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Invariant natural killer T (iNKT) cells are lipid-reactive T  cells with profound immuno-
modulatory potential. They are unique in their restriction to lipid antigens presented in 
CD1d molecules, which underlies their role in lipid-driven disorders such as obesity 
and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation 
to immunometabolic disease, metabolic pr ogramming of lipid antigen presentation, 
and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in 
immunometabolic disease. Second, we discuss the effects of cellular metabolism on 
lipid antigen processing and presentation to iNKT cells. The synthesis and processing 
of glycolipids and other potential endogenous lipid antigens depends on metabolic 
demand and may steer iNKT  cells toward adopting a Th1 or Th2 signature. Third, 
external signals such as toll-like receptor ligands, adipokines, and cytokines modulate 
antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the 
relevance of metabolic programming of iNKT cells in human disease, focusing on their 
role in disorders such as obesity and atherosclerosis. The critical response to metabolic 
changes places iNKT cells at the helm of immunometabolic disease.

Keywords: immunometabolism, nKT, obesity, atherosclerosis, sphingolipid, AMPK, mTOR

invARiAnT nATURAL KiLLeR T (inKT) CeLLS CenTeR STAGe in 
iMMUnOMeTABOLiC DiSeASe

Immunometabolic diseases such as obesity, type 2 diabetes, and cardiovascular disease (CVD) are the 
major health burdens of our time and illustrate the intricate web between metabolic dysregulation 
and inflammation (1). The links between metabolism and inflammation may be explained from an 
evolutionary perspective. An effective immune defense critically depends on efficient energy storage 
and release, as reflected by the co-evolution of the immune system and metabolism in Drosophila 
fat bodies, and the reminiscent immune cell functions of adipocytes in humans and other higher 
organisms (2). Unfortunately, evolution could not foresee the endemic nutritional overload in 21st 
century Western societies, causing glucotoxicity and lipotoxicity, and propagating local and systemic 
inflammation (3).

NKT  cells were identified as important players in immunometabolism due to their unique 
response to lipid antigens and hybrid qualities of both the innate and adaptive immune system (4). 
NKT cells readily produce copious amounts of Th1, Th2, and/or Th17 cytokines upon activation, 
which resembles an innate activation scheme (5). Similar to T cells, NKT cells develop in the thymus 
and undergo positive and negative thymic selection. However, instead of interacting with MHC class 
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2 molecules, iNKT cells are selected by CD1d-expressing thymo-
cytes. Two NKT cell subtypes have been defined: type 1 signifies 
CD1d-restricted iNKT cells carrying an invariant T cell receptor 
that recognizes the prototypic ligand alpha-galactosylceramide, 
while type 2 signifies CD1d-restricted iNKT cells carrying dif-
ferent T cell receptors not recognizing alpha-galactosylceramide 
(6). This review focuses on type 1 NKT  cells, also known as 
iNKT cells, which represent the most studied NKT cell subset.

Invariant natural killer T cell frequency in peripheral blood is 
low, but they are highly enriched in adipose tissue (AT) in mice 
and humans (7, 8). Functionally, AT-resident iNKT cells have an 
anti-inflammatory phenotype by secreting IL-4, which contributes 
to prevention of insulin resistance and AT inflammation (7, 9).  
In obesity, the protective IL-4 production by iNKT cells is lost, 
and total iNKT cell numbers in AT and peripheral blood decrease, 
making leeway for adipose tissue inflammation, insulin resistance, 
and type 2 diabetes to develop (7–10). The same phenomenon is 
observed in other metabolic disorders. When comparing human 
identical twins, of which only one sibling developed type 1 diabe-
tes, diabetic siblings show lower frequencies of iNKT cells. When 
multiple iNKT clones were compared from the twins, all clones 
isolated from diabetic siblings produced only IFN-γ upon stimu-
lation, while all clones isolated from the healthy twin produced 
both IL-4 and IFN-γ (11). In atherosclerosis, a similar decrease 
in iNKT  cell numbers and production of IL-4 is observed in 
established CVD (12). Notably, iNKT cell numbers in peripheral 
blood seem to increase in the earliest phase of atherosclerosis, 
accompanied by an increase in IL-4 production, GATA3- and 
CD69 expression, and increased proliferative capacity (13). 
This model, in which iNKT  cells play an anti-inflammatory or 
pro-homeostatic role early in disease development, seems widely 
applicable for human disease (14), and begs the question: what do 
iNKT cells see when trouble starts stirring?

inKT CeLL ACTivATiOn BY 
SPHinGOLiPiD LiGAnDS

In the early 1990s, it was discovered that iNKT  cells can be 
activated by glycosphingolipids (GSL) following identification of 
alpha-galactosylceramide, a potent marine sponge sphingolipid 
antigen identified in a cancer antigen screen (15). Since then, 
endogenous sphingolipids have been scrutinized as potential 
lipid antigens for iNKT cells.

Sphingolipids are synthesized either via the salvage pathway, 
by degradation and re-usage of existing sphingolipids, or via de 
novo synthesis in the endoplasmic reticulum (ER), by attachment 
of a fatty acid to a sphingosine base (16). Spingomyelinases and 
glucosidases are important enzymes in the salvage pathway, con-
verting membrane sphingomyelin and glucosylceramides back to 
ceramide within the lysosome (17). Serine palmitoyl transferase 
(SPT) and ceramide synthases are important for de novo synthesis. 
De novo synthesis is orchestrated by six different ceramide syn-
thases (CerS), which determine the length of the fatty acid chain 
attached to the sphingosine base. Sphingosine with one fatty acid 
attached is called ceramide, which is the central metabolite in 
sphingolipid metabolism. More complex sphingolipids such as 
GSL are generated in the Golgi by addition of different headgroups 

by UDP-glucose ceramide glucosyltransferase (UGCG) and other 
glycosyltransferases (18). Translocation to the Golgi is facilitated 
by ceramide transfer proteins (CERT) (17). The simplest gly-
cosphingolipid has only one sugar residue attached, either glucose 
or galactose. The sugar headgroup can be attached to ceramide in 
a beta- or alpha-anomeric fashion. To date, only beta-anomeric 
GSL have been identified in humans. Some studies reported 
iNKT cell reactivity to beta-linked GSL, but this was disputed later 
as contamination of alpha-linkages was found in the preparations 
(19–22). The alpha-anomeric linkage remains one of the key 
determinants for antigenicity (20, 23, 24). Enter the search for 
endogenous lipid ligands continues as, unfortunately, developing 
a robust method for isolation of these ligands is technically chal-
lenging. In the meantime, extensive studies on the effect of various 
synthetic alpha-galcer analogs on iNKT function were performed, 
including analogs with truncated alkyl chains, varying saturation 
status, or the presence of aromatic structures (24–26). These 
efforts revealed that analogs with a shorter alkyl chain can elicit 
an IL-4 response without prior IFN-γ induction in mice in vivo 
(alpha-GalCer C10:0, alpha-GalCer C20:2, alpha-GalCer C20:4, 
OCH, alpha-GalCer-PGB1) (26). However, in human iNKT cells, 
even though almost all glycolipid analogs elicit a potent cytokine 
response, there is hardly any Th2-polarization (24, 26). Enter dif-
ferences between mouse and human ligand-mediated activation 
are abound: there are differences in potential endogenous ligands 
and where the ligands derive from, considering that human CD1d 
and mouse CD1d1 travel to different subcellular compartments 
for endogenous ligand extraction (27–32). The secretory route 
from the ER, via the Golgi, to the plasma membrane is similar 
for human CD1d and mouse CD1d1. Upon folding in the ER and 
association with beta-2-microglobulin, lipid transfer proteins 
such as microsomal transfer protein mediate loading of chaperone 
lipids in the ER and/or endogenous lipid antigens in the Golgi 
(33–35). The endolysosomal recycling route, however, is different 
for human CD1d and mouse CD1d1. On the basal side of the 
membrane, CD1d has a short cytoplasmic tail carrying a sorting 
motif. The sorting motif binds to the adaptor protein complex 2 
upon which membrane internalization is mediated to enter the 
early endosome (36). Only mouse CD1d1, but not human CD1d, 
can also bind adaptor protein 3, which then targets late endosomes 
and lysosomes (31). Considering the observed co-localization of 
human CD1d with the lysosomal membrane protein LAMP1, the 
lack of a lysosomal sorting motif does not preclude lysosomal 
transportation of human CD1d (31, 32). Nevertheless, differences 
in endolysosomal trafficking may result in loading of different 
lipid antigens. LDL receptor (LDLR)-mediated uptake of GSL 
for example, is processed in the endosomal compartment (37), 
while the salvage pathway of plasma membrane GSL starts in the 
lysosomal compartment (38) (Figure  1). These differences are 
important to keep in mind when studying iNKT cells and Th1/
Th2 skewing in mouse models.

SPHinGOLiPiDS in iMMUnOMeTABOLiC 
DiSeASe

Sphingolipids play a key role in immunometabolic disease, which 
supports their potential relevance as iNKT cell antigens (17, 18, 39).  
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FiGURe 1 | CD1d lipid loading at the crossroads of glycosphingolipid metabolism. In the ER–Golgi pathway that is similar for mouse and human, CD1d heavy 
chains assemble with β2M and chaperone lipids in the ER before transit to the cell surface. Alternatively, the Golgi complex produces GSL that are loaded onto 
CD1d by microsomal transfer protein, and may serve as endogenous lipid antigens. Ceramide precursors are transported to the Golgi by ceramide transfer protein 
(CERT). In the Golgi, UGCG and other glycosyltransferases convert ceramide into GSL. These GSL endproducts can be loaded onto CD1d, or transported to the 
plasma membrane in membrane-bound transport carriers. In the endolysosomal pathway, mouse CD1d1 may target the endosome and lysosome directly via 
interaction with sorting motifs adaptor protein 2 (AP2), which targets the endosomal compartment, and adaptor protein 3 (AP3), which targets the lysosomal 
compartment. Human CD1d is internalized via AP2 but cannot bind AP3. However, human CD1d can still be found in the lysosomal compartment. Possibly, 
ER-resident CD1d proteins gain access to the endolysosomal compartment via an auxiliary pathway, in conjunction with MHC class II-associated invariant chain (li). 
In the endolysosomal compartments, CD1d proteins are loaded with exogenous or endogenous lipid antigens, orchestrated by a variety of lipid transfer proteins 
including GM2 activator (GM2a), saposins A-D (Sap), and Niemann-Pick type C2 protein. Exogenous lipid antigens are delivered to the endosomal compartment via 
endocytosis of LDLR-associated glycolipids, MR-associated microbial lipids, and other scavenger receptors. Some exogenous lipids require processing into 
antigenic lipids before CD1d-loading, for example, through lipid hydrolases (Hy). Endogenous lipid antigens are delivered to the endolysosomal compartment via 
endocytosis of membrane-associated GSL, which can be loaded onto CD1d or degraded in lysosomes by glycohydrolases (Gly-Hy) and accessory proteins, before 
recycling to the ER (salvage pathway). Upon lipid antigen loading in the endolysosomal compartments, CD1d–lipid complexes recycle back to the cell surface for 
interaction with the invariant TCR on invariant natural killer T cells. Abbreviations: AP, adaptor protein; β2M, β2-microglobulin; ER, endoplasmic reticulum; Gly-Hy, 
glycohydrolase; GM2a, GM2 activator; GSL, glycosphingolipids; Hy, hydrolase; LDLR, LDL-receptor; Li, MHC class II-associated invariant chain; MR, mannose 
receptor; Sap, saposins; TCR, T-cell receptor; UGCG, UDP-glycose ceramide glucosyltransferase; VLDL, very-low-density lipoprotein.
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The six CerS involved in de novo sphingolipid synthesis are dif-
ferentially expressed, allowing for tissue- and cell type-dependent 
variation in ceramide acyl chain length profiles (16). Importantly, 
differences in sphingolipid chain length may orchestrate glucose 
metabolism and mitochondrial homeostasis, and play a key 
role in obesity and type 2 diabetes. For example, reduction in 
C16 sphingolipid levels increases beta-oxidation and improves 
glucose metabolism, with a 30–50% reduction in C16 levels being 

sufficient to prevent diet-induced obesity and insulin resistance 
(40). Furthermore, acyl chain length may determine cell fate. While 
C22-24 ceramides prevent apoptosis, C16 ceramides can induce 
apoptosis via activation of the intrinsic mitochondrial apoptotic 
pathway (16, 41–43). In CVD, C16 ceramides are considered harm-
ful, as Cer(d18:1/16:0)/Cer(d18:1/24:0) ratios predict cardiovascu-
lar death (44). Intriguingly, sphingolipids such as glucosylceramide, 
lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and 
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sphingosine-1-phosphate (S1P) amass in human atherosclerotic 
plaques. All except S1P induce apoptosis in vitro, and are associ-
ated with plaque instability (39, 45, 46). Consequently, D-PDMP, 
an inhibitor of glucosylceramide synthase and lactosylceramide 
synthase, has an astounding protective effect on atherosclerosis 
development in ApoE−/− mice. Treatment led to complete preven-
tion of intima media thickening and arterial stiffening measured as 
aortic pulse-wave velocity (47). Likewise, treatment with the SPT 
inhibitor myriocin was shown to ameliorate insulin resistance and 
atherosclerosis in mouse and rat models (18).

It is tempting to speculate that the pathophysiological role of 
sphingolipids in immunometabolic disease is partly explained by 
their role as iNKT cell ligands. In order to identify sphingolipid 
antigens potentially involved in immunometabolic disease, sev-
eral approaches may be explored. First, the intracellular crossing 
between the sphingolipid metabolism and the iNKT  cell lipid 
loading pathways can be scrutinized (48, 49). The Golgi and 
lysosomal compartment facilitate exchange of chaperone lipids 
bound to CD1d for antigenic lipids and are, therefore, important 
crossroads in iNKT  cell lipid antigen loading and sphingolipid 
metabolism (Figure  1). Alternatively, animal or cellular models 
of naturally occurring disorders in sphingolipid metabolism may 
be exploited to identify metabolic intermediates or end products 
in lipid antigen presentation. For example, the mouse model for 
Fabry disease, alpha-galactosidase A knock out, combined with 
globoside 3 synthase- or isogloboside 3 synthase double knock out, 
revealed that globosides, but not isoglobosides, are responsible for 
iNKT cell deficiency in Fabry disease (50). Hexb knock out mice, a 
model for Tay Sach and Sandoff disease, also show severe iNKT cell 
deficiency (51). The iNKT cell deficiency in these lysosomal stor-
age disease mouse models suggests that the glycosphingolipid 
synthetic pathways involved may contain endogenous lipid anti-
gens for iNKT cells. Alternatively, glycosphingolipid accumulation 
may hinder antigen presentation similarly to acLDL accumulation 
or cholesterol accumulation following NPC1 deficiency (50), and 
possibly NPC2 deficiency (52), regardless of the glycosphingolipid 
involved (50, 53). The latter model aligns with the lipid raft hypoth-
esis, which proposes that iNKT  cell activating lipids may either 
function as bona fide lipid antigens, or may impact CD1d loading, 
stabilization or clustering on the cell membrane, and in that way 
enforce iNKT cell activation (50, 54–56). Finally, immunometabolic 
diseases may serve as a starting point to identify sphingolipid anti-
gens (18). In CVD, for example, lipoprotein particles that enter the 
cell via LDL receptor- and scavenger receptor-mediated uptake are 
important carriers of glycosphingolipid species (39). The increased 
uptake of oxidized lipoproteins via class A scavenger receptors in 
atherosclerosis may potentially induce a different iNKT cell effec-
tor response due to co-transported glycosphingolipid species (37). 
In conclusion, sphingolipids are promising candidate antigens 
from an immunometabolic perspective. However, translation of 
the changes in sphingolipid metabolism to iNKT cell activation 
remains technically challenging.

inDiReCT ACTivATiOn OF inKT CeLLS

At present, two principal ways of iNKT  cell activation have 
been described. As discussed before, high affinity lipid antigens 

may induce a strong T-cell receptor (TCR) signal and activate 
iNKT cells directly. Alternatively, innate activation of an antigen-
presenting cell (APC) leads to presentation of an endogenous 
lipid ligand with low affinity, followed by a weak TCR signal 
that can fully activate iNKT cells in combination with cytokine 
co-stimulation secreted by the activated APC (5, 57–60). Innate 
activation of the APC can either be due to inflammatory or 
metabolic cues. For example, LPS can trigger iNKT-cell activa-
tion. This activation is CD1d- and APC dependent. However, this 
activation is also IL-12 dependent, in both mice and in human 
in vitro models (57, 58). The current model is that iNKT cells are 
first triggered via their TCR to upregulate CD40L, to enhance 
APC–iNKT cell interaction, and maintain proximity for parac-
rine IL-12 co-stimulation, which is induced by CD40:CD40L 
interaction (23, 61, 62). It was postulated that the duration of 
TCR triggering determines CD40L upregulation. Duration of 
TCR triggering, in turn, depends on the alkyl chain length and 
stabilization of the CD1d–glycosphingolipid-complex (24, 25). 
Furthermore, IL-12 ultimately drives a Th1-biased iNKT  cell 
response (62). In vivo, IL-4 can be detected 2  h after intra- 
peritoneal lipid agonist injection, while IFN-γ is measured after 
6 h, as is IL-12 (61). The relatively slow IFN-γ response, which 
also requires prolonged and enhanced APC–iNKT cell interac-
tion, suggests that the IFN-γ response requires de novo IFN-γ 
protein synthesis, while IL-4 is pre-synthesized and can, therefore, 
be released instantly even upon weak or short TCR stimulation. 
In fact, binding affinity of glycolipids to CD1d correlates very 
well with IFN-γ production but not at all with IL-4 production 
by human iNKT  cells (63). Transgenic mouse studies revealed 
that the Notch and RBP-J pathway might be responsible for the 
IL-4 response by iNKT cells, mainly regulated by the conserved 
noncoding sequence-2 enhancer (CNS-2). As Notch- and TCR 
signaling synergistically contribute to T cell activation, this could 
explain why a weak TCR signal still allows for a relatively high 
IL-4 production by iNKT cells (64). This leaves us with a model 
in which iNKT cells are potent effector memory IL-4 producers 
upon homeostatic, weak antigenic stimulation, which can become 
highly inflammatory IFN-γ producing cells in an environment in 
which either high affinity ligands are available, or where IL-12 or 
CD40:CD40L co-stimulation are more easily established, either 
directly or due to activation of APCs.

iMMUnOMeTABOLiC inKT CeLL 
ACTivATiOn

The intracellular sphingolipid pool and subsequent CD1d ligand 
loading may be affected by TLR-activation or altered metabolism 
in the APC (65, 66). Several mechanisms were recently reported. 
For example, blocking glycolysis and increasing fatty acid oxida-
tion (FAO) via AMPK provokes a CD1d-mediated iNKT cell 
cytokine response (65). AMPK is a nutrient-sensing kinase that 
is activated under low glucose conditions and blocks cellular  
glycolysis while promoting cell-sparing oxidative phosphoryla-
tion (67). Adiponectin, an adipokine produced by lean adipocytes 
that promotes insulin sensitivity, can directly activate AMPK  
(65, 68). Adiponectin overexpression in ob/ob obese mice protects 
against insulin resistance and AT inflammation (69), perhaps 
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activating iNKT cells in a Th2-skewed manner through direct or 
indirect iNKT cell modulation. Conversely, TLR signaling leads 
to increased glycolysis, reduced FAO, and AMPK inhibition in 
the APC (70), but again leads to iNKT cell activation (58, 71). 
TLR-induced glycolysis is established via HIF-1α upregulation 
despite normoxic conditions, analogous to the Warburg effect 
(70). This pathway may be potentiated by mild hypoxia (72). 
In early obesity, relative hypoxia arises following adipocyte 
hypertrophy and hyperplasia and has been dubbed one of the 
initiating events in AT inflammation (1, 73). Indeed, hypoxia is 
also an important factor in cancer and in atherosclerosis (72, 74). 
iNKT cells are sensitive to HIF-1α activation and respond with a 
CD1d-mediated cytokine response (65). If and how the iNKT cell 
response is skewed toward an anti- or pro-inflammatory phe-
notype in these experiments, and whether different ligands are 
presented, remains to be determined. Notably, TLR4 signaling 
enhances atherosclerosis development in ApoE−/− mice in an 
iNKT cell-dependent manner (75). TLR4 signaling can be acti-
vated by LPS but also by excess free fatty acids, suggesting that 
nutrient overload mimics infection with regard to its downstream 
effects. Furthermore, during obesity, adipocytes produce the 

adipokine leptin to flag nutrient excess and diminish food intake. 
Leptin contributes to an iNKT cell response that results in anergy 
and PD-1 upregulation by directly triggering the leptin receptor 
expressed by iNKT cells (76, 77). Importantly, leptin-mediated 
iNKT  cell activation still requires TCR triggering (77). These 
findings support the view that changing metabolic conditions 
determine the ligand pool and steer the iNKT  cell response 
(Figure 2).

Besides the sphingolipid ligand pool, metabolic changes may 
also affect co-stimulatory molecules involved in iNKT activation, 
including CD40 and CD40L. For example, the amount of surface-
expressed CD40 on macrophages and smooth muscle cells in 
human plaques correlates with the stage of atherosclerosis devel-
opment (78). Possibly, ox-LDL signaling via LOX-1, a receptor for 
ox-LDL, is responsible for the CD40/CD40L upregulation (79). 
In addition to establishing a firm APC–iNKT cell interaction for 
Th1 skewing, CD40:CD40L signaling induces LDLR upregula-
tion in human B-cells, enhancing iNKT cell activation (80). Low 
glucose conditions and AMPK activation causes lower baseline 
expression of CD40 by dendritic cells, decreased CD40 upregula-
tion, and decreased IL-12 production upon LPS challenge (81). 

FiGURe 2 | Immunometabolic activation of invariant natural killer T (iNKT) cells. Schematic representation of metabolic re-programming of iNKT cell function  
in immunometabolic disease. Metabolic changes in the antigen-presenting cell may affect the GSL ligand pool or alter the availability of co-stimulatory molecules. 
AMPK versus mTOR are depicted as the main metabolic regulators of the cellular metabolic program, they can each inhibit the other. AMPK is activated in low 
glucose conditions and can be activated by adiponectin, the adipokine secreted by lean adipocytes. AMPK activation drives fatty acid oxidation and is associated 
with cellular longevity. In lean fat- or homeostatic conditions, the iNKT cell response is mainly Th2 skewed (IL-4), but changes to Th1 in metabolic disease  
(IFN-γ). Whether AMPK or mTOR activation can be linked directly to Th1 or Th2 skewing of the iNKT cell response has not yet been studied to our knowledge. In 
dyslipidemic conditions, the hallmark of metabolic disease, FFA may activate mTOR via TLR4 signaling. The TLR4-driven glycolysis observed in metabolic disease is 
reminiscent of glycolysis observed under normoxic conditions in cancer (the Warburg effect). mTOR blocks AMPK and in that manner removes at least one of the 
brakes on CD40 upregulation and IL-12 production, the co-stimulatory requirements for a Th1 iNKT cell response. In late stage metabolic disease, iNKT cells have 
been described as anergic, while simultaneously upregulating PD-1. Blocking the leptin receptor on iNKT cells may reverse this anergic state. Abbreviations: GSL, 
glycosphingolipid; FFA, free fatty acids.
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