
June 2018 | Volume 9 | Article 12461

Mini Review
published: 08 June 2018

doi: 10.3389/fimmu.2018.01246

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Pierre Vantourout,  

King’s College London,  
United Kingdom

Reviewed by: 
Gennaro De Libero,  

Universität Basel, Switzerland  
Martin S. Davey,  

University of Birmingham,  
United Kingdom

*Correspondence:
Massimo Massaia  

massimo.massaia@unito.it

Specialty section: 
This article was submitted  

to T Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 25 February 2018
Accepted: 17 May 2018

Published: 08 June 2018

Citation: 
Riganti C, Castella B and Massaia M 

(2018) ABCA1, apoA-I, and  
BTN3A1: A Legitimate Ménage  

à Trois in Dendritic Cells.  
Front. Immunol. 9:1246.  

doi: 10.3389/fimmu.2018.01246

ABCA1, apoA-i, and BTn3A1:  
A Legitimate Ménage à Trois  
in Dendritic Cells
Chiara Riganti1, Barbara Castella2 and Massimo Massaia 2,3*

1 Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy, 2 Laboratorio di Immunologia dei Tumori del  
Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino,  
Turin, Italy, 3 SC Ematologia, AO S. Croce e Carle, Cuneo, Italy

Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations 
of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian 
cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic 
pAg recognized by Vγ9Vδ2 T  cells. B-cell derived tumor cells (i.e., lymphoma and  
myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because 
they generate significant amounts of IPP which can be boosted with zoledronic acid 
(ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit 
osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in 
the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar 
IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We 
have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major 
role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function 
is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophi-
lin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activa-
tion remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or 
other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, 
Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent 
a unique opportunity to further characterize the role of BTN3A1 and other molecules in 
the recognition of soluble IPP by Vγ9Vδ2 T cells.

Keywords: vγ9vδ2 T cells, phosphoantigens, isopentenyl pyrophosphate, ATP-binding cassette transporter A1, 
apolipoprotein A-i, butyrophilin-3A1

inTRODUCTiOn

A very peculiar feature of Vγ9Vδ2 T cells is their TCR-dependent, MHC-independent recogni-
tion of phosphoantigens (pAgs) (1). pAgs are pyrophosphorylated isoprenoids generated in the 
mevalonate (Mev) pathway of mammalian cells. Isopentenyl pyrophosphate (IPP) is the prototypic 
pAg recognized by Vγ9Vδ2 T cells (2). Increased Mev pathway dysregulation has been reported 
in many types of cancer cells (3). This metabolic derangement leads to increased IPP production 
which is sensed by Vγ9Vδ2 T cells laying the basis of their multifaceted contribution to immune 
surveillance and antitumor immunity (4).

Vγ9Vδ2 T cells also recognize pAgs generated in Mev and non-Mev pathway of microbial patho-
gens [i.e., hydroxyl dimethylallyl pyrophosphate (HDMAPP), hydroxy-methyl-butyl-pyrophosphate 
(HMBPP)] (5, 6); this capacity confers to Vγ9Vδ2 T  cells a critical role in innate and adaptive 
antimicrobial immune responses (7).
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The third pAg category recognized by Vγ9Vδ2 T  cells 
are the synthetic pAgs developed for therapeutic purposes  
[i.e., bromohydrinpyrophosphate, (2E)-1-hydroxy-2-methylpent- 
2-enyl pyrophosphate (CHDMAPP)] (8, 9). Some of these com-
pounds have been investigated in clinical trials with alternating 
success (10) and are currently used as research tools to directly  
or indirectly activate Vγ9Vδ2 T  cells in  vitro (11–13). More 
recently, several technologies have been used to generate pAg 
prodrugs with the aim to overcome the poor cell membrane 
permeability and limited in vivo stability of pyrophosphate con-
taining pAgs (14, 15).

Another strategy which has been used in vivo and in vitro to 
activate Vγ9Vδ2 T cells is to intentionally increase intracellular 
IPP concentrations in tumor cells and/or antigen-presenting 
cells (APCs) like monocytes or dendritic cells (DCs) with 
aminobisphosphonates (NBP) (16), and alkylamines (17, 18). 
These compounds inhibit farnesylpyrophosphate synthase 
(FPPS) in the Mev pathway causing intracellular IPP accu-
mulation (18–20). Prodrug technology has also been used 
to develop an highly hydrophobic NBP prodrug [tetrakis-
pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bis-
phosphonate (PTA)] to facilitate intracellular uptake and, after 
conversion into the active form, to induce FPPS blockade and 
IPP accumulation (21).

The fate of supra-physiological IPP concentrations is differ-
ent according to cell type and tissue localization. Intracellular 
formation of the pro-apoptotic ATP analog 1-adenosin-5-yl 
3-(3-methylbut-3-enyl) triphosphoric acid diester (ApppI) 
formation depends on the activity of FPPS, aminoacyl-tRNA 
synthetases, dosage, and potency of NBP (22). Zoledronic acid 
(ZA), the most potent NBP clinically available, is commonly 
used to treat bone disease in myeloma and solid cancers with 
bone metastases (23–25). In osteoclasts, ZA-induced supra-
physiological IPP concentrations leads to intracellular ApppI 
formation (26). ApppI initiates the apoptotic program in 
osteoclasts explaining the therapeutic efficacy of ZA in this set-
ting. Tumor cells also accumulate intracellular apoptotic ApppI 
concentrations when exposed to ZA concentrations similar to 
those achieved in the mineralized bone (from 50 µM to 1 mM). 
Much lower ZA concentrations (0.5–1 µM) are used to boost the 
capacity of tumor cells, monocytes, and DCs to activate Vγ9Vδ2 
T  cells (19, 27, 28). Under these conditions, ZA-induced IPP 
accumulation is insufficient to induce enough ApppI to trigger 
apoptosis. It is highly conceivable that APCs like monocytes and 
DCs have developed mechanisms to resist the toxic effects of 
intracellular IPP accumulation and converted this resilience to 
survive and recruit Vγ9Vδ2 T cells. Upregulation of IPP extruders 
like ABCA1 could contribute to this resilience (see also below).

Zoledronic acid-treated mature DCs are better Vγ9Vδ2 T-cell 
activators than ZA-treated monocytes or ZA-treated immature 
DCs (29). This superiority is directly related to their capacity to 
accumulate high intracellular IPP concentrations and to release 
IPP in the supernatants (SNs) at concentrations up to 1,000× 
higher (nanomolar range) than intracellular concentrations 
(picomolar range) (29, 30). These extracellular IPP concentra-
tions are sufficient to induce Vγ9Vδ2 T-cell proliferation in the 
absence of cell-to-cell contact with ZA-treated DCs (30, 31). 

How IPP is released in the extracellular microenvironment and 
delivered to Vγ9Vδ2 T cells has been a matter of investigation and 
partially decoded over the last year (31). This review is aimed at 
discussing the role played by ABCA1, apo-AI, and BTN3A1 in 
the extracellular IPP release from ZA-treated DCs.

LOOKinG FOR MeMBRAne-ASSOCiATeD 
pAg TRAnSPORTeRS

F1-ecto-ATPase has been the first cell surface protein associa ted 
with IPP presentation to Vγ9Vδ2 T  cells. Interest was driven 
by the discovery that apoA-I and F1-ecto-ATPase discrimi nate 
between Vγ9Vδ2 T-cell sensitive or insensitive tumor cell lines 
(32). The association between IPP and F1-eco-ATPase was 
reported a few years later in 721.221 B  cells (33). This B-cell 
line is unable to activate Vγ9Vδ2 T cells, unless incubated with 
high-dose ZA to induce apoptosis. ZA stimulation induces 
intracellular IPP accumulation, ApppI formation and binding 
to F1-ecto-ATPase. Allosteric F1-ecto-ATPase modification 
induced by ApppI leads to Vγ9Vδ2 T-cell activation via TCR-
dependent recognition (33).

Although very attractive, this model left the field open to 
several questions. IPP does not directly bind to F1-ecto-ATPase, 
but it requires ApppI formation; a nucleotide pyrophosphatase 
(NPP) is then required to release IPP from ApppI and make it 
available to Vγ9Vδ2 T  cells. It is currently unknown whether 
NPP activity is provided in cis by the same cells which have 
accumulated IPP or in trans by neighboring cells. Thus, the IPP/
ApppI/F1-ecto-ATPase pathway appears to work as a multistep 
process in which IPP is initially transformed into ApppI which 
is relocated to the plasma membrane bound to F1-ecto-ATPase. 
Next, IPP is made available to bystander Vγ9Vδ2 T cells by NPP 
which releases IPP from ApppI. Vγ9Vδ2 T cells themselves have 
been reported to express CD39 ecto-ATPase after activation, but 
with the opposite goal, i.e., to destroy locally available IPP and 
downregulate their activation (34). Another issue is that ApppI is 
mainly generated in apoptotic cells, whereas Vγ9Vδ2 T cells are 
also activated by non-apoptotic cells (35–37). Finally, HMBPP, 
HDMAPP, and all HDMAPP-adenylated, thymidylated, and 
uridylated pyrophosphoric derivatives are potent Vγ9Vδ2 T-cell 
activators without any capacity to bind F1-ecto-ATPase (9, 38). 
These nucleotides are released in the extracellular microenviron-
ment by non-apoptotic cells or bacteria and cleaved by extracel-
lular pyrophosphatase (39).

A major advance has been the discovery that F1-ecto-ATPase 
is a receptor for apolipoprotein A-I (apoA-I) (32, 39) and that 
apoA-I is necessary for Vγ9Vδ2 T-cell activation by tumor cells 
expressing IPP/ApppI-loaded F1-ecto-ATPase (32). Since it is 
very unlikely that F1-ecto-ATPase is released from the plasma 
membrane, it has been hypothesized that soluble apoA-I may 
activate Vγ9Vδ2 T cells remotely. Interestingly, chronic inflam-
mation is associated with reduced levels of circulating apoA-I 
and lower immune competence of Vγ9Vδ2 T  cells (40). All 
these findings have enforced the idea that apoA-I is a necessary 
player in the efflux, delivery and pAg presentation to Vγ9Vδ2 
T cells (32).
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LOOKinG FOR SOLUBLe pAg 
TRAnSPORTeRS

ApoA-I is physiologically involved in the assembly of nascent 
high-density lipoproteins (HDL), which mediate the reverse 
cholesterol transport. The first step in this process is the 
interaction of apoA-I with the extracellular domain of the 
ATP-binding cassette transporter A1 (ABCA1), a member of 
the ABC transmembrane transporter family, abundant in liver, 
gastrointestinal tract, and macrophages (41). Cholesterol and 
phospholipids are physiologically effluxed by ABCA1 and 
loaded by apoA-I, but they are not the only lipids handled by 
this pathway; α-tocopherol (42), dolichol, and retinoic acid are 
also effluxed by ABCA1 and transported by apoA-I to nascent 
HDL (43, 44). Interestingly, all these molecules share multiple 
isoprenoid moieties identical to that contained in IPP and other 
Vγ9Vδ2 T-cell activating pAgs.

This structural similarity prompted us to investigate whether 
the ABCA1/apoA-I system could also extrude intracellular IPP, 
especially when potentially harmful intracellular concentrations 
are reached. ZA-treated DCs turned out to be a very convenient 
and highly reproducible tool to investigate this issue. We have 
found that ABCA1 plays a major role in the extracellular IPP 
release from ZA-treated DCs and other cells, and that IPP cannot 
be released in the SNs of ZA-treated DCs if ABCA1 is not present 
or functionally active.

So far, we cannot exclude that other isoprenoids structur-
ally related to IPP, like dimethylallyl pyrophosphate, geranyl 
pyrophosphate, FPP, or geranylgeranyl pyrophosphate 
(GGPP), are also effluxed by the ABCA1/apoA-I system in 
DCs and/or other cells. These isoprenoids can also activate 
Vγ9Vδ2 T cells (45, 46) and regulate the cross-talk between 
immune cells, cancer cells, and bystander cells in the tumor 
microenvironment (TME) (47, 48). To exert their mitogenic 
or regulatory functions in the TME, these metabolites must 
reach adequate intracellular concentrations to be released 
in replace of cholesterol and/or phospholipids that are the 
privileged molecules conveyed by ABCA1/apoA-I. We have 
shown that IPP extracellular release by ABCA1 overcomes 
that of cholesterol only when supra-physiological concen-
tration of IPP are reached as a consequence of ZA-induced 
FPPS inhibitions (31). It is possible that ABCA1 takes the 
lead in extruding alternative pAgs like HMBPP only when 
supra-physiological concentrations are reached as reported in 
neutrophils after internalization of HMBPP-producing bacte-
ria (49). Structure–activity relation studies, cross-linking of 
radiolabeled pAgs different from IPP should help to clarify 
this unexplored and exciting issue.

Interestingly, single-nucleotide polymorphisms and post-
translational modifications (i.e., methionine oxidation) reduce 
apoA-I affinity for cholesterol and increase the affinity for other 
lipids (50). Since oxidation commonly occurs in the inflam-
matory microenvironment, it is possible that oxidized apoA-I 
behave more efficiently as pAg carrier and provide adequate pAg 
concentrations in inflamed tissues to induce the activation of 
Vγ9Vδ2 T cells (Figure 1).

BTn3A1: A KeY PLAYeR in vγ9vδ2  
T-CeLL ReSPOnSeS TO pAg

One major advance in understanding pAg-induced Vγ9Vδ2 
T-cell activation has been the identification of the butyrophilin-3 
(BTN3) protein family as a key mediator in this process (53). 
BTN3 proteins, also known as CD277, are type I transmem-
brane proteins with two immunoglobulin (Ig)-like extracellular 
domains (IgV and IgC) and close structural homology with the 
B7-superfamily of proteins (54, 55). Three isoforms of BTN3A 
are present in humans: BTN3A1, BTN3A2, and BTN3A3, each 
encoded by a separate gene. BTN3A1 and BTN3A3 both contain 
the intracellular B30.2 domains, but BTN3A1 only has the capa-
city to induce pAg-dependent Vγ9Vδ2 T-cell activation. Recent 
findings from Vantourout et al. (56) indicate that BTN3A2 also 
is deeply involved in pAg-induced activation of Vγ9Vδ2 T cells 
(see also Figure 2) by regulating the appropriate routing, kinetics, 
and/or stability of BTN3A1.

Two mechanisms have been proposed to explain the interac-
tions between BTN3A1 and pAgs and how these interactions are 
sensed by Vγ9Vδ2 T cells. Reports about how BTN3A proteins 
interact with pAgs are very conflicting and still represent an 
unsolved and intriguing question. The first mechanism postu-
lates that pAgs are presented to Vγ9Vδ2 T cells via the mem-
brane-distal IgV-like domain within the BTN3A1 ectodomain  
(57, 58). This model is reminiscent of the classical Ag-presentation 
model and implies that pAgs are made available in the extra-
cellular space from endogenous or exogenous sources. However, 
following reports have demonstrated that pAgs interact directly 
with the intracellular B30.2 domain and failed to detect any 
association with the extracellular domains of BTN3A1 nor with 
the Vγ9Vδ2 TCRs (59–63).

The other mechanism is an inside-out mechanism initiated by 
interactions of the intracellular B30.2 domain with pAgs (59–63). 
Opposite to the antigen-presenting model, the allosteric model 
implies that signaling is operated by endogenous pAgs or exog-
enous pAgs after internalization from external sources. Within 
cells, pAgs are discriminated from non-antigenic small molecules 
because the former only may induce the conformational switch 
of the intracellular B30.2 domain (64). These changes determine 
the structural reorganization of BTN3A1 dimers on the cell 
surface which adopt a V-shaped conformation which is avidly 
recognized by Vγ9Vδ2 T cells. The inside-out signaling can be 
mimicked by agonistic (20.1) or antagonistic (103.2) antibodies 
which can induce or block the active conformation of BTN3A 
dimers on the cell surface (65) (Figure 2). It is still unclear how 
conformational changes of the intracellular B30.2 domain are 
transmitted to the cell surface. The juxtamembrane domain 
located close to the B30.2 domain has recently been reported 
to play an important role in the inside-out signal propagation  
(66, 67). The recruitment of other proteins like RhoB and 
periplakin has been proposed to participate to the structural 
reorganization of BTN3A1 dimers on the cell surface (61, 68). 
More recently, BTN3A2 also has been reported to be involved in 
the induction of active BTN3A1 conformation (56) (Figure 2). 
However, existing data require a cautious interpretation since 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 1 | Proposed model of ABCA1, apoA-I, and isopentenyl pyrophosphate (IPP) interactions. (A) It is unknown whether intracellular IPP binds to intracellular 
ABCA1 domains as it does with the intracellular B30.2 domain of BTN3A1 (see Figure 2). IPP is extruded across ABCA1 pore and reaches the extracellular 
environment. Limited trypsin-digestion cleaves ABCA1 into four fragments, corresponding to different extracellular and intracellular domains (51). The schematic 
diagram of trypsin-limited digestion of ABCA1 and the molecular sizes of the fragments produced are shown. We have found that IPP is associated with the 
amino-terminal extracellular portion of ABCA1 (31). Interestingly, apoA-I has been reported to interact with the same portion (52). We propose that IPP and apoA-I 
meet and associate within the amino-terminal portion of ABCA1 in the ECD1. IPP locally competes with cholesterol and other phospholipids for apoA-I binding and 
transportation. Local concentrations and the oxidized status of apoA-I, especially if IPP-producing cells are embedded in an inflammatory microenvironment, may 
favor IPP binding vs other metabolites. It is also possible that IPP is released in the extracellular space unbound to apoA-I. It is currently unknown whether IPP/
apoA-I is more resistant to degradation by serum nucleotide pyrophosphatases than soluble IPP and more effective in the activation of Vγ9Vδ2 T cells faraway  
from IPP-producing cells. (B) ABCA1 is schematically represented from left to the right without any extra-loaded molecule, loaded with apoA-I only, with IPP only, 
and with IPP/apoA-I + IPP. It has been shown that apoA-I and IPP can bind to ABCA1, and that ABCA1 can bind to BTN3A1 (31). It is currently unknown whether 
ABCA1 has different affinity for BTN3A1 depending on IPP and/or apoA-I loading. Arrows: moleculare weight of fragments derived from trypsin-cleavage sites; 
COOH, carboxyterminal domain; ECD1, extracellular domain 1; ECD2, extracellular domain 2; NBD, nucleotide binding domain; NH2, amino-terminal domain.
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in most cases they have been obtained using recombinant pro-
teins and/or immobilized Vγ9Vδ2 TCRs. These experimental 
conditions do not recapitulate the dynamic situation going on 
under physiological or pathological conditions when much 
lower amounts of pAgs, binding proteins, and Vγ9Vδ2 TCRs 

are available. Likewise, some unsolved issues remain regarding 
the conformational switch induced by agonistic or antagonistic 
anti-BTN3A1 mAbs that may not fully mimic the conformational 
switch induced by pAgs, at least in some experimental models 
like the murine Vγ9Vγ2 TCR-transfectants reported by Starick 
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et  al  (69). This variegate scenario is the propellant of an excit-
ing debate about how BTN3A proteins interact with pAgs and 
stimulate Vγ9Vδ2 T cells.

Both the antigen presentation and the allosteric model implies 
pAg transportation across the cell membrane: the former implies 
that pAgs are made available in the extracellular space from 
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FiGURe 2 | Leads of the ménage à trois between ABCA1, apoA-I, and BTN3A1. (A) BTN3A1 inactive and active dimer conformations are represented from  
left to the right. Models are derived from crystallographic-based models using recombinant proteins and/or immobilized Vγ9Vδ2 TCRs, and tested using 
Fluorescence Resonance Energy Transfer-based measurements or proximity-ligation assays. These models are inspiring but still unproved in living cells under 
physiological or pathological conditions. The inactive conformations include both the head-to-tail conformation (left) and a V-shaped conformation (right) (65). 
Active conformations are characterized by loss of the head-to-tail conformation or by a rotational shift in the V-shaped dimer induced by the agonistic 20.1 mAb 
(which binds to extracellular IGHV-like domains), isopentenyl pyrophosphate (IPP) (which binds to the intracellular B30.2 domain), or by BTN3A1/BTN3A2 
interactions as recently reported by Vantourout et al. (56). (B) Hypothetical configuration of ABCA1/apoA-I/BTN3A1 interactions are represented from left to right. 
Left: in the absence of zoledronic acid (ZA)-induced supra-physiological IPP concentrations, BTN3A1 maintains the inactive dimer conformation (for simplicity 
only the head-to-tail dimer is shown); ABCA1 in cooperation with apoA-I is mainly committed to extrude cholesterol (blue dots). ABCA1 and BTN3A1 are not 
physically associated under these conditions. Middle: hypothetical configuration of ABCA1/apoA-I/BTN3A1 interactions driven by ZA-induced intracellular  
IPP accumulation (red dots). ABCA1 and apoA-I expressions are increased, BTN3A1 expression is not increased, but BTN3A1 acquires the active dimer 
conformation because IPP is bound to the intracellular B30.2 domain; the mutually supportive cooperation between ABCA1, apoA-I, and active BTN3A1 leads to 
the release of picomolar IPP amounts in the extracellular fluids. Whether extracellular IPP (red dots) binds to extracellular IGHV-like domain of BTN3A1 (as shown) 
and participate to the activation of Vγ9Vδ2 T cells according to the antigen-presentation presentation model proposed by Vavassori (57) is unknown; Right: 
hypothetical scenario in Btn3a1-silenced ZA-treated dendritic cells. Desertion of BTN3A1 from the ménage à trois decreases the efficiency of extracellular IPP 
release by ABCA1/apoA-I even if they remain upregulated (31). These data indicate that the expression of BTN3A1 is useful but dispensable and that the main 
role is played by ABCA1/apoA-I; (C) hypothetical models of ABCA1/apoA-I/BTN3A1-BTN3A2 interactions are represented from left to right. Active BTN3A1 
conformation is induced by interactions between BTN3A1/BTN3A2 and IPP bound to the B30.2 domains of BTN3A1. No data are currently available to support 
the hypothesis that BTN3A2 is physically bound to ABCA1. Left: ABCA1 and apoA-I expressions are increased, and BTN3A1 acquires the active dimer 
conformation because of BTN3A1/BTN3A2/IPP interactions. It is unknown whether this is the most effective complex to extrude IPP. Middle: in the experiments 
reported in Ref. (31), we have silenced BTN3A1 expression only and we know that this complex is still able to release IPP although with a lower efficiency [see 
also (B), right panel]. One possible explanation is that BTN3A2 partially substitutes for BTN3A1. Right: it is conceivable, although yet unproved, that desertion of 
both BTN3A1 and BTN3A2 from the complex compromises even more extracellular IPP release. (D) It is currently unknown whether unloaded ABCA1 or IPP/
apoA-I-loaded ABCA1 can switch BTN3A1 from its inactive conformation to the active dimer conformation in the absence of IPP bound to the intracellular B30.2 
domain. For simplicity only the head-to-tail dimer is shown. It is also unknown whether unloaded or IPP/apoA-I-loaded ABCA1 can overcome the inactive 
BTN3A1 conformation locked by the antagonist 103.2 mAb.
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endogenous sources; the latter that exogenous pAgs are internal-
ized from external sources. BTN3A molecules are devoid of the 
capacity to transport pAgs across the membrane suggesting that 
interactions with other transporters are needed. The existence of 
an inside-out transporter was anticipated by De Libero and cow-
orkers to support the antigen presentation model. Interestingly, 
these Authors have hypothesized the existence of a dedicated 
IPP transporter supervening only when there is an excessive 
IPP accumulation within APCs, but not when IPP is provided 
exogenously (58).

Based on these data, we have hypothesized that ABCA1, 
apoA-I, and BTN3A1 cooperate in the extracellular IPP release 
from ZA-treated cells. We believe that, whatever the mecha-
nisms responsible for the conformational switch driven by 
intracellular IPP and/or agonistic/antagonistic anti-BTN3A1 
mAb, it is mainly the active BTN3A1 conformation to par-
ticipate to the ménage à trois and to facilitate extracellular IPP 
release in cooperation with ABCA1 and apoA-I. Intracellular 
IPP accumulation is boosted by ZA stimulation and this is 
propaedeutic to the acquisition of the active conformation 
fuctionally confirmed by the excellent ability of ZA-treated DCs 
to activate Vγ9Vδ2 T cells.

THe COOPeRATiOn BeTween ABCA1, 
apoA-i AnD BTn3A1

After screening the expression and activity of a large number 
of plasma membrane-associated ATPases, ABC transport-
ers involved in lipid efflux and phosphate transporters, we 
found that ABCA1 only is upregulated by ZA treatment in 
DCs. Interestingly, this upregulation is accompanied by the 

simultaneous increase of apoA-I and IPP in the SNs (31). The 
highly significant correlation between the release of extracel-
lular IPP and the expression of ABCA1 in many different cell 
types prompted us to further investigated the role of ABCA1/
apoA-I in IPP efflux. The 3D structure of human ABCA1 
has not yet been solved; the only available data indicate that 
apoA-I binds the extracellular amino-terminal domain of 
ABCA1 (52). Of note, we found that, in ZA-treated DCs, 
IPP binds to the same domain (31) (Figure 1). Only further 
proteo-lipidomic analysis of DC-derived SNs can provide 
the direct demonstration that IPP is physically associated to 
apoA-I. This will be a solid step toward the next challenge,  
i.e., understanding how extracellular IPP is presented to 
Vγ9Vδ2 T-cells (i.e., in soluble form, bound to Apo-AI, bound 
to BTN3A1). Our opinion is that ABCA1 extrudes IPP, but it 
cannot be an effective IPP-presenting molecule in a soluble 
form because it is a transmembrane protein unreleasable from 
viable cells. Whether the ABCA1/IPP/apoA-I complex can 
be released from apoptotic cells to provide activatory signals 
to Vγ9Vδ2 T cells is unknown. We have not determined the 
capacity of ZA-treated DCs to activate Vγ9Vδ2 T  cells in 
cell-to-cell contact experiments after Abca1 and/or Btn3a1 
silencing or knock-out. Additional experiments are needed to 
determine whether ABCA1 is just a safety valve supervening 
when potentially dangerous intracellular IPP concentrations 
are reached in DCs or whether ABCA1 is directly involved in 
pAg presentation.

As far as BTN3A1 is concerned, it appears to play the 
“third actor role” in the ABCA1/apoA-I/BTN3A1 ménage à 
trois (Figure  2). Contrarily to apoA-I, cross-linking experi-
ments demonstrate that BTN3A1 does not bind to apoA-I, but  
co-immunoprecipitation and proximity-ligation assays indicate  
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that BTN3A1 is physically associated with ABCA1 in DCs. 
It is really intriguing that, among all the possible partners 
available, BTN3A1 is physically and functionally associated 
with ABCA1 which extrudes IPP and whose expression is 
upregulated by IPP.

Zoledronic acid-treated Abca1-silenced DCs have a significant 
reduction in the ability to release extracellular IPP, whereas 
ZA-treated Btn3A1-silenced DCs are only marginally affected. 
However, when both genes are silenced in Btn3a1/Abca1-double 
silenced DCs, a statistically significant reduction in extracellular 
IPP release is observed compared with ZA-treated Abca1-silenced 
DCs (31).

We are aware that siRNA determine a partial and transient 
downregulation of BTN3A1 that can be different in differ-
ent cell types. So far, data generated in our lab are sufficient 
to conclude that BTN3A1 participates to the ménage à trois 
facilitating extracellular IPP release by ABCA1 and apoA-I 
in ZA-treated DCs. A comparison between single and double 
Abca1 and Btn3a1 permanent knock-out cells could provide a 
more definitive conclusion about BTN3A1 involvement in IPP 
efflux.

Very recently, it has been reported that BTN3A2 also is 
required for optimal BTN3A1-mediated activation of Vγ9Vδ 
T cells (56). The interaction between these isoforms regulates the 
appropriate routing, kinetics, and stability of BTN3A1. Thus, we 
have envisaged an hypothetical scenario in which both BTN3A1 
and BTN3A2 collaborate with ABCA1 and apoA-I to induce 
extracellular IPP release (Figure 2).

It is currently unknown whether the physical interaction 
between ABCA1 and BTN3A1 is a late event arising after 
that IPP-induced conformational changes have occurred 
or whether this is an early event contributing with IPP to 
the induction of BTN3A1 conformational changes. Since 
no physical interactions are detected between ABCA1 and 
BTN3A1 in the absence of ZA stimulation, and silencing 
Abca1, Btn3a1, or both genes, has no effect on extracellular 
IPP release in untreated DCs (31), the IPP/ABCA1/apoA-I/
BTN3A1 cross-talk is likely initiated only after that supra-
physiological IPP concentrations has been induced by ZA 
treatment. As of today, we cannot exclude that BTN3A1 inter-
acts with other proteins, including BTN3A2 or other ABC 
transporters, to promote extracellular IPP release. Highly 
conserved and ubiquitous proteins like BTN3A1 are often 
part of multiprotein complexes where they may exert func-
tions of adaptors, scaffold proteins or allosteric modulators 
of their interactors. Investigation of this putative BTN3A1 
role is still in its infancy, but it could unravel very interesting 
and unexpected discoveries. Only an in-depth interactome 
study of BTN3A1 may identify other interactors involved in 
IPP efflux. Crystallography studies of BTN3A1-interactors 
complexes will provide additional information on the puta-
tive domains involved in IPP binding and subsequent IPP 
delivery to the interactors. Functional assays investigating 
IPP efflux, after selectively silencing the putative interactors, 
will shed light on the hierarchical function of each molecule 
in the process.

inTRACeLLULAR SiGnALinG invOLveD 
in ABCA1/apoA-i UPReGULATiOn

Intracellular IPP binding to the B30.2 domain to induce BTN3A1 
conformational changes and the concurrent upregulation of apoA-I 
and ABCA1 appear as a nicely coordinated process. 500 pM IPP, 
which is in the range of intracellular concentrations detected in 
ZA-treated DCs, is sufficient to activate the liver X receptor α 
(LXRα) and promote LXRα-induced transcription of Abca1 and 
apoA-I (31). Putative ligands of LXRα in macrophages include sev-
eral isoprenoid compounds, such as retinoic acid (70), astaxanthin 
(71), allyl-cysteine (72), or zerumbone (73). In DCs, however, the 
effect of IPP is highly specific and neither exogenously added FPP 
or GGPP induce LXRα activation (31). The different chain length 
and tridimensional conformation may account for the different 
ability to induce LXRα activation. Moreover, ZA decreases intra-
cellular FPP and GGPP concentrations to sub-picomolar values 
(74–76) which are insufficient to induce LXRα activation (31).

These data also point out how different can be the tran-
scriptional regulation of Abca1/apoA-I and lipid metabolism 
in immune cells. In DCs, Abca1 expression is mainly regulated 
by LXRα and IPP-induced ABCA1 upregulation is finalized to 
extrude IPP in cooperation with apoA-I and BTN3A1; more-
over, DCs express very low levels of LXRβ (77) which remains 
unmodulated by ZA (31). By contrast, Abca1 expression in T cells 
is governed mainly by LXRβ and ABCA1 upregulation induces 
cholesterol depletion and impairs T-cell functions (78). It is cur-
rently unknown whether a similar ménage à trois occurs in T cells 
as a consequence of LXRβ-induced ABCA1 activation.

A second IPP-independent mechanism by which ZA upregu-
lates ABCA1/apoA-I complex in DCs is the intracellular shortage 
of FPP generated by FPPS inhibition, decreased Ras prenylation 
(74) and decreased activity of the Ras-dependent PI3K/Akt/
mTOR pathway (79) which constitutively inhibits LXRα activa-
tion (31, 80). PI3K/Akt-activity also reduces the amount of 
surface ABCA1, likely interfering with recycling mechanisms 
(81). ERK1/2, other Ras-downstream effectors (73), negatively 
regulate ABCA1 expression in macrophages (82). Although not 
yet explored in DCs, also this Ras-dependent pathway may be 
involved in ABCA1 expression and ABCA1-dependent IPP efflux.

COnCLUSiOn

In conclusion, the ménage à trois between apoA-I, ABCA1, and 
BTN3A1 in ZA-treated DCs is finalized to extrude very efficiently 
intracellular IPP after that supra-physiological concentrations 
have been reached as a consequence of a deranged Mev pathway. 
The relationships between these partners are hierarchically  
not equivalent because ABCA1 and apoA-I are physically asso-
ciated (as expected), ApoA-I and BTN3A1 are physically asso-
ciated, whereas BTN3A1 and apoA-I are not physically associated. 
IPP binds to ABCA1, BTN3A1, and apoA-I, further promoting 
interactions between these molecules. We speculate that the aim 
of this mènage à trois is twofold: the first is to extend the range 
of immune regulation also to Vγ9Vδ2 T cells which are not in 
close proximity to pAg-presenting cells. Under this perspective,  
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