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Retinoic acid receptor-related orphan receptors (RORs) include RORa (NR1F1), RORp
(NR1F2), and RORy (NR1F3). These receptors are reported to activate transcription
through ligand-dependent interactions with co-regulators and are involved in the devel-
opment of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases,
the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to
cancer-related processes have been growing, and they provide evidence that RORs are
likely to be considered as potential therapeutic targets in many cancers. RORa has been
identified as a potential therapeutic target for breast cancer and has been investigated
in melanoma, colorectal colon cancer, and gastric cancer. RORp is mainly expressed
in the central nervous system, but it has also been studied in pharyngeal cancer,
uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent
studies suggest that RORYy is involved in various cancers, including lymphoma, mela-
noma, and lung cancer. Some studies found RORYy to be upregulated in cancer tissues
compared with normal tissues, while others indicated the opposite results. With respect
to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms
of RORs in cancer were mostly focused on immune cells and cytokines, but lately there
have been investigations concentrating on RORs themselves. Thus, this review sum-
marizes reports on the regulation of RORs in cancer and highlights potential therapeutic
targets in cancer.
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INTRODUCTION

Cancer incidence and mortality rates are increasing worldwide with the growing and aging of the
population, as well as risk factors such as outdoor pollution, tobacco smoke, and physical inactivity
(1). Due to early detection and advanced treatments, cancer survival rates continue to grow, although
a better understanding of carcinogenesis may lead to more effective treatment options for cancer.

The nuclear receptors (NRs) have been demonstrated to play essential roles in cancer-related
progresses and to be potential therapeutic targets for many malignancies (2-5). The retinoic acid
receptor-related orphan receptors (RORs) are a subfamily of the thyroid hormone receptor, which
is a subfamily of the NRs and belonging to the orphan NR family (6). The ROR subfamily contains
three members: RORax (NR1F1), RORS (NR1F2), and RORy (NR1F3).
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Members of the RORs are typically regarded as noteworthy
in inflammation, autoimmune diseases, metabolism disorders,
circadian rhythms, development of neuron cells, and immune
cell differentiation. Although RORs share some common seq-
uences, the three RORs present a wide assortment of features.
RORa and RORy are important regulators of the immune
system. For instance, the development and differentiation of
Th17 cells are dependent on these factors (7-9). Moreover,
studies show that RORYy is expressed in lymphoid tissue inducer
cells, innate lymphoid cells, invariant natural killer T cells, and
y8 T cells, which contribute to inflammation and autoimmune
disease (10).

RORa, RORP, and RORYy are all involved in the modulation
of circadian rhythms. RORa functions as a positive regulator
of the circadian modulator Bmall through binding to ROR-
responsive elements (ROREs) (11, 12). RORB mRNA expression
levels were found to oscillate with true circadian rhythms, peak-
ing at night-time (13), and modulation of circadian rhythms was
disrupted in RORB-deficient mice (14). Recent studies have pro-
posed that RORy1, but not RORa, is periodically expressed, and
RORY regulates several clock genes, such as Cryl, Bmall, and
Npas2, directly in a Zeitgeber time-dependent manner through
these ROREs (15, 16).

Accumulating evidence shows that RORa and RORy are
involved in lipid/glucose metabolism, insulin sensitivity, and
cardiometabolic control (17). A report showed that RORa could
repress the transcriptional activity of PPARY, leading to dysregu-
lation of hepatic lipid metabolism (18). Recently, studies have
shown that metabolic disorders affected by circadian rhythms
might be attributed to RORa and RORy, partly because of their
modulation in both circadian and metabolic diseases. Moreover,
earlier studies suggested that RORa was directly involved in
melatonin-mediated anti-fibrotic processes (19) and beneficial
manipulation in diabetic cardiomyopathy (20).

The expression sites and producing cells of RORs are also dis-
tinct from each other, consistent with their functions in the various
diseases mentioned above. RORa and RORy are expressed in all
skin cell types, including epidermal keratinocytes, melanocytes,
dermal fibroblasts, and several established lines of malignant
melanomas. The expression levels of RORa/y are dependent on
the skin cell type and can be regulated by hydroxy derivatives
of vitamin D3 (5, 21-24). Vitamin D3 formation is regulated
by UVB (25); vitamin D3 metabolites are inverse agonists for
RORa/y; therefore, RORa and RORYy expression level could be
regulated by UVB (5).

Other expression sites of RORa include the liver, skin, pancreas,
brain, adipose tissue, islet cells, and the pineal gland. In addition
to its expression and modulation in melanoma described above,
ROR« has been researched in breast cancer (BC) (26), melanoma
(5), hepatocellular carcinoma (HCC) (27), and colon cancer (28).
RORP is mainly expressed in the brain and pineal gland (29).
RORP is upregulated or downregulated in cancers such as pri-
mary leiomyosarcoma of the uterus (30), a pharyngeal cancer cell
line (31), and colorectal cancer (28). RORy is expressed in the
thymus and lymphoid organs, and RORy production in cancer
cells is detected in lung cancer (4), lymphoma (32), melanoma (5),
and BC (33).

The RORs have been widely investigated in cancer and have
shown varying influences in cancer-related processes, these dif-
ferences may be due to their structures and their tissue-specific
expression. Some studies suggest that RORa is a tumor suppressor
and a potential therapeutic target for BC; and based on the
limited researches on RORp in cancer, RORP might be a tumor
suppressor as well. Others have proposed that activating RORy
may exert antitumor immunity (34), while RORy is considered as
protumor candidates in prostate cancer and lung cancer (4, 35). In
this review, we summarize and discuss the structures of RORs and
their roles in cancer-related processes, highlighting the potential
therapeutic targets for cancer treatment.

STRUCTURE AND LIGANDS OF RORs

The three ROR family members contain sequences similar to the
retinoic acid receptor, with certain differences. The three ROR
family members contain sequences similar to the retinoic acid
receptor, but in minor details, the structures of each are distinct
(36). The RORa gene maps to human chromosome 15q22.2,
covering a large genomic region of 730 kb and generating four
human RORa isoforms: RORa1—RORa4, while only RORal
and RORo4 are found in mice (17). The RORP and RORYy genes
map to human q21.13 and 1q21.3, covering 188 and 24 kb, respec-
tively. RORP and RORy each generate two isoforms: RORB1/
RORP2 and RORy1/RORy2 (RORC2 in human and RORyt in
mice). The isoforms of RORs differ in their amino terminals due
to alternative exon splicing and promoter usage and their distinct
expression and function in different tissues. However, if cells
co-express RORs, the co-expressed RORs may overlap in several
functions.

Receptor-related orphan receptor genes encode proteins of
similar amino sequences ranging from 459 to 556 amino acids
according to the different isoforms, and they all consist of four
domains. These domains include an N-terminal domain, a highly
conserved DNA-binding domain, a ligand-binding domain (LBD),
and a hinge between the domains. Transcription is regulated by
binding to RORE as a monomer (36).

No cognate ligands of RORs had been identified until
crystallography studies on the LBD of ROR« indicated that
cholesterol and cholesterol sulfate function as natural ligands
(37). Several retinoids, including all-trans retinoic acid and the
synthetic retinoid ALRT 1550 (ALRT), have been identified to
bind ROR, reversibly and with high affinity (38). Thus, the
retinoids have been identified as ligands of RORp, although
their specific regulation is not clearly understood. RORy has
been found to be co-expressed with RORa, and the ligands of
RORa and RORy have been reported as sterols or their deriva-
tives and secosteroids (5, 6). Endogenously produced novel D3
hydroxy derivatives can act as both “biased” agonists of the
vitamin D receptor and inverse agonists of RORa/y (22), and
hydroxylumisterols can act as ligands of RORa and RORy (39).
Melatonin was once considered a ligand for RORa (40, 41).
However, contrasting reports showed that melatonin was
not a natural ligand for RORa because melatonin could not
activate RORa directly (42, 43). The docking scores calculated
from molecular modeling of interactions between melatonin
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and its metabolites with RORa and RORy predicted weak
binding affinities (5), and the structures of melatonin and its
metabolites were not similar to the sterols that were identified
as natural ligands (37).

Except for the natural ligands of RORs mentioned above,
there are also some synthetic RORy ligands with therapeutic
potential identified in literatures (6, 44). For instance, the inverse
agonists of RORa and RORy, SR2211 has been reported to inhibit
the expression of IL-17A and cell viability in lung cancer (4) and
suppress inflammation in a collagen-induced arthritis mouse
model (45). And RORa and RORy agonist SR1078 can induce
cancer cell apoptosis and p53 stability (46). Inverse agonists or
agonists like these two are promising therapeutic reagents for the
diseases that RORs involved in, but there are still lack of studies
to investigate their treatment potentials in cancer.

CANCER RELEVANCE

As illustrated above, RORs have been implicated in autoimmune
or immune-mediated disease, the circadian rhythm, and meta-
bolic disorders. RORs are also important regulators in various
cancers due to their pivotal roles in immunity, the circadian
rhythm, and metabolic homeostasis, which contribute to tumor
progression.

RORa has been found to be downregulated in keratinocyte-
derived skin cancer (47) and is expressed in prostate cancer
cells (48), melanoma cell lines (5, 49), and BC (50) (Table 1).
Decreased expression of RORa« is positively related with mela-
noma progression and shorter disease-free and overall survival
(23, 24). RORa is also involved in inhibiting cell proliferation as
a tumor suppressor (51). In human hepatoma cells, RORa was
found to be upregulated after hypoxia induction (52), while ROR«
expression was lower in tumor tissues than in adjacent tumor
tissues. It was also determined to be involved in the reprogram-
ming of glucose metabolism and inhibiting hepatoma growth
both in vitro and in a xenograft model in vivo (53). However, in
one report, the production of RORx mRNA in colorectal cancer
patients was unchanged (54), while RORa phosphorylation was
found reduced and might be involved in colon cancer progres-
sion (55). In another report about BC, RORx was found to be
downregulated, and low expression of RORax mRNA was associ-
ated with a poor prognosis (26). RORa is commonly considered
arepressor (Figure 1), according to investigations into its role in
cancer illustrated above.

The natural expression of RORp is exclusively restricted to neu-
ronal tissues; therefore, activation of RORp transcription is pre-
dominantly found in neuroblastoma cell lines (56), and literature
on the role of RORP in cancer is not much. Nevertheless, primary
uterine leiomyosarcoma showed high RORf expression (30),
pharyngeal carcinoma cells and colorectal cancer cells showed
modulated RORp expression (29, 31), and RORp was related to
metastasis in a metastatic colorectal cancer cell model (28), which
are summarized in Table 1. Based on the studies mentioned
above, RORP shows features of a tumor suppressor (Figure 1),
but the potential roles of RORpP in various cancers related
processes such as tumor proliferation and metastasis warrant
further investigation.

RORY in Various Cancers

On the contrary, RORy and its isoforms are extensively found
in various kinds of malignancies. The diverse roles of RORy in
distinct cancers are specifically described below and summarized
in Table 1 and Figure 1.

Hematological Malignancies

RORy was found to function as an important element in lym-
phatic tumors (32), and mice deficient in RORy were shown
to have a high incidence of lymphoma metastasis and death
within 4 months (57). Moreover, RORy is frequently studied in
tumor-infiltrating immune cells. RORy mRNA expression in total
lymphocytes was found unchanged between multiple myeloma
and healthy controls (58, 59), but it was identified upregulation in
peripheral blood monocyte cell (PBMC) from multiple myeloma
comparing with healthy controls (60).

Breast Cancer

RORy was found to be significantly overexpressed among infil-
trating IL-17* T cells, which drive immunosuppression in BC
(61), and in breast tumor tissues compared with control tissues
(62). An investigation related to group 3 innate lymphoid cells
(ILC3) in BC revealed a role for RORyt + ILC3 in promoting
lymph node metastasis by modulating chemokines in the tumor
microenvironment (63). RORy was found to be decreased in
basal-like and grade 3 BCs, and inhibition of RORy blocked
cell viability, migration, and epithelial-mesenchymal transition
(EMT) (64). However, an earlier study suggested that high expres-
sion of RORy1, but not RORyt, by cancer cells was related to a
high distance metastasis-free survival and was inversely corre-
lated with decreased expression of PRMT2, which could suppress
cell migration in BC (33). Accordingly, the different functions
of RORy in BC may be due to distinct cell origins and isotypes.
For instance, when expressed by immune cells, RORy acts as an
immune suppressor, although when produced by cancer cells, it
acts as a potential survival factor.

Skin Cancer

RORy1l regulated tumor-promoting “emergency” granulo-
monocytopoiesis by suppressing negative (Socs3 and Bcl3) and
promoting positive (C/EBPb) regulators of granulopoiesis and
RORyl promoted expansion of tumor-promoting MDSCs
and TAM in fibrocarcinoma mice models (65). In a study explor-
ing the function of Th17 cells in antitumor immunity, RORyt was
found to be expressed by tumor-infiltrating Th17 cells. Th17 cells
did not exhibit in vitro tumor cell killing activity, although CD8*
cytotoxic T cells stimulated by Th17 cells could activate the tumor
killing response in a mouse B16 melanoma model (66).

In another study, RORy-deficient mice showed inhibited mela-
noma growth, and this effect was identified to be IL-9 dependent
(67). Together with RORa, RORy was found to be expressed in
melanoma cell lines and could bind with vitamin D3 derivatives,
including 20(OH)D3 and 20,23(OH)2D3 (5), active forms of
secosteroids and lumisterol can have anti-melanoma activity
through action on RORa and RORy (22, 24, 25, 39). In another
study, RORy and RORa expression levels were decreased during
melanoma progression, with the lowest expression levels in stages
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FIGURE 1 | Expression and function of receptor-related orphan receptors (RORs) in tumor microenvironment. The expression of RORa and RORp from

tumor cell and the modulated expression of RORy in group 3 innate lymphoid cells (ILC3), Th17, regulatory T cell (Treg), myeloid cell, and tumor cell from tumor
microenvironment are presented as reviewed in the text. The downregulation of RORa and ROR induce antitumor effect in hepatoma, breast cancer (BC),
melanoma, and colon cancer. The upregulation of RORy in ILC3 leads to protumor effect by chemokines in BC. The downregulation of RORy in Th17 indicates
antitumor effect by IL-17 in colon cancer. The upregulation of RORy in Treg shows protumor effect in colon cancer. The expression of RORy in myeloid cell has
protumor effects via Socs3, Bcl3, and C/EBPb. The expression of RORy in tumor cell is either increased or decreased depending on the cancer type. Increased
expression of RORy in lung cancer, prostate cancer, and gastric cancer results in protumor effect, while decreased expression of RORy in BC and melanoma could
induce antitumor effect via TGFp/epithelial-mesenchymal transition (EMT) or vitamin D3 derivatives. The question mark refers to unknown mechanisms. The up or
down black arrow refers to upregulation or downregulation. Antitumor: inhibits tumor progression; protumor: promotes tumor progression.

III and IV primary melanomas and in melanoma (68). These
studies of RORa and RORy in melanoma suggest that RORa and
RORy could be important modulators affecting melanomagen-
esis, contributing to the anti-melanoma activity of vitamin D3
and act as potential therapeutic targets in adjuvant melanoma
therapy (23, 24). The investigation of RORy in skin cancer seems
to be concentrated on melanoma and the isotype RORy1, thus,
there is a need for further exploration focusing on the regulation
of RORy and its roles in other types of skin cancer.

Lung Cancer

Our previous study showed that RORy2 was highly expressed
in non-small cell lung cancer (NSCLC) cells and also served as
a prognostic factor (4). The expression of RORyt mRNA and
protein was found to be downregulated in PBMCs from NSCLC
patients compared with controls (69). However, RORyt mRNA
was found to be upregulated in the peripheral blood of patients
with NSCLC compared with that of healthy controls (70), which
was confirmed in other studies (71, 72). Moreover, in a recent
report, RORyt, together with Th17/IL-6R/pSTAT3/BATE, was
upregulated in the tumor region of adenocarcinomas, except for
squamous carcinomas of lung cancer (73). Studies focused on

cancer cell-derived RORyt are infrequent and require additional
attention.

Hepatocellular Carcinoma

RORyt mRNA was shown to be increased in HCC compared with
a normal control group (74). By contrast, RORyt mRNA expres-
sion was found to be significantly lower in patients with steatosis/
steatohepatitis, liver fibrosis, and HCC (27). Investigations into
RORytin HCC are rare, although RORyt is known to be expressed
in hepatocytes. There could be additional modulatory roles for
RORyt in HCC progression, and further studies are warranted.

Gastrointestinal Cancer

The gene expression of IL-17A and RORy was not altered in
gastric cancer (75). Foxp3*IL-17* cells in colorectal cancer were
found to express RORyt (76). Another study described RORyt-
expressing regulatory T cells that were linked with the inability of
these cells to suppress inflammation and were directly associated
with the stage of human colon cancer (77). RORyt was also found
to be involved in inhibiting colon carcinogenesis through binding
with an E3 ubiquitin ligase, Itch, for ubiquitination (78). However,
RORyt was not expressed within colorectal cancer tissues or by
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colorectal cancer-infiltrating CD4* T cells (79). The expression
and regulation of RORyt in gastric and colorectal cancer remain
controversial, which makes it difficult to conclude the extent of
RORY/RORyt expression or the involvement in tumorigenesis.
However, the differences in results from different studies might
be attributable to the diversity of detection methods from tissue
samples when considering individual variation.

Genitourinary Cancer

In castration-resistant prostate cancer (CRPC), RORy was examined
as a therapeutic target due to its overexpression and was found to
directly drive androgen receptor (AR) hyperactivity through bind-
ing to an exonic RORE and partly through the NR coactivators
SRC-1 and -3 (35). Therefore, inhibition of RORy may represent a
possible treatment option for CRPC. The transcriptional expression
of RORy mRNA from PBMC:s exhibited high levels in cervical can-
cer compared with healthy controls (80). Additional observations
are needed to elucidate the functions of RORy in genitourinary
cancer, where it may serve as a valuable therapeutic target.

PERSPECTIVE

The three ROR family members are regarded as important regula-
tors of the circadian rhythm, metabolism, and tumorigenesis. As
discussed in this review, the protumor or antitumor effects of ROR«
and ROR in cancer have not been intensively explored, requiring
further study and evidence. However, as the main transcription
factor in IL-17-expressing immune cells, RORy has been investi-
gated in various cancer cells and tumor-infiltrating cells (Figure 1),
indicating that it might be a promising prognostic factor in lung
and BC and a potential therapeutic target in prostate cancer.

Moreover, according to this review, we could conclude that
the roles that RORs family members play in tumorigenesis vary
in different cancers and, to some extent, depend on producing
cells in the tumor microenvironment. Further concentration on
the relationships between RORs and tumorigenesis should be
meticulously organized and should deeply explore the clinical
significance and the underlying mechanisms. More importantly,
each RORs family members consists of several isoforms, and
some previous studies have showed that different RORs isoforms
present different biological functions (6). Thus, prospective reports on
therapeutic targets of RORs in cancer should identify all isoforms
of specific RORs.
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