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The Notch receptor is an evolutionarily highly conserved transmembrane protein essen-
tial to a wide spectrum of cellular systems, and its deregulation has been linked to a vast 
number of developmental disorders and malignancies. Regulated Notch function is crit-
ical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. 
Notch activation through trans-activation of the receptor by one of its ligands expressed 
on adjacent cells has been well defined. In this canonical ligand-dependent pathway, 
Notch receptor undergoes conformational changes upon ligand engagement, stimulated 
by a pulling-force on the extracellular fragment of Notch that results from endocytosis of 
the receptor-bound ligand into the ligand-expressing cell. These conformational changes 
in the receptor allow for two consecutive proteolytic cleavage events to occur, which 
release the intracellular region of the receptor into the cytoplasm. It can then travel to the 
nucleus, where it induces gene transcription. However, there is accumulating evidence 
that other pathways may induce Notch signaling. A ligand-independent mechanism 
of Notch activation has been described in which receptor processing is initiated via 
cell-internal signals. These signals result in the internalization of Notch into endosomal 
compartments, where chemical changes existing in this microenvironment result in the 
conformational modifications required for receptor processing. This review will present 
mechanisms underlying both canonical ligand-dependent and non-canonical ligand- 
independent Notch activation pathways and discuss the latter in the context of Notch 
signaling in T-cells.
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iNTRODUCTiON

The Notch receptors are evolutionarily highly conserved transmembrane proteins essential to a wide 
spectrum of cellular systems (1). Notch signaling is especially important for normal thymic T-cell 
development (2–5) and remains crucial after the release of T-cells into the periphery (6). Thus, it is 
not surprising that deregulation of the Notch signal can result in T-cell acute lymphoblastic leukemia 
(T-ALL) in mice and humans (7, 8).

The earliest lymphocyte progenitors that migrate to the thymus are provided with Notch ligands 
by the thymic microenvironment, initiating the T-cell program while preventing the B-cell fate  
(2, 3). It also has been reported that Notch signals are important in subsequent T-cell fate decisions 
that occur in the thymus [reviewed in Ref. (9)], including αβ vs. γδ (10–14) and CD4 vs. CD8 
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lineage choices (15, 16). A role for Notch has been described in 
peripheral T-cells as well, where it has been linked to 1) T-helper 
(TH) cell lineage development and cytokine gene expression  
(6, 17–24), 2) inducible regulatory T-cell development (25), 3) 
regulatory T-cell survival and function (26–29), 4) differentiation 
of CD8+ T-cells into terminal effector vs. memory cells (6), and  
5) proliferation and survival of T-cells (24, 30–35).

The Notch signaling pathway is unique as Notch is a tran-
scriptional regulator initially expressed as a membrane-bound 
cell surface receptor. Notch activity is regulated at the level of 
proteolytic processing of the membrane-bound form to allow 
release of the active intracellular fragment. In mature T-cells, 
Notch processing can be triggered via two different mechanisms. 
First, well-defined canonical Notch-ligand-dependent modes 
have been reported, whereby Notch ligand is expressed on the 
surface of interacting antigen-presenting cells. However, many 
groups have reported that Notch can also be activated by T-cell 
receptor (TCR) complex/CD28 signaling pathways, a much less 
well-defined process that can occur in the absence of ligand 
(24, 31–33, 36, 37). Investigation into this unique role of Notch 
activation is still in its infancy. Our recent report provides argu-
ably the first evidence that ligand-independent Notch activation 
is required for optimal T-cell proliferation and activation (37). 
In this review, we will discuss what is known about how Notch 
processing is regulated, and how these studies, together with our 
recent report, provide insight into the mechanism underlying this 
novel activation pathway.

DeReGULATiON OF NOTCH FUNCTiON iS 
DANGeROUS TO T-CeLLS

Precise regulation of Notch signaling is crucial. Deregulated gain  
of Notch1 function has been implicated in more than 60% of 
T-ALL patients, making this an important mutation in leuke-
mogenesis (38). Notch1 mutations are generally located in two 
hotspots (Figure  1B), which gives insight into how Notch1 
function is regulated (38). The most common mutations are 
located in exons 26 and 27, which code for the heterodimeriza-
tion domain (HD), a region that is essential in the regulation of 
Notch activity as discussed in the next section. These mutations 
destabilize the HD domain and result in loss of autoinhibition 
(39). Consequently, the receptor is constitutively activated. The 
second hotspot is located in exon 34, which codes for the PEST 
[rich in proline (P), glutamic acid (E), serine (S), and threonine 
(T)] domain. Here, mutations generally cause truncations, most 
commonly by generating premature stop codons, resulting in 
deletion of the domain (40). The PEST domain is essential to 
targeting rapid degradation of the activated Notch protein, and 
its deletion results in an extended signaling half-life.

STRUCTURe OF NOTCH ReCePTORS 
AND iTS iMPORTANCe TO ReGULATiON 
OF FUNCTiON

The Notch family of type-1 transmembrane receptors consists 
of four protein paralogs (Notch1–4) in humans and mice 

(Figure 1A), with mostly non-redundant functions. T-cells express 
Notch1, 2, and 3 (41–43). Before integration into the plasma 
membrane, the Notch receptor is post-translationally cleaved 
at the S1 site (Figure 1B), which is located 70 amino acids (aa) 
N-terminal of the transmembrane domain. This cleavage occurs 
inside the trans-Golgi network by a furin-like protease, resulting 
in a heterodimer that is held together by Ca2+-dependent ionic 
bonds (44, 45). The two polypeptides that constitute the mature 
membrane-bound form of Notch are called the extracellular 
domain (ECD) and the transmembrane fragment (TMF). While 
the ECD is exclusively extracellular, the TMF is comprised of a 
small 70aa extracellular portion, the transmembrane domain 
and an intracellular domain.

Starting at the N-terminus, the ECD consists of 29–36 epidermal 
growth factor (EGF)-like domains, of which some are calcium-
binding (cbEGF). cbEGF12 (as counted from the N-terminus) 
is reported to be the main binding domain involved in receptor–
ligand interactions; however, additional EGF sites may contribute 
to increase binding stability (46, 47).

Following the EGF-like domains is the negative regulatory 
region (NRR), which encompasses three cysteine-rich Lin12/
Notch repeats (LNR) and the fragment-spanning HD domain 
that results from S1 cleavage, and connects the TMF and ECD 
polypeptides to form the Notch heterodimer (Figure 1A) (44). 
The NRR is crucial in preventing Notch activation in the absence 
of the correct signal (48–50). Upon receptor–ligand interaction, 
conformational changes in the NRR allow access by ADAM pro-
teins to the S2 cleavage site (Figure 1B). This site is located 12aa 
away from the membrane in the extracellular region of the TMF 
and is usually masked by the LNR (51). In leukemia, mutations 
in the HD domain either elongate the sequence between the S2 
site and the LNR or destabilize the region via point mutations, 
small insertions, or short deletions (Figure 1B). These sequence 
changes prevent the NRR from auto-inhibiting Notch activation, 
which ultimately leads to unregulated Notch signaling (39).

Within the TMF, C-terminal of the HD domain, is the trans-
membrane domain. It contains the S3 cleavage site (Figure 1B), 
which is a substrate for regulated intramembrane proteolysis by 
the γ-secretase complex (γSec) (52). This event will occur only 
after the rate-limiting S2 cleavage has taken place, making S3 
accessible to γSec (53). S3 proteolysis results in the release of the 
Notch intracellular domain [hereafter referred to as intracellular 
Notch (ICN)] from the membrane and allows Notch signaling to 
be initiated.

Canonical Notch ligands of the Delta/Serrate/Lag-2 (DSL) 
family in humans and mice fall into one of two classes, depending 
on whether they are a homolog of the Drosophila Notch ligand 
Delta or Serrate (Figure  1A). The Delta-like (DLL) proteins 
include DLL1, DLL3, DLL4, and the Serrate homologs are 
comprised of Jagged1 (Jag1) and Jag2. Even though functional 
differences have been ascribed to the four Notch receptors, ligation 
with either DLL or Jagged family ligands leads to the activation of 
the same canonical signaling pathway (54). Although Notch can 
be activated in T-cells through interaction with canonical Notch 
ligands on adjacent cells (e.g., DLL4, and to a lesser extent DLL1 
and Jag2, on dendritic cells, as well as Jag1 on B-cells) (12, 19,  
55, 56), it has also been demonstrated by many groups that TCR/
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FiGURe 1 | Structure of Notch receptor family and its ligands. (A) Structure of Notch receptors on signal-receiving cells and Notch ligands on signal-sending cells. 
In humans and mice, there are four Notch receptors, and five Notch ligands within two families, the Jagged and the DLL family. *However, DLL3 is expressed 
exclusively in intracellular compartments. (B) Locations of the three cleavage sites on the Notch receptor (S1–3), and mutation hotspot regions in the HD and PEST 
domains . Abbreviations: NRR, negative regulatory region; LNR, cysteine-rich Lin12/Notch repeats; HD, heterodimerization domain; NLS, nuclear localization 
sequence; TAD, transcriptional activation domain; DSL, Delta/Serrate/Lag-2; Jag, jagged; DLL, delta-like.
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CD28 signaling alone is able to initiate Notch cleavage and activa-
tion (24, 31–33, 36, 37). In order to understand the mechanism 
underlying this activation process, a closer look at how Notch 
receptor is processed via canonical ligand-dependent pathways 
is warranted.

MeCHANiSMS UNDeRLYiNG LiGAND-
iNDUCeD NOTCH PROCeSSiNG

The mechanism of Notch activation that has been studied most 
thoroughly is initiated by the canonical ligands described above. 
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FiGURe 2 | Mechanisms underlying ligand-induced Notch processing. Upon ligand engagement, the signal-sending cell exerts a pulling force on the Notch receptor 
by internalizing the ligand and Notch extracellular domain. Simultaneously, the residual portion of the Notch receptor is endocytosed into the signal-receiving cell via 
Ras-related protein 5 (Rab5)-positive vesicles, where it is cleaved by ADAMs (red scissors). This first cleavage event primes the Notch receptor for a subsequent 
cleavage by γ-secretase complex (blue scissors) in the endosome, which releases intracellular Notch (ICN) from the membrane and allows it to transmigrate to the 
nucleus. Alternatively, the Notch receptor can be escorted by endosomal sorting complexes required for transport proteins (ESCRT) to the lysosome  
where it is degraded.

4

Steinbuck and Winandy Notch Processing in T-Cells

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1230

Since Notch activation is auto-inhibited through its NRR domain 
(49), which masks the S2 site and prevents ADAM-mediated 
cleavage, conformational changes in the receptor need to take 
place before Notch can become processed. In the secondary 
structure of the rod-shaped Notch receptor, the NRR and the 
ligand-binding EGF domains are spatially far apart from each 
other. Therefore, it is unlikely that allosteric regulation of the 
receptor could produce the necessary conformational changes 
in the heavily folded NRR region to initiate Notch signaling. 
Using Drosophila imaginal disk and retinal cells with defective 
dynamin function, important for endocytic vesicle formation, 
it was shown that Notch activation is dependent on ECD dis-
sociation from the receptor and trans-endocytosis into the 
ligand-expressing cells (Figure  2) (57). It has been proposed 
that this pulling force causes conformational changes in the 
NRR region, which consequently allows S2 cleavage to occur 
(58), after which the ECD is free to be trans-endocytosed. A 
study in murine C2C12 cells also demonstrated the requirement 
of Notch ECD trans-endocytosis and substantiated that ligand 

binding alone is insufficient to activate Notch (59). However, 
this study also provided evidence that ECD dissociation occurs 
even in the presence of ADAM inhibitors. This suggests that 
dissociation is not a consequence of S2 site cleavage, but rather 
that ECD dissociation occurs first, and subsequently allows for 
S2 site cleavage by ADAMs (59, 60).

Once the S2 site has been exposed, further processing is 
facilitated by ADAMs (Figure 2). In Drosophila, ADAM10/Kuz 
has been shown to activate Notch receptors. This was demon-
strated using dominant negative ADAM10 flies (61), ADAM10-
deficient flies (62), and RNA interference of ADAM10 (63), all 
of which inhibited Notch processing and activity. Furthermore, 
physical contact between Notch and ADAM10 was shown by 
co-immunoprecipitation (63).

In addition to ADAM10, in mammalian cells, ADAM17/
TACE also can process Notch (64, 65). However, ADAM10 and 
ADAM17 are differentially involved in Notch processing. Using 
multiple approaches of Notch activation in either ADAM10- or 
ADAM17-defective cells, it was shown that ADAM10 is absolutely 
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required for Notch processing upon ligand engagement in mam-
malian cells (66). ADAM17 was not able to rescue the ADAM10-
deficient phenotype, and dominant negative ADAM17 expression 
did not inhibit ligand-induced Notch processing. By contrast, 
ADAM17 was able to process Notch under conditions of ligand-
independent activation including EDTA chelation, or when using 
Notch constructs that harbor a mutated NRR domain, which 
renders them hyperactive. Thus, it was concluded that ADAM17 
is necessary for ligand-independent Notch processing, whereas 
ADAM10 is responsible for ligand-induced Notch activation. 
While it has yet to be determined how preferential cleavage by 
ADAM10 or ADAM17 occurs, it is interesting to speculate that 
this selective requirement might suggest that the S2 cleavage 
event occurs in different compartments during ligand-dependent 
vs. ligand-independent Notch activation.

After S2 processing by the ADAM proteins, the final step in 
activating Notch and releasing ICN from the membrane is S3 
cleavage mediated by γSec (Figure 2). This aspartyl protease is an 
intramembranously cleaving enzyme complex that is comprised 
of multiple protein subunits including nicastrin, anterior pharynx 
defective-1, presenilin enhancer-2, and the catalytically active 
subunit presenilin. γSec substrates generally need to be primed by 
ectodomain shedding from larger precursor proteins (53), such 
as is the case in S2-cleavage of Notch, or α-/β-secretase-mediated 
cleavage of amyloid precursor protein (APP) (67). Shedding 
of the Notch ECD results in a residual ectodomain of 12aa in 
length (51) and allows γSec substrate recognition via the nicastrin 
subunit that docks to the new N-terminus of Notch (68).

Although it has been suggested that γSec is present at the 
plasma membrane as a fully functional and active complex that 
can cleave APP and Notch (69, 70), γSec also localizes to early and 
late endosomes (LE) (71), where it processes p75 neurotrophin 
receptor (72), as well as APP (73). In addition, γSec can be found 
in lysosomes, where it experiences enhanced activity because 
of the low pH in the endolysosomal compartment (74). It has 
even been proposed that in Drosophila (75) as well as in mam-
malian cells (76) Notch/γSec co-localization to the endocytic 
compartment is absolutely critical to Notch activation. Overall, 
these data indicate that complete processing of Notch may require 
internalization of the receptor where it then becomes cleaved and 
fully activated in the endosome.

In addition to the ligand-induced mechanisms of Notch 
activation described above, a much less well-understood mecha-
nism of activation has been observed in T-cells, in which TCR/
CD28-stimulation is capable of activating Notch (24, 31–33, 36, 
37). Notch receptors have been shown through immunofluores-
cence imaging to associate with the immunological synapse (IS) 
(33, 77) and, in the absence of Notch ligands, may be activated 
as bystanders of TCR stimulation. Within the crowded IS, it has 
been hypothesized that activation could be mediated through 
undefined mechanical forces acting upon Notch, causing a desta-
bilization of the extracellular region of the receptor. Alternatively, 
signals downstream of TCR/CD28 may activate the IS-recruited 
Notch receptor. T-cell stimulation with phorbol 12-myristate 
13-acetate (PMA) and ionomycin leads to robust Notch activa-
tion, suggesting that the latter is the case (37).

THe ROLe OF ReCePTOR eNDOCYTOSiS 
iN NOTCH ACTivATiON

Initially, it was believed that the sole function of endocytosis 
consisted of terminating plasma membrane signals by either 
sequestering membrane receptors from ligand binding, or 
by internalization and degradation of active receptor/ligand 
complexes [reviewed in Ref. (78)]. But it is becoming increas-
ingly apparent that endocytosis and signaling are intertwined 
processes that can affect each other reciprocally [reviewed in 
Ref. (79, 80)]. There are multiple mechanisms of endocytosis, but 
possibly the most common and best studied form is clathrin-
dependent [reviewed in Ref. (81)]. Clathrin is recruited to the 
plasma membrane by a large variety of adaptor and accessory 
proteins that in turn adhere to lipid- or protein-binding domains 
at the membrane (82). These adaptors cause clathrin polymeriza-
tion into curved lattices called clathrin-coated pits. These pits 
continue to invaginate with the help of bending-proteins, such as 
epsin (83), and form clathrin-coated vesicles (CCV) that eventu-
ally bud from the internal leaflet of the membrane (Figure 2). The 
budding process is facilitated by dynamin, which is a GTPase that 
forms a helical polymer around the neck of the CCV (84). Upon 
dynamin-mediated scission, the fully formed vesicle is released 
into the cytoplasm where it is uncoated and can then fuse with 
other membranes (85).

The requirement for endocytosis of Notch ligands during 
(and even prior to) receptor engagement is well characterized 
[Figure 2; (86)]. However, the need for internalization of Notch 
itself on the signal-receiving cell as a prerequisite for signal transduc-
tion is less well established. Evidence in HeLa cells suggests that 
Notch endocytosis is not necessary for its activation, but instead 
promotes attenuation of Notch signal by reducing its expression 
on the cell surface (87). Notch can indeed be marked for degrada-
tion via ubiquitination by E3-ligases such as AIP4/Itch (88) or 
Nedd4 (89). It is then endocytosed with the help of Numb that 
recruits the AP2-clathrin adaptor-complex (90). But ubiquitina-
tion and endocytosis are by no means exclusively linked to the 
downregulation of Notch signaling.

On the contrary, the majority of data in Drosophila support 
a crucial role for endocytosis in activation of Notch. The first 
findings implicating endocytosis in Notch activation were 
studies using dynamin-defective shibire-mutants, in which 
deletion of dynamin in signal-receiving cells disrupted Notch 
signal induction (91). More recently, detailed studies of Notch 
localization and activity were conducted, in which successive 
steps of the endocytic pathway were selectively blocked in 
Drosophila imaginal disks and oocytes (75). Deletion of shibire 
(a dynamin ortholog), Ras-related protein 5 (Rab5; Figure 2) 
and Avalanche (the latter two are proteins that regulate entry 
of cargo into the early endosome), resulted in Notch accumula-
tion at or just below the plasma membrane and significantly 
reduced Notch signaling as measured by a LacZ reporter assay. 
However, blocking the endocytic pathway at later stages by 
deleting “endosomal sorting complexes required for transport 
proteins (ESCRT),” which control sorting into LE (Figure  2), 
or Fab1 that is important in (pre)-lysosomal compartments, 
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FiGURe 3 | Model of endocytosis in ligand-independent Notch activation. (1) Deltex facilitates ligand-independent Notch receptor internalization into clathrin-coated 
vesicles (CCV) (2) that fuse with Ras-related protein 5-positive early endosomes (EE). (3) Deltex forms a complex with adaptor protein 3 (AP-3) and homotypic fusion 
and vacuole protein sorting (HOPS) that directs Notch to Rab7-positive late endosomes (LE) and (4) targets it to the limiting membrane of the multivesicular body 
(MVB). (5) This protects intracellular Notch (ICN) from lysosomal degradation and allows its release into the cytosol upon γ-secretase complex-mediated processing. 
(6) Alternatively, Su(dx) can redirect Notch into the intraluminal vesicles, where the Notch receptor will be proteolyzed when the MVB fuses with a lysosome.
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did not attenuate Notch signaling, but instead elevated it (75). 
This enhanced signaling may be a result of pro longed reten-
tion of Notch in an environment where it can be processed by 
γSec. In mammalian cells, it was demonstrated that Notch1 
is endocytosed during ligand-dependent activation (60). This 
internalization is dependent on clathrin and dynamin result-
ing in the presence of Notch receptor in early Rab5-negative 
endosomal vesicles.

Further evidence placing Notch processing in the endosome 
comes from experiments in Drosophila using defective variants of 
the vacuolar proton pump V-ATPase (92, 93) and in mammalian 
cells by pharmacological inhibition of vacuolar H+ ATPase (94), 
which prevent the acidification of the endosome. In both cases, 
Notch activation was attenuated. This, together with data showing 
that γSec operates optimally in an acidic environment (74), sug-
gests that Notch is preferentially processed in the endosome by 
γSec (Figure 2), and that internalization does play an important 
role in Notch activation.

In ligand-independent receptor activation, the E3 ubiquitin 
ligase Deltex is implicated in the regulation of Notch endocytic 
trafficking in Drosophila (Figure 3). This was demonstrated with 
null mutations for Deltex that led to failure of Notch internaliza-
tion and activation (95), as well as overexpression experiments 
that strongly enhanced Notch signaling (96). Deltex stabilizes  
the receptor in the endocytic compartment allowing signal trans-
duction to proceed, as assayed by expression of Notch-reporter 
genes (97, 98). Deltex also forms a complex with adaptor protein 
3 [AP-3; (99)] and “homotypic fusion and vacuole protein sort-
ing” [HOPS; (100)], both of which deliver Notch to the exterior 
membrane of the multivesicular body (MVB) called the limiting 

membrane. This localization on the exterior membrane places 
the intracellular domain of Notch in the cytosol, where, upon 
its cleavage to form ICN, it is free to translocate to the nucleus 
and promote activation of its target genes (101). Supporting 
this model are studies carried out in Drosophila examining the 
role of “Suppressor of Deltex” [Su(dx)], also an E3 ubiquitin 
ligase, which directly opposes the function of Deltex. Su(dx) 
facilitates Notch incorporation into the membranes of intralu-
minal vesicles located inside the MVB, instead of localization 
to the limiting membrane, and prevents ICN signaling. This 
results in ICN being spatially sequestered from the cytosol and 
degraded (101). Interestingly, HOPS and AP-3 are not needed in 
ligand-dependent processing of Notch indicating that separate 
pathways underlie ligand-dependent and ligand-independent 
Notch activation (101).

Overall, it can be concluded that, at least in some forms of 
Notch activation, endocytosis of the receptor and its shuttling 
through the endosomal compartment are important factors. In 
the ligand-independent process, Deltex facilitates the endocy-
tosis of Notch from the plasma membrane and, together with 
HOPS and AP3, protects it from degradation by targeting it to 
limiting membranes of the MVB. There, it can be processed by 
γSec allowing release of ICN into the cytosol.

Whereas, Deltex proteins are not required for thymic T-cell 
development (102), in which Notch activation is largely depend-
ent on DLL4 (103), we hypothesize that in systems that utilize 
ligand-independent Notch activation, such as that initiated by 
TCR/CD28-mediated stimulation, Deltex, as well as many of the 
other proteins in the endocytic pathway discussed above, will be 
important players.
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FiGURe 4 | Possible mechanisms of Notch processing in the endosome. Upon delivery of Notch to the multivesicular body, there are three possible ways in which 
the endocytic environment may prepare the Notch receptor to allow the release of intracellular Notch from the limiting membrane. (A) Lysozymes (red dots) present 
in this compartment may proteolyze the intraluminal region of Notch and therefore allow γ-secretase complex (γSec) cleavage to proceed. (B) The change in ion 
concentrations and decreasing pH may cause the negative regulatory region (NRR) of Notch to unravel, mimicking a ligand-mediated pull, which opens the S2 site 
for access by ADAM (red scissors), followed by γSec cleavage (blue scissors). (C) The lysosomal environment may cause the Notch extracellular domain (ECD) to 
dissociate entirely, in which case γSec may directly process the 70aa juxtamembrane stub or rely on ADAM proteases (light red because of uncertain requirement)  
to increase its affinity for the S3 site through processing the juxtamembrane stub to 12aa.
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eNDOGeNOUS PROCeSSiNG  
OF eNDOCYTOSeD ReCePTOR

Canonical ligand-mediated Notch activation relies on conforma-
tional changes in the receptor that are induced by the ligand to 
unmask the protected S2/S3 sites for cleavage by ADAMs and 
γSec. In ligand-independent Notch activation, these changes must 
be driven by another method. There are three possible scenarios 
by which this process might occur within an endosomal microen-
vironment [Figure 4; (104)]. First, lysozymes may proteolyze the 
Notch-ECD that extends into the intraluminal space of the MVB, 
thus removing inhibitory sequences that prevent γSec recogni-
tion (Figure 4A). Whereas this seems to be the simplest answer, it 
would circumvent any rate-limiting checkpoints of Notch process-
ing (i.e., ADAM-mediated cleavage of S2) and expose Notch to 
constitutive activation by γSec (105). This would result in Notch 
signaling that is difficult to regulate. The other two possibilities 
involve naturally occurring changes in the LE microenviron-
ment. Specifically, adjustments in ion concentrations (106, 107), 
especially those of Ca2+ that are important in NRR and HD 
stability, and/or the gradual acidification of the endosome could 
result in (1) destabilization of the NRR and unmasking of the S2 
site (Figure 4B) or (2) full dissociation of the ECD (Figure 4C). 

Whereas NRR destabilization would mimic a ligand-induced pull, 
which then still requires ECD removal by ADAM before γSec 
can recognize Notch, the immediate dissociation of the ECD at 
the HD domain would leave only a 70aa residual sequence. γSec 
has been shown to recognize substrates providing the juxtamem-
brane sequence is <200aa in length (53). However, the longer the 
sequence, the lower the affinity of γSec to its substrate, suggesting 
that further processing by ADAM still may be required. Even 
though ADAM10 and ADAM17 are predominantly expressed at 
the cell surface—constitutively and upon activation, respectively 
(108)—intracellular activity of ADAM has been documented 
(109, 110). Conversely, the acidic optimum for γSec activity may 
enable it to simply bypass S2 cleavage and directly process the 
70aa-stub moiety of Notch (74).

A MODeL OF TCR-ACTivATeD  
NOTCH SiGNALiNG

Ligand-independent Notch processing has been described in 
Drosophila cells. However, until recently, whether this method 
of Notch activation occurs during normal physiological pro-
cesses in mammalian cells remained murky. We have recently 
reported that the processing of Notch triggered by TCR/CD28 
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signaling in T-cells occurs via a ligand-independent mechanism 
(24, 31–33, 36, 37). TCR and CD28 signals cooperate to initiate 
two processes required for ligand-independent Notch activation 
(37). The first process consists of internalization of the receptor. 
Chemical adjustments in the endocytic compartment substitute 
for the mechanical forces that are generated by conventional 
Notch receptor ligation, driving conformational changes in the 
autoinhibitory region of Notch that are required for cleavage. 
Concurrently, the second process activates the machinery that 
performs the Notch cleavage events (Figure 5).

While it is unknown what pathways trigger internalization of 
the Notch receptor, Notch processing post-internalization requires 
signals delivered through both TCR and CD28. These signals 
cooperate to activate protein kinase C (PKC), which is required 
for Notch activation. TCR complex cross-linking initiates activa-
tion of phospholipase C-gamma, which is required for generation 
of the membrane anchor diacylglycerol (DAG). DAG, in turn, is a 
crucial factor in activation of mature PKC. However, in order to 
be available for activation by DAG, PKC must undergo matura-
tion events that occur downstream of CD28 signal. Specifically, 
CD28 signals trigger phosphatidylinositide 3-kinase activation, 
which, through the phosphorylation of PIP2 (phosphatidylino-
sitol 4,5-bisphosphate), generates another membrane anchor 
molecule, PIP3 [phosphatidylinositol (3,4,5)-triphosphate]. The 
enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1) 
is recruited to the IS by PIP3, where it can now efficiently phos-
phorylate PKC, priming it for activation by TCR signals (111).

Once PKC has been activated, it induces activity of ADAM10 
and ADAM17. It has recently been shown, in agreement with 

our study, that PKCθ regulates Notch processing downstream of  
TCR signal and upstream of ADAM activity (112). Cleavage of 
the Notch receptor at the S2 site by ADAMs is required for Notch 
activation. However, this proteolytic event cannot occur when the 
S2 cleavage site of Notch is protected by its NRR autoinhibitory 
domain. This is why, in the absence of ligand, the internalization 
of the Notch receptor becomes important. We hypothesize that 
the gradual acidification of the endocytic environment and efflux 
of calcium from the endosome (106, 107) result in conformational 
changes in the Notch receptor. These changes would unravel the 
NRR and allow activated ADAMs to initiate Notch processing, 
ultimately resulting in the release of ICN, which can now translo-
cate to the nucleus to activate expression of its target genes.

CONCLUSiON

What is the benefit of the TCR/CD28-mediated, ligand-inde-
pendent mode of Notch activation to T-cells? It may have its 
origin in the fact that T-cells are part of a fluid system of migrat-
ing cells. Generally, Notch receptor initiates cell fate decisions in 
solid tissues, in which lateral interactions with ligand-expressing 
cells can be sustained indefinitely. By contrast, T-cells spend some 
of their life cycle in circulation or percolating through secondary 
lymphoid organs on the search for cognate antigen (113). Since 
the Notch pathway does not contain an inherent amplification 
cascade that would enhance external stimuli—Notch signal input 
creates a stoichiometric signal output—the one-to-one interac-
tion of ligand on antigen-presenting cells with Notch receptor 
on T-cells, as well as the short half-life of ICN, may not result 

FiGURe 5 | Model schematic diagram of TCR/CD28-induced Notch activation in T-cells. Signals from the TCR–CD3 complex, as well as CD28 co-receptors, 
activate the Notch cleavage machinery and induce endocytosis of the Notch receptor. Abbreviations: Lck, lymphocyte-specific protein tyrosine kinase;  
ZAP70, z-chain associated protein kinase 70 kDa; TCR, T-cell receptor.
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