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Leishmaniasis is a health-threatening vector-borne disease in almost 90 different countries.  
While a prophylactic human vaccine is not yet available, the fact that recovery from 
leishmaniasis establishes lifelong immunity against secondary infection suggests that 
a vaccine is attainable. In the past, deliberate infection with virulent parasites, termed 
Leishmanization, was used as a live-vaccine against cutaneous leishmaniasis and 
effectively protected against vector-transmitted disease in endemic areas. However, 
the practice was discontinued due to major complications including non-healing skin 
lesions, exacerbation of skin diseases, and the potential impact of immunosuppression.  
Instead, tremendous effort has been made to develop killed, live attenuated, and non- 
living subunit formulations. Many of these formulations produce promising experimental 
results but have failed in field trials or against experimental challenge with infected sand 
flies. Recently, experimental models of leishmanization have unraveled the critical role 
of parasite persistence in maintaining the circulating CD4+ effector T cells responsible 
for mitigating the inflammatory response early after sand fly challenge and mediating 
protective immunity. Here, we put forward the notion that for effective vaccine design 
(especially non-living vaccines), the role of antigen persistence and pre-existing effector 
CD4+ T cells should be taken into consideration. We propose that dendritic cell-based 
vaccination strategies warrant greater attention because of their potential to act as long-
term antigen depots, thereby emulating this critical requirement of naturally acquired 
protective immunity against infected sand fly challenge.

Keywords: Leishmania, vaccine design, antigen persistence, effector T cells, long-term protection

iNTRODUCTiON TO LeiSHMANiASiS AND LEISHMANIA 
vACCiNe eFFORTS

Leishmaniasis is a parasitic vector-borne disease caused by flagellated protozoans from the 
Leishmania genus. Disease occurs in multiple forms, including visceral disease that is fatal 
if left untreated and mucocutaneous and cutaneous forms that are associated with significant  
morbidity, including severe scarring even after clinical recovery. The Leishmania life cycle alternates 
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between two developmental stages. The motile promastigote 
stage exists in the vector sandfly. Infected sandflies then deposit 
pro mastigotes into the mammalian skin together with infected 
sand fly-associated molecules while taking a blood meal. After 
transmission, promastigotes transform into non-motile amas-
tigotes inside phagocytes of the mammalian host where they 
establish long-term chronic infection (1). Protection against 
infection is mainly associated with induction of parasite-
specific T helper 1 (Th1) CD4+ T cells, and individuals with a 
healed but persistent primary cutaneous infection are protected 
against reinfection.

Prophylactic vaccination against leishmaniasis was initially 
performed by direct inoculation of live infectious parasites into 
naive individuals, a process referred to as leishmanization (2). 
Although very effective at inducing protective Th1 immunity, 
leishmanization has largely been discontinued due to safety 
concerns associated with administration of a live virulent 
organism, concerns which remain unresolved (3). To improve 
the safety prolife of a Leishmania vaccine, numerous killed, 
live attenuated, and non-living subunit formulations combined 
with Th1 adjuvants and delivery systems have been employed 
in an attempt to mimic the protective immunity generated by 
natural primary infection or leishmanization. These efforts have 
been extensively reviewed elsewhere (4–6). Briefly, starting in 
the 1940s, inoculation of killed Leishmania promastigotes was 
employed as a vaccine; however, low immunogenicity and poor 
protection hampered further use (7). Subsequently, genetic 
manipulation was employed to generate live but pathogenically 
attenuated parasites (8) and targeted gene manipulation of 
specific virulence-related genes resulted in numerous vaccine 
candidates (9, 10). Live attenuated parasites, although promising, 
 are still viewed by some to harbor significant risk due to the 
potential of reversion back to the wild-type strain (11). In this 
regard, non-pathogenic Leishmania strains (such as Leishmania 
tarentolae), which are highly similar to pathogenic strains but 
lack virulence genes (12), have also been proposed as potential 
vaccine candidates (13).

In addition to whole pathogen approaches, subunit vaccines 
composed of subcellular components have drawn significant 
attention due to lower safety risks and a feasible production 
pipeline. Various formulations have been under intensive 
investigation to potentiate protein subunit vaccines including 
innovative adjuvants such as monophosphoryl lipid A (MPL) 
or glucopyranosyl lipid A (GLA), TLR4 agonists suitable for 
use in people (14); delivery systems including water-in-oil 
stable emulsions (SE) (15) or liposomes (16), DNA constructs 
delivered alone (17) or with a delivery system (18); dendritic cell 
(DC)-based vaccines (19); and even vectored vaccines (20, 21). 
Nonetheless, no effective subunit human vaccine is marketed 
despite promising experimental outcomes. The only vaccine 
formulation that has entered human clinical trials is Leish-F, 
a tri-fusion protein composed of TSA, LmSTI1, and LeIF.  
In MPL-SE formulation, the vaccine is safe and immunogenic 
in patients with cutaneous and mucocutaneous leishmaniasis 
as a therapeutic vaccine (22, 23). In GLA-SE formulation, it 
appears even more effective than MPL-SE (24). Other polypro-
tein vaccine formulations, including CPA-CPB-A2 (25, 26) and 

A2-Kmp11-CPB-SMT (KSAC) (27), have also shown promising 
results in experimental models and dogs.

LeiSHMANiZATiON AND THe ROLe  
OF PARASiTe PeRSiSTeNCe iN 
NATURALLY ACQUiReD iMMUNiTY

A literature review on Leishmania vaccine history reveals that 
leishmanization (deliberate inoculation of live wild-type para-
sites without the disease exacerbating factors associated with 
sandfly bites) remains the most efficacious strategy to generate 
protective immunity against subsequent infected sandfly chal-
lenge both in field trials (28) and experimental models (29). 
Significant evidence suggests that this protection is lifelong 
(30). Traditionally, Leishmanization employed exudates from 
active lesions that were inoculated into a covered part of the 
body. Later on, live virulent promastigotes harvested from cell 
free cultures were used (31). Leishmanization with Leishmania 
major was practiced in the former USSR, Israel, and Iran (2, 32) 
but was discontinued due to loss of infectivity during continuous 
subculturing or freezing, rare complications at the inoculation 
site, and/or potential complications due to immunosuppression 
(i.e., a reduced response to diphtheria/pertussis/tetanus vaccina-
tion) (31). In Iran, non-healing cases further complicated the 
feasibility of the widespread use of Leishmanization as it was 
practiced in the 1980s (28, 33–35). While leishmanization is no 
longer widely practiced, the threat of leishmaniasis remains, and 
intensive investigation is under way to develop killed, naturally 
attenuated or genetically modified live parasites, or subunit vac-
cines that replicate the protection mediated by Leishmanization 
(36). However, evidence from both C57BL/6 and BALB/c 
experimental mouse models has shown that a key factor in the 
efficacy of leishmanization is the persistence of the parasite fol-
lowing inoculation (37–39). Persistent antigen presentation then 
drives concomitant T-cell immunity meaning that the protection 
against reinfection coincides with the persistence of the primary 
infection (40–42). Treatment of persistently infected mice to 
achieve sterile cure renders those mice susceptible to new infec-
tions (37–39, 43). In this review, we have tried to discuss the 
correlates of this concomitant immunity and their relevance to 
effective prophylactic vaccine design, with specific reference to 
DC-based vaccination strategies.

NON-LiviNG vACCiNeS FAiL TO 
PROTeCT AGAiNST L. MAJOR  
SANDFLY CHALLeNGe COMPAReD  
TO LeiSHMANiZATiON

An unresolved concern about Leishmania vaccination in the 
past was that protection against needle challenge in experimen-
tal animal models did not translate to protection when similar 
“first-generation” vaccine formulations were tested in human 
field trials employing natural sandfly transmission (7). Based 
upon these observations, Peters et al. investigated the effect of 
vector transmission on the efficacy of an ALM/CpG vaccine 
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(autoclaved L. major plus CpG oligonucleotide) following 
needle versus sandfly challenge of L. major in mice. The experi-
ments were designed to determine if vector transmission was a 
barrier to vaccine efficacy. Challenge was performed 12 weeks 
after the last booster dose of the vaccine or 16–20  weeks fol-
lowing leishmanization. Both ALM/CpG-vaccinated and 
leishmanized mice were protected against needle challenge 
with 5 × 103 sandfly-derived parasites, although leishmanized 
mice had significantly lower parasite loads than ALM/CpG vac-
cinated mice. By contrast, following sandfly transmission the 
parasite number per each bitten ear of ALM/CpG vaccinated 
mice was comparable to age-matched non-vaccinated mice 
while leishmanized mice provided robust protection at 4 weeks 
post-challenge. Flow cytometry data analysis clearly detected 
CD4+/IFN-γ+ and CD4+/TNF-α+ T  cells as early as 3  days 
post sandfly challenge only in leishmanized mice while the 
response in the vaccinated group was delayed until at least day 
7 post-challenge. Of note was the higher frequency of cytokine-
positive cells in the ALM/CpG-vaccinated group in response to 
needle versus sandfly challenge. The authors observed massive 
neutrophil recruitment 1-day post sandfly challenge that was 
maintained for at least 28  days, whereas neutrophil numbers 
rapidly declined to baseline within 3 days post needle challenge. 
Neutrophil depletion following the establishment of infection 
remarkably enhanced the potency of the immune response in 
ALM/CpG-vaccinated mice, resulting in comparable control of 
parasites as compared to leishmanized mice. They concluded 
that inflammatory conditions at the bite site actively compro-
mise the effector function of the memory response generated  
by the killed ALM/CpG vaccine (29), possibly through modu-
lation of antigen-presenting phagocytic cells (44).

In a second study by Peters et  al., two well-known vaccine 
candidates, KSAC/GLA-SE and L110F/GLA-SE, were compared 
to ALM/CpG and leishmanization following needle or sandfly 
challenge of L. major. Again only leishmanized mice mounted 
a robust early immune response at 2 weeks post-challenge and 
potently controlled parasite burden at 4  weeks post needle 
challenge. Following needle challenge, polyprotein + GLA-SE-
vaccinated mice reduced parasite loads to the same degree as 
mice vaccinated with ALM/CpG, but not comparable to the 
reduction observed in leishmanized mice. Following sandfly 
challenge, vaccinated groups once again failed to mount a 
comparable response observed in leishmanized mice and failed 
to provide protection, this time examined 6 weeks post sandfly 
challenge. Comparison of healed and vaccinated mice once again 
revealed negligible amounts of neutrophils at the dermal bite 
site in leishmanized, but not vaccinated, mice, corresponding to 
low parasite loads and a very high IFN-γ/IL-17 ratio following 
antigen-specific stimulation of dermal derived CD4+ T cells. They 
argued that a rapid and robust (high IFN-γ) immune response 
is the clearest correlate of effective immunity and is required  
to counteract the immune modulatory conditions at a sandfly 
bite site (45). Together these studies have turned attention to the 
difference between needle and sandfly challenge at early time 
points post infection. The early, bite-mediated, inflammatory 
response appears to influence infection outcome and must be 
considered when testing vaccines.

NeUTROPHiLS MODULATe SiTeS OF 
iNFeCTiON eARLY AFTeR CHALLeNGe

While phagocyte recruitment at sites of inflammation is one of 
the founding observations in immunology, Peters and Egen et al. 
employed the advantages of 2-Photon Intra Vital Microscopy to 
image the massive recruitment of neutrophils to a site of infec-
tion in the mouse ear epidermis. In this way they were able to 
record early in vivo events, within a few minutes after exposure of 
the dermis to L. major-infected sandfly bites (29, 46). These stud-
ies demonstrated that sandfly challenge quantitatively recruits 
more neutrophils than needle challenge and in a more sustained 
manner and that the majority of inoculated parasites infect and 
survive within neutrophils. Neutrophil depletion prior to chal-
lenge dramatically reduced both the parasite number per ear and 
the incidence of ears with detectable parasites, an observation 
that was also made early after needle challenge (47) or employing 
neutrophil deficient mice and Leishmania mexicana infection 
(48). They concluded that L. major exploits the innate host 
response to sandfly bite to establish disease, a concept originally 
proposed employing in vitro infection of neutrophils (49).

The enhanced neutrophil recruitment observed after sandfly 
bite is likely due to multiple inflammatory signals, some of which 
include trauma in the skin and blood vessels (either by needle or 
sandfly), salivary protein components (50), parasite secretory gel 
(51), Leishmania-derived exosomes (52), coinoculation of virus 
(53, 54), and more recently coinoculated bacteria (55). These fac-
tors can influence neutrophil recruitment to the bite site irrespec-
tive of the Leishmania parasite. Neutrophils populate the infection 
site before any other inflammatory cells and engulf parasites. Since 
Leishmania parasites are obligatory intracellular microorganisms, 
they benefit from the early neutrophil infiltration. However, 
neutrophils are equipped with different granules containing 
microbicidal compounds for killing invaders and can generate 
neutrophil extracellular traps (56). Therefore, some parasite spe-
cies have evolved to modulate these defense mechanisms and to 
survive within neutrophils (46, 48, 49, 57). Neutrophil function is 
tightly regulated due to the hazardous materials they contain and 
within a few hours to days they undergo apoptosis. Phagocytic 
cells remove the remnants of apoptotic bodies (efferocytosis) and 
live parasites, a process associated with significant modulation of 
professional antigen-presenting cells (APCs) (44, 58). This early 
influence of neutrophils on sites of infected sandfly challenge 
implies that a rapid (within hours) and robust IFN-γ-mediated 
immune response is required to manage the innate immune 
response early after sandfly deposition of the parasite (Figure 1).

PRe-eXiSTiNG eFFeCTOR T CeLLS 
MeDiATe CONCOMiTANT iMMUNiTY

The requirement for persisting infection to maintain concomi tant 
immunity suggests that the phenotype of responding T cells may 
be highly diverse following leishmanization, consisting of both 
memory and effector subsets (39, 59). Peters et al. further char-
acterized the nature of the rapidly recruited cells that correlated 
with concomitant immunity in resistant mice (59). To this end, 
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they leishmanized C57BL/6 mice with 104 L. major metacyclic 
promastigotes subcutaneously in the footpad and used these 
after complete healing of the lesions (leishmanized mice). They 
initially determined that CD4+ but not CD8+ T  cells-mediated 
protective immunity upon adoptive transfer (from leishmanized 
mice to naïve mice) and challenge. Three days following exposure 
of the ear dermis of leishmanized mice to the bites of L. major-
infected flies, dermal-derived CD3+CD4+ T cells were analyzed 
for cytokine production. These CD4+ T cells produced high levels 
of IFN-γ as examined by direct intracellular staining without 
antigen or pharmacological stimulation. CD4+IFN-γ single 
producers that rapidly populated the bite site as early as 20 h after 
L. major challenge in leishmanized mice (the earliest time point 
examined) lacked the proliferation marker Ki-67. This indicated 
that they are not derived from CD62L+ memory cells that have 
undergone proliferation after secondary challenge. The rapidly 
recruited IFN-γ-producing population could also be efficiently 
recruited to the site in an antigen non-specific manner by needle 
inoculation of PBS. To further confirm the effector nature of 
these cells, adoptive transfer system was used to enable tracking 
of CD4 T  cells obtained from chronically infected mice to the 
dermal site of challenge in naïve recipients. Violet proliferation 
dye-labeled, Th1 marker (T-bet) enriched CD44+CD4+CD62L+ 
central memory T  cells (TCM) and CD44+CD4+CD62L− effec-
tor memory (TEM)/effector T (TEFF) populations isolated from 
healed mice were cotransferred into naïve mice and challenged 
1  day after. On day 3 post-infection, adoptively transferred 
CD44+CD4+T-bet+CD62L− cells were detected in the ear while 
CD44+CD4+T-bet+CD62L+ cells populated draining lymph 
nodes (dLNs) but not skin. On day 5 post-infection, the vast 

majority of antigen-specific IFN-γ+ T cells in the ear were derived 
from the CD44+CD4+T-bet+CD62L− effector population that had 
not divided, while very few IFN-γ+CD44+CD4+T-bet+CD62L+ 
T  cells were found, and those that were found had undergone 
proliferation. In contrast, on day 12, proliferated IFN-γ+ cells 
derived from the transferred CD44+CD4+T-bet+CD62L+ TCM 
population dominated the dermal infiltrate. Remarkably, and 
in agreement with observations by Zaph et  al. (39), only the 
CD44+CD4+T-bet+CD62L− effector population mediated 
protective immunity at 3  weeks post-challenge. Therefore, the 
early recruitment of CD44+CD4+ IFN-γ+ non-dividing (Ki-67−) 
effector cells (CD62L−) correlated with protective immunity. 
Another marker, Ly6C, a marker of Th1 effector cells (60), further 
differentiated the effector cells (TEFF) from effector memory cells 
(TEM). At the site of challenge, the vast majority (≥70%) of IFN-γ 
making T cells in response to inoculated parasites highly express 
Ly6C. Of particular interest, employing a dermal challenge model 
of visceral infection with Leishmania infantum and i.v. labeling 
of circulating cells, Romano et al. were able to show that tissue 
infiltrating CD4+ T cells in the spleen and liver that are making 
IFN-γ in  situ on day 3 post-challenge are also predominantly 
Ly6C+ cells and this correlated with protective immunity in 
the viscera (61). In contrast to effector memory T  cells and 
TCM, antigen-specific Ly6C+CD44+CD4+T-bet+CD62L− cells 
(TEFF) were remarkably prevalent in mice with a healed L. major 
infection but disappeared within 2  weeks of adoptive transfer 
from healed mice into naïve mice (devoid of parasite antigen).  
In contrast, adoptively transferred TCM cells maintained their cell 
number over the same period, suggesting that Ly6C+ TEFF cells are 
short-lived in the absence of antigen (59). Importantly, following 
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adoptive transfer and challenge, Ly6C+ TEFF cells emulated the 
protective response observed in intact leishmanized mice and 
mediated robust protection versus all other antigen-experienced 
Ly6C+CD44+CD4+ T cell subsets combined (59). More recently, 
Glennie et  al. also demonstrated that circulating CD4+ T  cells 
are required for optimal protection against infectious challenge, 
although the authors did not define which CD4+ subset mediated 
this protection (62). Therefore, it was concluded that conventional 
vaccines that generate long-lived memory T cells in the absence 
of persistent antigen are unlikely to protect against subsequent 
sandfly challenge because they do not maintain the Ly6C+ TEFF 
population required to mediate the optimal response required 
to prevent disease infected sand fly challenge, despite mediating 
promising protection against experimental needle challenge. 
In contrast, the persistence of parasites following leishmaniza-
tion maintains a population of TEFF cells that mediate rapid and 
optimal immunity at the site of challenge (Figure 2). It should 
be noted that Ly6C is mouse specific and unlikely to be a useful 
marker in humans. It does, however, provide a useful phenotypic 
marker to track TEFF cells in the mouse model to study the role of 
these cells in protective immunity.

THe POTeNTiAL OF DC-BASeD 
vACCiNATiON STRATeGieS TO ADDReSS 
THe ROLe OF ANTiGeN PeRSiSTeNCe iN 
MAiNTAiNiNG PROTeCTive iMMUNiTY

Dendritic cells are highly efficient APCs. They sense a large 
variety of signals in their environment, transport antigen 

from infected tissue to dLNs, express costimulatory molecules 
involved in naïve T  cell activation and play a central role in 
the initiation of adaptive immunity (63). Moreover, these 
cells express various pathogen-associated pattern recognition 
receptors to drive Th1 or Th2 polarization (64). Moll et al. first 
reported that DCs at dLNs of healed C57BL/6 mice harbor 
persistent parasites (65, 66). Since then, DC-based vaccination 
has been under intensive investigation to induce protection 
against Leishmania challenge (67). Several pieces of evidence 
demonstrate that different DC types, once properly conditioned 
ex vivo with Leishmania antigens [either whole antigen (68–74), 
protein (75–79), peptides (19), or even plasmid DNA (80)] 
from dermotropic and viscerotropic parasites, mediate partial 
or complete protection against experimental needle challenge 
in animal models. Increased levels of IL-12 cytokine (77, 78), 
reduced T-cell derived IL-10 production (74), downmodulation 
of regulatory T cells, and TGF-β production (69) have all been 
associated with DC-induced, Th1-mediated, protection. In 
addition, vaccination with Leishmania antigen plus CpG-ODN 
pulsed DCs generates parasite-specific cytotoxic T lymphocytes 
that protected against visceral infection employing an intrave-
nous needle challenge model (68).

While the use of ex vivo conditioned DC-based vaccines 
has significant practical limitations in the field (81), some have 
postulated that the protection mediated by ex vivo pulsed DC 
vaccination is actually mediated by recipient, not donor DCs. 
Schnitzer et al. demonstrated that fragments of antigen-loaded 
DCs and even DC-derived exosomes induce protection against 
L. major needle challenge 1  week following vaccination of 
BALB/c mice. The authors argued that non-living DC particles 
or cell-free exosomes are sufficient to confer protection in mice 
treated with antigen-loaded bone marrow-derived dendritic 
cells (BMDCs) via a Th1-polarized response. Although the 
underlying mechanism is not yet fully understood, DCs from 
recipient mice have been shown to actively take up the inocu-
lated non-viable or cell-free particles. They postulated that a 
DC-targeted rather than a DC-based formulation could result 
in better outcomes (72).

Unlike other non-living vaccines, DC-based vaccine for-
mulations have also shown promising results in maintaining 
protection for longer periods against needle challenge with 
Leishmania. Ramirez-Pineda et  al. evaluated the potency 
and durability of the immune response after treating BALB/c 
mice with a single dose of L. major antigen-pulsed BMDC 
stimulated with CpG ODN (73). BALB/c mice were protected 
against needle challenge by a Th1-polarized immune response 
when challenged 1 or 16 weeks post-vaccination. The number 
of parasites was reduced ~105-fold after short-term (1  week 
post-vaccination) or ~103–104 fold after long-term (16  weeks 
post-vaccination) challenge in mice pre-treated with CpG/
Ag-loaded BMDC (compared to unprotected control mice at 
5 weeks post-infection). Consistent with previous observations, 
IL-12 produced by LmAg-CpG-pulsed BMDCs is not a deter-
mining factor for Th1 deviation, instead recipient-derived IL-12 
was required. Footpad swelling was also markedly reduced. 
Interestingly, when vaccinated mice that had recovered from 
the first challenge were rechallenged at week 10 post-primary 
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infection (i.e., a second infectious challenge) and monitored for 
10 more weeks, the parasite burden at the rechallenge site was 
again ~105-fold lower than those of naive mice with negligible 
footpad swelling. Of note was the synergistic and long-lasting 
effect of one dose of LmAg-CpG-pulsed BMDC on the control of 
parasites at the site of challenge, 16 weeks after the last booster. 
Although not discussed in the paper, these results suggest that 
LmAg-CpG-pulsed BMDC vaccination combined with acute 
exposure to infection could provide long-term protective 
immunity to subsequent exposures without the confounding 
factors associated with leishmanization alone. In this case, para-
site persistence at the site of the first challenge likely provides 
a source of antigen but without pathology and maintains TEFF 
cells. Furthermore, DC vaccination has also protected against a 
challenge almost 16 weeks post-vaccination, an implication of 
long-lasting antigen presentation. The maintenance of TEFF cell 
in this case still needs to be addressed.

The ex vivo loading approach is quite laborious and is not 
feasible for large-scale vaccination efforts. However, in  vivo 
targeting approaches already practiced in viral and bacterial 
infections and cancers have generated new hope to reconsider 
DCs as potential vaccine targets against Leishmania infection, 
particularly with regard to antigen persistence and the mainte-
nance of an effector T cell population. Matos et al. were the first to 
demonstrate the potency of a DC-targeted vaccine with LmSTI-1 
as an antigen candidate and poly-ICLC as a DC stimulator. 
LmSTI-1 was directly targeted to DCs by fusion to a specific DC 
marker (DEC205). The results were promising since two doses 
of vaccine reduced parasite loads by several logs in BALB/c after 
both low-dose intradermal or high-dose subcutaneous L. major 
challenge and this coincided with markedly reduced pathology. 
Higher IFN-γ/IL-4 ratios and lower levels of IL-10 correlated 
well with the markedly reduced parasite burden both in dLNs 
and footpads at 12 weeks post-challenge. Of particular note was 
that DC-targeted vaccine maintained protective effect when 
low-dose intradermal challenge was delayed to 12  weeks after 
the last booster, demonstrating significant vaccine durability 
(79). While these studies did not assess the critical cells respon-
sible for protection, these data raise the potential that DCs in this 
setting are acting as long-term antigen depots and maintaining 
a population and highly protective TEFF cells prior to challenge.

While protein antigens are thought to be relatively short-
lived in vivo, recent observations have suggested that follicular 
dendritic cells (FDCs) can act as long-term APCs, suggesting 
they can act as antigen depots. Recently, Heesters et  al. have 
postulated that FDCs are able to internalize foreign antigens 
within non-degradative endosomes and keep them intact for 
further presentation to B  cells (82). This provides a clue as to 
why DCs are able to preserve antigen for long periods. Although 
experimental evidence is lacking, FDCs are estimated to recy-
cle antigen for 1  year or even more (83). Heesters’s group has 
confirmed antigen persistence up to 3 months following antigen 
injection (82). Based upon the observations obtained following 
delayed challenge of the DEC205 DC-targeted vaccine, DCs may 
contribute to concomitant immunity by maintaining depots of 
protein antigen. However, further evidence needs to be gener-
ated regarding the capacity of DCs to act as long-term antigen 

depots and the subsets of antigen-specific T  cells maintained 
under these conditions. Moreover, a more precise definition of 
which DC subsets are involved, including a better definition of 
the relative contributions of cDC1, cDC2, and FDCs (84), and 
which markers, in addition to DEC205, are ideal to target with 
antigen delivery systems is required to develop an effective vac-
cine formulation.

The dual role played by DCs as immunomodulators of adap-
tive immunity and their potential as antigen depots are also 
relevant for live attenuated vaccine. Genetically modified non-
virulent parasites and naturally attenuated parasites are thought 
to undergo the same infectious process as their wild-type coun-
terparts (8). Therefore, persistent non-virulent parasites, includ-
ing those subjected to genetic modifications, should be ideal 
surrogates of live virulent parasites (85). If attenuated parasites 
survive after vaccination, they may provide a sufficient amount of 
parasite antigens to maintain TEFF-dependent long-term protec-
tive immunity. Remarkably, reduced persistence of attenuated 
parasites, long considered a substantial pre-requisite to address 
safety concerns (86), may in fact lower the long-term protective 
efficacy of live attenuated parasite against naturally infected  
sandfly challenge.

CANiNe vACCiNeS AND THeiR 
iMPLiCATiONS FOR HUMAN 
vACCiNATiON

In contrast to observation in people, subunit vaccines have been 
met with some success in canines. Leishmune® is a vaccine that 
includes the Leishmania donovani glycoprotein fraction known 
as fucose–mannose ligand with QS21 as adjuvant providing 
92–95% protection and 76–80% of efficacy in endemic areas 
of Brazil (87–89). The immune response raised by the vaccine 
is long-lasting (about 3.5  years) (90) and blocks the transmis-
sion of the parasite back to sand flies. While the effector or 
memory phenotype of responding T cells or the persistence of 
parasites or parasite antigen has not been analyzed in the con-
text of canine infection, both Ab- and cell-mediated immune 
responses appeared to benefit from natural boosting in endemic 
areas. Therefore, early and continued exposure of Leishmune®-
vaccinated dogs in endemic areas to infected sand fly bites may 
well explain the efficacy of the vaccines, as natural boosting would 
provide the parasite antigen required to maintain the protective 
TEFF immune response. Whether a similar phenomenon could 
be expected to occur in people, who are likely less exposed to 
sand fly bites, is unknown. Of interest, it is speculated that the 
glycoprotein antigen included in this vaccine, with about 52.3% 
mannose content (91), is effectively taken up by mannose recep-
tors on DCs (92). Therefore, effective delivery of Leishmune® to 
DCs combined with early and continued natural boosting may 
generate and maintain effector T  cells (TEFF cells), resulting in 
protection against sand fly transmitted disease which needs to 
further addressed.

Another registered formulation such as Leish-Tec® in Brazil 
is composed of recombinant A2 antigen plus saponin (93). This 
formulation conferred about 40% protection against infection by 
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artificial intravenous injection of high-load L. infantum promas-
tigotes (94). A double-blinded, randomized phase III trial was 
conducted to test the efficacy of Leish-Tec® in an endemic area 
in Brazil. A large number of outbred healthy dogs were followed 
up to 1 year, 96% of the vaccinated dogs remained uninfected. 
Parasitological diagnostic results, confirmed 71% protective effect 
of the vaccine in this population (95). A comparative trial in dogs 
vaccinated with Leishmune® or Leish-Tec® showed no significant 
differences with regards to clinical and parasitological aspects, 
IgG seropositivity, or dog infectiousness (96). These results are 
relatively in compliance with our concept but there is no evidence 
yet to prove this, and further investigation is necessary and quite 
worthwhile due to the long-term effect of these vaccines.

CONCLUSiON

This review presents evidence that suggests non-living vaccines 
are at risk of failure to protect against sandfly transmission of 
Leishmania parasite if they do not provide persistent antigen. 
The requirement for prolonged antigen presentation appears to 
be due to the fact that the CD4+ T cells mediating the optimal 
protective immune response against natural sand fly challenge 
are effector T cells that pre-exist challenge, are short-lived in the 
absence of antigen, and which mitigate the early innate response 
after L. major sandfly challenge in leishmanized C57BL/6 mice. 
If specific subsets of DCs can act as long-term natural depots of 
antigen, then DC-targeted vaccine formulations could be more 

promising than other types of non-living formulations that do 
not target these DC populations. It is tempting to speculate the 
role of TEFF cells in lifelong protection against sand fly challenge 
for Leishmania species other than L. major, as suggested by 
recent observations employing visceral infection model with  
L. infantum (61). Furthermore, to properly evaluate experi-
mental vaccine efficacy, needle challenges should be replaced 
with models that either employ natural sand fly challenge or 
sufficiently incorporate findings from natural transmission in 
the interpretation of the results.
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