRSPeCTiveS

In the last decade, we have greatly expanded our knowledge of 
the relationship between aberrant innate immune response and 
development of autoinflammatory/autoimmune diseases such 
as SLE. Specifically, we now know that multiple inflammasome-
induced inflammatory responses correlate with the development 
of SLE. In this regard, the ALR family member IFI16 has been 
found aberrantly expressed in various target tissues of a range 
of autoimmune diseases, including SLE skin, SjS salivary glands, 
and IBD colonic epithelium. With this scenario in mind, the 
occurrence of anti-IFI16 antibodies is likely due to the response 

of the immune system to IFI16 protein release through one 
of the aforementioned cell death mechanisms. Alternatively, 
the presence of anti-IFI16 autoantibodies could be the result 
of IFI16 translocation from the nucleus to the cytoplasm and, 
eventually, being secreted into the extracellular milieu where it 
is recognized by the immune system. In addition, the observa-
tion that IFI16 enhances the inflammation response against 
microbial patterns, such as bacterial LPS, is highly suggestive of 
a role of ALRs also in non-canonical inflammasome-mediated 
signaling.

Overall, understanding the role of ALRs in SLE pathogenesis 
and chronic inflammation would contribute to the development 
of novel therapeutic options, which may not only be limited to the 
treatment of patients affected by systemic autoimmune disease 
but also to cure conditions in which prolonged inflammatory 
flares progressively lead to organ-specific disorders (e.g., cancer).
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