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Infants are exposed to a wide range of potential pathogens in the first months of life. 
Although maternal antibodies acquired transplacentally protect full-term neonates from 
many systemic pathogens, infections at mucosal surfaces still occur with great freq  uency, 
causing significant morbidity and mortality. At least part of this elevated risk is attributable 
to the neonatal immune system that tends to favor T regulatory and Th2 type responses 
when microbes are first encountered. Early-life infection with respiratory viruses is of 
particular interest because such exposures can disrupt normal lung development and 
increase the risk of chronic respiratory conditions, such as asthma. The immunologic 
mechanisms that underlie neonatal host–virus interactions that contribute to the subse-
quent development of asthma have not yet been fully defined. The goals of this review 
are (1) to outline the differences between the neonatal and adult immune systems and (2) 
to present murine and human data that support the hypothesis that early-life interactions 
between the immune system and respiratory viruses can create a lung environment 
conducive to the development of asthma.

Keywords: asthma, neonatal immune system, respiratory infections, respiratory syncytial virus, influenza, 
rhinovirus

iNTRODUCTiON

The young of any species face microbial threats similar to those faced by adults. However, the 
developing mammalian immune system does not mount “adult-type” immune responses to most 
pathogens. Adaptive in many respects (see below), this immature pattern of response may also con-
tribute to high levels of infection-related mortality and morbidity in young infants. Of the 5 million 
worldwide deaths in children <5 years of age in 2010, ~64% were due to infectious causes, 40% of 
which occurred between 1 and 29 days (1). Respiratory infections account for a majority of these 
neonatal deaths (1). Although bacteria contribute to this disease burden, viral infections are far more 
common. The annual economic burden of viral respiratory illnesses in the US alone is estimated 
to be ~$25 billion (2). Many of the respiratory viruses with the greatest impact in young children 
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are well known and include, among others, respiratory syncytial 
virus (RSV), influenza A/B viruses, rhinoviruses (RVs), human 
metapneumovirus, parainfluenzaviruses 1–4 (PIV), bocaviruses, 
coronaviruses, and certain adenovirus strains.

While infant-pattern immune responses may enhance suscepti-
bility to some infections, mounting adult-type responses may not 
be optimal for overall development either. The neonatal immune 
system must first and foremost distinguish between self and non-
self, and then rapidly proceed to distinguish between benign or 
even “helpful” non-self (e.g., the commensal microbiome) and 
potential pathogens. During this period of immune education, the 
developing immune system has to strike a delicate and pathogen-
specific balance between the induction of potentially damaging, 
pro-inflammatory responses mediated by T helper (Th) cell 
1-type (Th1) and some Th17-type cells, less damaging inflam-
matory responses (e.g., Th2-type) or even suppressive responses 
mediated by regulatory T cells (Treg). Although the induction of 
suppressive responses may seem counterintuitive when dealing 
with potential pathogens, such responses appear to be essential 
to protect the fetus from reacting too vigorously to maternal 
antigens (3) or to colonization of the neonatal gut and other body 
surfaces with the normal microbial flora (4). The “cost” to the 
infant of mounting an aggressive, pro-inflammatory response can 
be very high. Early-life inflammation has been associated with a 
wide range of negative long-term consequences including overall 
development of the body and the brain, neuro-psychological 
reactions (e.g., to pain) and patterns of inflammatory response 
(5, 6) [reviewed in Ref. (7, 8)]. It is, therefore, entirely plausible 
that early-life experiences with respiratory pathogens can have 
long-lasting effects on the lung.

A number of epidemiological studies have linked respira-
tory viral infection during infancy with the later development 
of asthma [reviewed in Ref. (9–11)]. It is currently unknown 
whether this association is a direct effect of viral replication in 
respiratory tissues or results from a virus-induced exacerbation of 
an underlying predisposition to atopy. However, there is evidence 
from both human and animal studies to support both hypotheses. 
The purpose of this review is to examine the immunology of the 
host–virus interaction during the neonatal period in the context 
of asthma development. We will first briefly describe how the 
neonatal immune system differs from that of the adult. Because 
RSV, influenza, and RVs cause a large proportion of respiratory-
tract infections in neonates, we will focus primarily on these 
three pathogens as models to better understand how early-life 
infection and antiviral immune responses might contribute to the 
subsequent development of asthma.

THe iMMUNe SYSTeM OF THe NeONATe

Adaptive immunity in the Neonate
Prior to the 1980s, it was commonly thought that the neonatal 
immune system was in a state of tolerance (12), as demonstrated 
by mouse experiments in the 1950s showing the apparent lack of 
recall responses to antigens injected soon after birth (13). Indeed, 
neonates were considered by some to be “immunodeficient” 
(14). Upon discovery of different patterns of T cell response in 

the mid-1980s [e.g., Th1 vs. Th2 type: reviewed in Ref. (15)], it 
subsequently became clear that what appeared to be a deficiency 
in responding to recall antigens was instead a reflection of an 
intrinsic Th2/Treg bias in neonatal mice (16, 17).

A quarter of a century later, Th1- and Th2-type responses are 
two of the most well characterized aspects of cellular immunity. 
The classical Th1 response is characterized by production of the 
cytokines interferon (IFN)γ and interleukin (IL)-12, whereas 
Th2 responses are typified by production of IL-4 and IL-13. 
Th1-type responses tend to be pro-inflammatory in nature, with 
increases in CD8+ T cells, and are most often associated with chal-
lenges posed by intracellular organisms, including viruses. Th2 
responses typically play a central role in defending against inva-
sive helminths, but are also important in modulating potentially 
damaging inflammatory responses as well as in driving allergic 
pathologies (e.g., atopy, asthma). Other more recently recognized 
patterns of immune response have also been implicated in either 
promoting or preventing the development or evolution of asthma, 
including Th17-, Th9-, and Treg. In particular, Th17- and Th9-
driven responses may promote exacerbations of severe asthma 
[reviewed in Ref. (18)] and/or promote allergic airways disease 
through interactions with Th2 cells (19, 20). Tregs, on the other 
hand, play a central role in limiting excessive reactivity to self and 
innocuous allergens (21).

While Th2 skewing may be a natural or default response pat-
tern to microbial insults in the neonate, the neonatal immune 
system can induce adult-like, Th1/Th2 balanced or even Th1-
predominant responses under certain conditions (17, 22, 23). 
Experimental situations in which such responses can be generated 
typically require potent Th1 inducers such as CpG motifs found 
in DNA vaccines (24) and oligonucleotide adjuvants (25, 26), 
mycobacterial cell wall antigens either in the form of live Bacille 
Calmette–Guerin (BCG) (27) or complete Freund’s adjuvant (17), 
or lipid-based adjuvants, such as liposomes (28) and oil-in-water 
emulsions (29). Several of these powerful stimuli have recently 
been shown to act via ligation of pattern recognition receptors 
(PRR) [e.g., toll-like receptor (TLR) 9 in the case of CpG motifs] 
(30). Even when an apparently “balanced” Th1/Th2 response has 
been generated in neonates, recall responses may still reveal an 
underlying Th2 bias (31).

The mechanisms by which subsequent antigen recall results 
in a Th2-biased response are still under active investigation. 
Neonatal mouse T  cells produce significantly higher levels of 
IL-4 within 48  h of in  vitro T  cell receptor (TCR) stimulation 
(32) compared to adult T cells, which typically take several days 
to produce high levels of Th2 cytokines (33). This readiness 
to produce Th2 cytokines has been attributed to hypomethyla-
tion of the Th2 cytokine regulatory region on chromosome 11 
in neonatal murine CD4+ T  cells. A similar state of epigenetic 
control over Th2 cytokine production has also been observed in 
human neonatal CD4+ T  cells (34). Yoshimoto and colleagues 
have recently shown that epigenetic modifications of the Th2 
regulatory regions occur during fetal development in the mouse 
(35). The Th2 regulatory regions in the 14-day fetal thymus are 
hypomethylated and adult-like methylation patterns appear only 
3–6 days after birth along with a decreased propensity to produce 
Th2 cytokines. Interestingly, this hypomethylation is restricted 
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to the Th2 regulatory regions, and is not seen in the regulatory 
regions of the IFNγ or Foxp3 loci. Other factors that could 
potentially influence Th2-biased immune responses in neonates 
include relative antigen loads (36), lower total numbers of T cells 
in neonatal organs (37) and the presence of fetal-origin T cells 
that are strongly Th2-skewed (38).

Cross-regulation between Th subsets is well known and may 
be particularly effective in the very young. For example, there is 
evidence that Th1-type signaling is actively suppressed by Th2 
cytokines in the context of both antigen challenge and recall 
in neonates. Using TCR transgenic mice, Li et  al. showed not 
only that recall responses are primarily Th2-like but that these 
responses are accompanied by apoptosis of antigen-specific 
Th1 cells (39). This apoptosis of Th1 cells is driven predominantly 
by IL-4, is enhanced by IL-10, and occurs only in neonatal T cells 
(40). Neonatal (but not transplanted adult) Th1 cells co-express 
IL-13Rα1 and IL-4Rα. Upon exposure to IL-4 after antigen chal-
lenge, Th1 cells that carry this heteroreceptor undergo apoptosis 
(12), resulting in a Th2-biased antigen recall response. IL-13Rα1 
upregulation on these Th2 cells is due to relatively low frequencies 
of IL-12-producing (CD8α+ CD4−) dendritic cells (DCs) in the 
neonate- a phenomenon that is reversed by day 6 of life when 
CD8α+ CD4− DCs mature and begin to secrete IL-12 (41). By 
~8 days after birth, neonatal murine T cells respond to gradual 
increases in IL-12 by upregulating IL-12Rβ2 and suppressing 
IL-13Rα1, contributing to the sustained survival of antigen-specific 
Th1-type T cells (42).

Although the differences between neonatal and adult T  cell 
responses are particularly striking, the capacity to mount com-
petent humoral responses also varies considerably with age as 
different “waves” of B cell development occur through early-life 
(43). For example, antibody responses to T  cell independent 
antigens such as polysaccharide antigens can be very weak during 
the first years of life. Compared to the adult humoral response 
to any given antigen, the neonatal response is characterized by 
generally lower levels of antibodies produced with a delayed 
onset, less efficient antibody affinity maturation (14) and higher 
levels of B cell apoptosis (44). Despite these clinical observations, 
major differences between neonatal and adult B  cells have not 
yet been identified at the molecular level. As a result, the relative 
“defects” in antibody production for T cell independent antigens 
are likely attributable to other factors such as delayed appearance 
of B cells fully competent to handle such antigens or deficiencies 
in the organization of secondary response sites, such as lymphoid 
and follicular centers, which develop only a few weeks after birth 
in mice [reviewed in Ref. (14)].

innate immunity in the Neonate
Striking differences in innate immunity between neonates and 
adults have also been characterized, particularly with regard to 
IL-12, a key innate Th1 cytokine. The half-life of IL-12p40 mRNA 
is decreased in cord blood mononuclear cells and these cells pro-
duce far less IL-12 than adult peripheral blood mononuclear cells 
(PBMC) in response to LPS (45). The addition of IL-12 to cord 
blood cultures increases Th1-type responses to recall antigens 
in vitro (46), increases the activity of natural killer (NK) cells and 
enhances IFNγ production (45), and suppresses the induction 

of IL-13Rα1 (41). However, the administration of supplemental 
IL-12 to 1-week-old mice in vivo is not well tolerated, suppress-
ing weight gain and increasing mortality compared to older mice 
(47). DCs are the main producers of IL-12 (12) and neonatal 
mice have fewer splenic DCs than adult animals (48), as well 
as weaker responses to antigen stimulation in vitro and in vivo 
(12). It is interesting that neonatal B cells can suppress both IL-12 
production and signaling in neonatal DCs in an IL-10-dependent 
manner (49, 50). Because DCs are positioned at the nexus of the 
innate and adaptive immune responses, the characteristics of neo-
natal DCs are likely central to the relatively weak Th1 responses 
observed in neonates. Monocyte-derived DCs from human cord 
blood have decreased markers of activation, as well as lower 
IL-12p35 mRNA expression upon stimulation with ligands such 
as LPS, CD40 ligation, or Poly I:C, and are poor inducers of IFNγ 
from adult T cells (51). Neonatal DCs also produce less IFNα and 
IFNβ than adult cells (52, 53). Recently, it has been suggested that 
poor production of IFN by early-life DCs is due, at least in part, 
to posttranscriptional downregulation of TLR7/9 signaling and 
increases in the regulatory miRNAs, miR146 and miR155 (54). 
One important outcome of decreased type 1 IFN signaling would 
be diminished IFNγ responses in neonates.

Both cell surface and cytoplasmic PRRs, including TLRs, 
NOD-like receptors, and retinoic acid induced gene I (RIG-I)-
like receptors, play important roles in the recognition of common 
microbial products (e.g., LPS, double stranded RNA) and in 
triggering immune responses in key innate effector cells such as 
monocytes and DCs. Responses of cord blood DCs to TLR liga-
tion are both qualitatively and quantitatively different from adult 
DC responses, despite having similar levels of mRNA (53, 55).  
Using agonists specific to each TLR, Kollmann et al. (56) studied 
single cell responses of DCs and monocytes in human cord blood 
compared to neonatal or adult cells differentiated from PBMC. 
Overall, the neonatal monocytes and DCs produced more IL-6, 
IL-23, and IL-1β, which can induce Th17 differentiation/activity, 
as well as IL-10, a classic immunosuppressive cytokine, but less of 
the Th1-associated cytokines: IFNα, IFNγ, tumor necrosis factor 
(TNF)α, and IL-12p70. In another study of early-life responses, 
the ratio of TLR-induced IL-6/TNFα production by neonatal 
monocytes was high compared to adult cells. Newborn serum 
was found to have a similarly skewed ratio of these cytokines (57). 
Serial measurements in human infants suggest that the ratio of 
TLR-driven inflammatory (e.g., IFNα, IL-12p70, IFNγ) vs. sup-
pressive/regulatory cytokines (e.g., IL-10) shifts slowly toward 
“adult” values over the first 2 years of life (58). Several factors likely 
contribute to the sluggish activity of TLRs in neonatal immune 
cells, including lower MyD88 levels (59), decreased DNA and co-
activator binding of IFN regulatory factor 3 (52), and decreased 
nuclear translocation of IFN regulatory factor 7 (53). Together, 
these data suggest that stimulation of innate immune cells in 
neonates/infants favors Th2/Th17 and possibly Treg differentia-
tion rather than Th1 development. This age-related bias in T cell 
education could plausibly play a pivotal role in the subsequent 
development of asthma.

There are still other differences between neonatal and adult 
innate response capabilities. For example, fetal and the neona-
tal invariant natural killer T  cells (iNKT) cells produce equal 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


4

Restori et al. Neonatal Respiratory Infections and Asthma

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1249

amounts of IFNγ and IL-4 upon receptor stimulation in sharp 
contrast to adult iNKT cells that produce predominantly IFNγ 
(60). Although NK  cells are present in higher numbers in the 
peripheral blood of neonates compared to adults, they express 
more inhibitory receptors, have truncated maturation and have 
lower overall functionality (61). The NK maturation defect in 
neonates has also recently been linked to transforming growth 
factor-beta (TGFβ), since murine NK  cells engineered to lack 
TGFβ receptor were capable of fully maturing by 10 days after 
birth (62). Neonatal macrophages, upon stimulation with LPS 
and polysaccharide antigens, produce more IL-10 than adult 
macrophages, and secrete less IL-1β, IL-12, TNFα, probably due 
to weak TLR signaling (63). Neonatal macrophages are also less 
responsive to IFNγ due to a defect in STAT1 phosphorylation 
(64) despite having adult levels of phagocytic function (65). Walk 
and colleagues studied the expression of a number of inhibitory 
receptors on neonatal cells, and found increased expression of 
LAIR-1, CD31, and CD200 on a wide range of innate immune 
cells including neutrophils, monocytes, and NK  cells as well 
as CD4+ and CD8+ T cells (66). At least some of the apparent 
“defects” in neonatal immune cell function can be overcome using 
specific stimuli either alone or in combination. As mentioned 
above, TLR8 signaling can drive a strong pro-inflammatory 
response from neonatal monocytes but can also induce neonatal 
NK cells to produce adult levels of IFNγ in an IL-12-dependent  
fashion (67).

Neonatal Lung Mucosal immunity
During the postnatal period, the lung continues maturation begun 
in utero and undergoes alveolarization (mice, pnd4-21; humans, 
36  weeks preterm to 1–2  years) and microvascular maturation 
(mice, pnd4-21 mice; humans, 0–3  years) (68, 69). A strong 
type-2 immune cell bias characterizes the lung mucosa during 
alveolarization in mice as populations of innate type 2 lymphoid 
cells (ILC2), mast cells, eosinophils, and basophils increase (69). 
Furthermore, a large proportion of tissue resident alveolar mac-
rophages, unique populations that are self-maintained through-
out life and which develop from fetal liver monocytes beginning 
at pnd3 in mice (70), express CD206, indicative of a type-2 alter-
natively activate phenotype (71). Conventional CD11b+ neonatal 
murine lung DCs, though few in number, process antigen more 
efficiently and more readily express CCR7 (69, 72, 73) than adult 
DCs and, compared to CD103+ DCs, preferentially migrate 
to the draining (mediastinal) lymph node and promote Th2 
responses (69). In mice, lung delivery of house dust mite (HDM) 
extracts at this early stage of development promotes enhanced 
allergic airways disease [i.e., increased eosinophil recruitment to 
the lung, airway hyperresponsiveness (AHR)] (69, 73, 74), in a 
manner that is dependent upon IL-33 (discussed in detail below) 
and influenced by preferential differentiation of CD4+ T cells to 
a Th2-type phenotype expressing IL-4, IL-5, and IL-13. In fact, 
additional studies in mice have investigated canonical T lympho-
cyte responses in the neonatal vs. adult lung (72). In response to 
anti-CD3 treatment in  vitro, CD3+, CD4/CD8 double negative 
T cells, which are present in greater frequency during the neona-
tal period than in adulthood, more readily express GATA-3 and 
produce more Th2 cytokines, IL-4 and IL-5 (72). Interestingly, 

priming of neonatal or adult lung DCs with BCG induced a Th2 
response when cocultured with neonatal lymph node T cells, a 
response that switched to Th1 when cocultured with lymph node 
T cells from adult mice (72). Altogether, these data highlight the 
importance the temporal window of the alveolarization stage 
of lung development to promote rapid, detrimental Th2-type 
inflammatory responses in the lung.

Compelling new data implicate changes to the lung microbiome 
in differential regulation of maladaptive type-2 allergic responses 
between neonates and adults. The predominance of Firmicutes 
and Gammaproteobacteria in the lung is associated with aller-
gic airways disease in both murine models of asthma (75) and 
human asthmatics (76) and are the major families that colonize 
the lung during the alveolar stage of development. These com-
mensals change throughout ontogeny as the lung milieu adapts 
to harbor Bacteroidetes in adulthood (73). Interestingly, Helios+ 
Treg (CD4+Foxp3+CD25+) cells are abundant in the neonatal 
lung during alveolarization, but are non-tolerogenic as repeated 
HDM exposure causes robust eosinophilic airway inflammation, 
AHR, and mucus production associated with allergic airways 
disease. Later in life, when the lung microenvironment shifts to 
support Bacteroidetes, Helios− Tregs are abundant and success-
fully promote regulatory, antiinflammatory responses thereby 
providing protection to adult mice from allergic airways disease 
upon exposure to HDM (73).

The neonatal lung is comprised of type 2 innate immune cells 
and DCs, which rapidly home to the mediastinal LNs to educate 
naïve CD4+ T cells to develop Th2 responses. Furthermore, the 
postnatal lung supports a microbiome that promotes allergy and 
ineffectual Treg responses. Altogether, this type-2 biased neonatal 
mucosal lung environment has the potential to create a “perfect 
storm” for asthma development upon exposure to viruses or 
allergens. How this naturally biased state might synergize with 
early-life respiratory infections to create a lung microenviron-
ment that favors the development of asthma is discussed in the 
next section.

viRAL ReSPiRATORY iNFeCTiONS  
AND ASTHMA

Allergic asthma is defined as a chronic inflammatory response to 
inhaled allergens characterized by intermittent airway obstruc-
tion, increased Th2 cytokine production, AHR and mucus pro-
duction. At least 300 million people worldwide have asthma (77, 78).  
Despite intensive study, the etiology of asthma is still poorly 
understood, although a family history of atopy is consistently 
shown to be an important risk factor [reviewed in Ref. (79, 80)]. 
Genetics undoubtedly play a pivotal role in the development of 
asthma but genotype is not fully determinative. Environmental 
factors influence not only the overall risk of asthma but also the 
onset and severity of disease. As outlined above, respiratory infec-
tions are major causes of short-term morbidity and mortality in 
the first years of life (81) and viral infections are associated with up 
to 60% of all asthma exacerbations in the young (82). In addition 
to this apparent “direct” association with exacerbations (83–85), 
it is also possible that early-life exposure to specific viruses acts 
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TABLe 1 | Evidence linking respiratory viral infection in infancy and asthma development in childhood.

Causative agent Conclusion Reference

Viral infection In young children (<2 years of age) with a high risk of atopy, both RSV and RV detection in nasal aspirates was associated with asthma 
development at 5 years of age

(86)

Wheezing in young children (<3 years of age) at a high risk for developing asthma (one parent with asthma or respiratory allergies) that 
tested positive for RSV and RV, was strongly associated (OR = 10) with asthma at 6 years of age

(87)

A greater number of respiratory infections (viral or bacterial) in young children (< 3 years of age) were associated with asthma 
development at 7 years of age

(88)

RSV In a prospective cohort study with matched controls, infants hospitalized with severe bronchiolitis and a family history of atopy/asthma 
had a greater prevalence of RSV-specific IgG antibodies at the first year follow-up and asthma, atopy at the second year follow-up in 
comparison to the control group

(89)

In young children (<3 years of age) hospitalized with lower respiratory-tract illness, RSV was an independent risk factor for the 
development of wheezing at 11, but not at 13 years of age, though no association was found between RSV lower respiratory-tract 
illness and the development of atopy

(90)

Severe RSV bronchiolitis during infancy was associated with increased prevalence of allergic asthma at 18 years of age (e.g., increased 
asthma, sensitization to perennial allergens, persistent/relapsing wheeze in association with early allergic sensitization, reduced 
spirometric function)

(91)

Wheezing in young children (<3 years of age) at a high risk for developing asthma (one parent with asthma or respiratory allergies) that 
tested positive for RSV was associated (OR = 2.6) with asthma at 6 years of age

(87)

In twins, 3–9 years of age, severe RSV infection does not cause asthma, but rather indicates a genetic predisposition to asthma. 
Hospital discharge registries and parent-completed questionnaires were fitted to genetic variance components models and direction of 
causation models

(92)

In a prospective cohort study in twins, 3–9 years of age, hospitalization for RSV infection was associated with asthma shortly after 
discharge and hospitalization for asthma increased long-term susceptibility to severe RSV infection

(93)

Hospitalization during infancy was associated with the development of childhood asthma: 59% of asthma prevalence in children 
hospitalized with RSV vs. 6% non-hospitalized (overall comparison estimates—systematic review of 27 articles)

(94)

RV In young children (<2 years of age) hospitalized for wheezing respiratory illness, RV detection in nasopharyngeal aspirates was 
associated (OR = 4.14) with asthma development 6 years later in comparison to children that were RV negative

(95)

Wheezing in young children (<3 years of age) at a high risk for developing asthma (one parent has asthma or respiratory allergies) that 
tested positive for RV was strongly associated (OR = 9.8) with asthma at 6 years of age

(87)

In a prospective population-based surveillance of children <5 years of age, RV group C infected children had a greater prevalence 
of asthma and a discharge diagnoses of asthma, compared to children testing positive for RV group A (42 vs. 23% and 55 vs. 36%, 
respectively)

(96)

OR, odds ratio; RSV, respiratory syncytial virus; RV, rhinovirus.
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to prime some individuals for development of asthma later in life. 
Indeed, a growing body of epidemiological evidence suggests that 
early-life respiratory virus infections predispose infants to the 
development of asthma (see below). Murine models of both the 
induction of AHR and the exacerbation of existing airway disease 
in neonatal and infant animals are beginning to provide some 
mechanistic understanding of these phenomena. Because RSV, 
influenza viruses, and RVs are ubiquitous causes of respiratory 
infection in young infants, these agents will be our primary focus. 
Table 1 provides an overview of studies linking viral respiratory 
infections and wheeze or asthma in children.

Respiratory Syncytial virus
Background, Prevention, and Treatment
There are two principal antigenic sub-types of RSV (A and B), 
each with multiple genotypes based on their surface glycoprotein 
G (97). Although both sub-types can infect humans, most (>85%) 
symptomatic disease is attributable to type A viruses. These 
viruses are the leading global cause of serious viral respiratory 
illness in infants (98, 99). Based on seroepidemiology, nearly 90% 

of all infants are infected at least once by the age of two. There is 
no vaccine for RSV and treatment options are limited. Although 
aerosolized ribavirin may provide marginal benefit in severely 
ill children, this approach is cumbersome and used infrequently 
(100). The monthly prophylactic use of a monoclonal antibody 
that targets the surface fusion (F) glycoprotein (e.g., palivuz-
imab™ and others) can reduce hospitalization rates by about 50% 
(101) as well as the total number of wheezing days in the first 
year of life (102). However, the cost of prophylaxis is so high that 
this approach is generally restricted to infants at greatest risk of 
severe disease (preterm infants, infants with immunodeficiency, 
etc.) [reviewed in Ref. (103)].

Epidemiologic Link With Asthma
A broad range of epidemiological data strongly supports the 
association between early-life RSV-related hospitalization, and 
the subsequent development of asthma in childhood (90) with 
effects lasting into early adulthood (91). A recent meta-analysis of 
infants hospitalized with severe RSV during infancy found a 63% 
prevalence of asthma in children ≤5 years of age that increased 
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to 92% in children between the ages 5 and 12. After 12 years of 
age, asthma prevalence in these children falls to 48% but all of 
these numbers are striking compared to background asthma rates 
of 1–7% in children with no history of early-life, RSV-associated 
hospitalization (94). The mechanisms that underlie this strong 
epidemiologic association are not yet fully understood and it has 
been argued that hospitalization with RSV is simply a “marker” 
for children genetically predisposed to asthma as opposed to 
an environmental risk factor for asthma development (104). 
In fact, it is likely that both are true to some degree. Given the 
frequency of RSV infection in the first years of life, hospitaliza-
tion due to severe infection is relatively rare regardless of genetic 
background, occurring only when RSV moves into the lower 
respiratory tract (LRT), causing pneumonia and bronchiolitis 
(105). In most healthy, full-term babies and infants, RSV infec-
tion is limited to the upper respiratory tract and causes only mild-
moderate symptoms. In a 10-year study in the US, the rates of 
RSV-related hospitalization ranged from 48.9 per 1,000 in infants 
less than 3 months of age to 26 per 1,000 in infants older than 
1 year (106). Why some children progress to LRT complications 
is still unknown, but risk factors include a family history of atopy, 
preterm birth, congenital heart disease, and low levels of maternal 
anti-RSV antibodies [reviewed in Ref. (107)].

Immunology of RSV-Related Asthma Development
RSV Contains Pathogen-Associated Molecular Patterns That 
Induce Innate Type 2 Cytokines
The tissue tropism of RSV is narrow; restricted to cells of the airway 
epithelia both in vitro and in vivo. RSV entry on the apical side of 
these cells (108) is mediated by the viral attachment (G) and fusion 
(F) glycoproteins (109) that utilize surface glycosaminoglycans 
such as heparin and nucleolin (110), respectively, as receptors. As 
outlined above, a Th2-biased and/or immunosuppressive micro-
environment in the lungs is associated with both the development 
and severity of asthma. There is now considerable evidence that 
the major RSV surface glycoproteins can directly impact the Th1/
Th2 balance in the lung (111). Th2-biased airway inflammatory 
responses, including Th2 cytokine production and influx of 
eosinophils into the airways, are induced upon vaccination of 
BALB/c mice with vaccinia virus expressing the RSV G-protein 
(112–114). Compelling data implicate IL-9, a cytokine associated 
with the development of asthma (19) in RSV G-protein-dependent 
induction of Th2-biased airway inflammation in these mice (115). 
The RSV F protein may also contribute to the development of a 
Th2 microenvironment in the lung by signaling through TLR4 
(116, 117) and there is strong recent data linking TLR4 genotype 
to severe RSV disease in humans (118). RSV infection of airway 
epithelial cells (both immortalized cell lines and primary human 
cells) in vitro increases expression of TLR4 (119) and epithelial 
cell-specific TLR4 signaling is required for Th2-type responses in 
the murine lung (120–122). For example, allergic airways disease 
induced by HDM depends upon airway epithelial cell-specific 
TLR4 expression and is associated with secretion of several innate 
cytokines associated with Th2-type responses [e.g., IL-25, IL-33, 
and thymic stromal lymphopoietin (TSLP)], as well as the classic 
Th2 cytokines IL-4 and IL-13 (122). RSV infection of bronchial 

epithelial cells also induces production of TSLP via activation of 
retinoic acid induced gene I (RIG-I) and downstream activation 
of nuclear factor-κB (123). Importantly, RSV infection of mice 
sensitized to the model allergen ovalbumin (OVA) leads to an 
increase in Th2 cytokine production in the lung following OVA 
challenge suggesting that the RSV effect on Th1/Th2 balance in 
the respiratory tract is not restricted to viral antigens (124, 125). 
More recently, prior RSV infection of young mice has been shown 
to enhance allergic airways disease induced by HDM (126).

Innate Type-2 Cytokines Activate Antigen-Presenting Cells
Recognition of the powerful effects of IL-25, IL-33, and TSLP pro-
duced by respiratory epithelial cells is an important new element 
in understanding the potential for respiratory viruses to cause 
and/or exacerbate asthma. These epithelial-origin cytokines play 
a pivotal role in both the initiation of Th2 type responses and the 
progression of allergic diseases (127).

Blockade of IL-25 or the absence of its receptor, IL-17RB, 
reduces Th2 cytokine production, mucus production, and/or 
AHR in murine RSV infection and RSV-induced asthma exacer-
bation models (128). Moreover, in the absence of NK cells, IL-25 
secreted from airway epithelial cells upregulates the Notch ligand, 
Jagged1 on the surface of DCs, which induces the development of 
an RSV-specific Th2 response (129).

Treatment of murine bone marrow-derived macrophages with 
exogenous IL-25 or IL-33 can induce production of IL-5  
and IL-13 in vitro (130). Intraperitoneal treatment of mice with 
IL-33 results in the differentiation of macrophages from the 
small intestinal lamina propria into an alternatively activated 
(M2 or AAM) phenotype in a STAT6-independent fashion. Such 
peritoneal macrophages are major producers of IL-13 in  vivo. 
Furthermore, IL-33 links viral infection, macrophages, and ILC2-
dependent production of IL-13 to AHR (131–134) and induces 
ILC2- and IL-13-dependent DC trafficking to the lymph nodes, 
promoting Th2 adaptive immunity (135). In the case of RSV 
infection models, IL-33 gene expression as well as the number of 
leukocytes expressing the IL-33 receptor (ST2) increase in adult 
BALB/c mice infected with RSV and interestingly, ST2 blockade 
decreases lung eosinophil recruitment, IL-13 levels and mucus 
production, without affecting IFNγ levels (136). ILC2s are an 
important source of IL-13 secretion post-RSV infection and evi-
dence that they play a role in enhanced disease is provided by data 
showing that adoptive transfer of lung ILC2s purified from RSV-
infected mice 2 h prior to RSV infection dramatically increases 
production of IL-13 and subsequent eosinophil infiltration (137). 
Similarly, IL-33 production in the lungs of RSV-infected neonatal 
mice contributes to ILC2 expansion as well as Th2-biased airway 
inflammatory responses following RSV re-infection in adults 
(138). Evidence that IL-33 may contribute to pathogenesis in 
human disease is provided by data showing that IL-33 levels 
are increased in nasal aspirates of infants hospitalized with RSV 
infection (138). Similarly, IL-33 mRNA levels are greater in nasal 
aspirates of infants hospitalized with RSV bronchiolitis with a 
family history of atopy compared to those with no such history 
(139).

Thymic stromal lymphopoietin likely also plays a role in the 
development of Th2 responses in RSV infection. In rat primary 
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airway epithelial cell cultures, infection with RSV triggers an 
immediate increase in TSLP mRNA and protein, which induces 
myeloid DCs to express markers associated with Th2 polarization 
(140). Ex vivo RSV infection of human airway epithelial cells of 
healthy children and children with asthma results in TSLP induc-
tion and has been shown to contribute to Th2 inflammation (123). 
Infection of human primary bronchial airway epithelial cells also 
results in upregulation of functional TSLP receptor (TSLPR) on 
these cells, suggesting a feedback loop in which TSLP binding to 
its receptor increases production of more TSLP (141). TSLP also 
acts directly on DCs. Lung DCs, along with alveolar macrophages 
and ILC2s are among the “first responders” to viral infections 
and allergen exposure in the lung. The relationship between lung 
epithelial cells and DCs and the development of asthma has been 
the subject of several recent reviews (142–144) and provides a 
framework for understanding how RSV-infected epithelial cells 
may program lung DCs to promote Th2 immunity. TSLP secreted 
from epithelial cells infected with RSV (123, 140) induces OX40L 
expression on the surface of DCs (145) that, in turn, drives T cells 
toward a Th2 cell phenotype (146). A further link between TSLP 
and IL-25 in RSV infection is provided by evidence that IL-25 
enhances the memory Th2 response induced by TSLP-activated 
DCs (147). IL-33 also upregulates OX40L surface expression on 
DCs, effectively promoting Th2 immunity in both allergy and 
RSV infection models (138, 148). TSLP signaling in ILC2s is also 
necessary for IL-13 production by these cells as TSLPR KO mice 
and blockade of TSLP signaling with anti-TSLP neutralizing anti-
body decrease IL-13 lung protein levels, mucus, AHR and weight 
loss during RSV infection (149).

In humans, when RSV infects primary myeloid and  
plasmacytoid-derived DCs (150) from healthy volunteers, the viral 
G-protein decreases DC activation (151). Suppression of DC 
maturation has also been observed by the viral non-structural 
(NS) proteins, NS1 and NS2 (152). Moreover, NS1-dependent 
activity in RSV-infected DCs suppresses the activation and pro-
liferation of both migratory CD8+ T  cells (CD103+CD8+) and 
Th17  cells while supporting the activation and proliferation of 
Th2 cytokine-producing CD4+ T cells (153). Together, these data 
suggest that RSV infection of epithelial cells and DCs may act 
synergistically to elicit a Th2-biased response in both mice and 
humans. This response pattern is likely accentuated by the already 
Th2-biased nature of the neonate.

Yet another piece of this puzzle may be the induction by 
RSV of long-lived, lung-resident macrophage populations. RSV 
infection in adult mice induces polarization of macrophages 
toward an AAM (M2) phenotype (126, 154). Similar polarization 
is observed upon RSV infection of peritoneal macrophages ex 
vivo (154). The classification of macrophages is largely based on 
cytokine production profiles upon activation and, as is the case 
with Th1 and Th2 lymphocytes, the cytokines IFNγ and IL-4 
appear to play central roles in the development of M1 and M2 
macrophages, respectively. Upon activation, M1 macrophages 
(also called classically activated macrophages or CAM) typi-
cally secrete inflammatory cytokines, such as IFNγ, IL-12, and 
IL-1, whereas M2 macrophages secrete IL-4, IL-13, and IL-10 
(155). M2 macrophages play an important role in tissue repair 
(156, 157) [reviewed in Ref. (158)] mediated, at least in part, by 

TGFβ and platelet-derived growth factor. Studies in both human 
infants (159) and neonatal mice (160) have demonstrated that 
the production of TGFβ is increased upon RSV infection. On the 
one hand, this increase could reflect an adaptive M2 reparative 
response to the lung injury caused by RSV infection as shown by 
Shirey and colleagues (154). On the other hand, over-enthusiastic 
repair of virally damaged airways could be maladaptive with long-
term changes in macrophage phenotype that promote pathologic 
changes in airway structure and function (131, 134, 161). It is, 
therefore, interesting that RSV infection of neonatal mice is asso-
ciated with long-term increases in collagen deposition and airway 
remodeling (125, 162). Although the precise mechanisms by 
which RSV infection induces M2 polarization are still unknown, 
it seems likely that production of TSLP, IL-25, and/or IL-33 by 
RSV-infected or -exposed respiratory epithelial cells contributes 
to both M2 differentiation and long-term maintenance of a Th2-
biased macrophage population in the lung (123, 130, 163, 164). 
Furthermore, as noted above, the NS1 and NS2 proteins of RSV 
inhibit the type-I IFN response in human macrophages (165), 
which could also contribute to the induction of M2 macrophages.

Limitations of These Studies
Much of the evidence outlined above in support of a Th2-biasing 
effect of RSV in the lung has been obtained using adult mice and 
human cells/cell lines. Neither of these strategies is ideal. The 
limitations of cell lines and even primary cells are obvious since 
these reductionist models cannot reproduce the complexity of 
in vivo host–virus interactions. The adult mouse model of RSV 
infection also has important drawbacks since adult mice are not 
susceptible to RSV. This model requires the instillation of high 
titers of virus (106–107 50% tissue culture infective dose/mL) 
directly into the LRT. Furthermore, RSV replication in adult mice 
is relatively poor and occurs primarily in alveolar pneumocytes 
rather than the bronchiolar epithelial cells as occurs in humans 
(166, 167). Perhaps most importantly, RSV infection of adult 
mice induces a potent Th1 response that rapidly clears the virus. 
The role of RSV-specific Th2 responses in this model may be 
restricted to the prevention of exaggerated Th1-mediated lung 
pathology (154). In the case of human clinical data, it is difficult 
to resolve the “chicken-and-egg” problem: do children with a 
genetic propensity to mount Th2 responses and develop asthma 
suffer more severe early-life RSV or does early and severe RSV 
infection cause the subsequent development of asthma (83, 168)?

Neonatal RSV Infection Model
In an attempt to address these limitations, several groups, includ-
ing ours, have developed models of RSV infection in neonatal 
and young mice with re-infection or exposure to allergens later 
in life (126, 160, 162, 169, 170). These models demonstrate that 
early-life RSV infection (within 7 days of birth) elicits little IFNγ 
production in contrast to adult animals (169) and leads to a “pro-
asthmatic” phenotype characterized by AHR, mucus production, 
airway remodeling, and severe disease upon subsequent allergen 
exposure or live RSV challenge (126, 160, 162, 170). Consistent 
with these Th2-biased responses, IL-4Rα is increased on pul-
monary CD4+ T cells following RSV reinfection of adults (171). 
The exaggerated Th2-inflammatory response upon re-infection 
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is dependent upon the age at initial infection and production of 
both IL-13 and IL-33 (138, 170) and is enhanced by the pres-
ence of anti-RSV IgE antibodies (172). Specifically targeting Th2 
responses in the neonate can reduce these exaggerated responses 
upon adult RSV reinfection. For example, delivery of antisense 
oligonucleotides targeting the IL-4Rα (173) or a cell penetrating 
peptide targeting the STAT6 transcription factor (activated by 
both IL-4 and IL-13) (162) to neonatal mice at the time of RSV 
infection reduces enhanced disease upon RSV re-infection of 
adults. Interestingly, human cord blood CD4+ T cells also upregu-
late IL-4Rα upon ex vivo RSV stimulation (171). Consistent with 
these data, development of enhanced disease is T cell dependent 
in the neonatal challenge- adult rechallenge model. However, 
reduced inflammatory responses are seen only if CD4+ T  cells 
are depleted at the time of adult re-infection but not during the 
neonatal exposure (174). On the other hand, depletion of CD8+ 
T cells during either the neonatal infection or adult re-infection 
significantly decreases enhanced disease in mice (174). How CD8+ 
T cells exposed to RSV during neonatal infection promote disease 
in adult re-infection is unclear, and somewhat paradoxical, given 
the protective role that CD8+ T cells are believed to play in recov-
ery from viral infections. It is also possible that CD8+ T cells play 
slightly different roles in mouse vs. human disease (175). How 
CD4+ and CD8+ T cell populations influence the pathogenesis of 
RSV infection in reinfected adult mice is intriguing and deserves 
further evaluation. Finally, repeated RSV infection of weanling 
mice interferes with Treg-mediated tolerance and increases 
susceptibility to allergic asthma (176).

As described in the first section of this review, the neonatal 
immune system is characterized by a pre-existing Th2 bias. The 
addition of RSV infection of airway epithelial cells with produc-
tion of the type-2 innate cytokines, IL-33 (138), TSLP (123), and 
IL-25 (128), would, therefore, be predicted to create an even 
more exaggerated type-2-biased microenvironment in the lung 
with activation of other immune cells (e.g., M2 macrophages, 
DCs, and/or ILC2 cells) and the development of AHR. When 
neonatal mice are treated with antibodies to neutralize TSLP, 
IL-33 or their target expressed on DCs, OX40L, the ability of 
early RSV infection to prime pathological Th2 responses upon 
re-infection of adults is reduced (138, 145). As discussed above, 
TSLP and the other innate type-2 cytokines, IL-25 and IL-33, 
all promote amplification, differentiation, and maintenance of 
M2 macrophages (130, 163, 164). Together, these data suggest 
that many different cells and cytokines, as well as other yet to be 
determined factors have the potential to contribute to the RSV-
induced, Th2 microenvironment and the subsequent develop-
ment of asthma (Figure 1).

An alternative to the “too much Th2” explanation for Th2-
biased neonatal immune system would be “too little Th1”. IFNγ 
plays a key role in the induction and maintenance of Th1 responses 
and infection of neonatal mice with recombinant RSV expressing 
IFNγ prevents enhanced disease upon re-infection (177). A large 
proportion of the immune cells present in the neonatal mouse lung 
are macrophages, and these cells are particularly sensitive to stim-
ulation by IFNγ. Indeed, the work of Empey and colleagues shows 
that IFNγ plays a central role in the balance between the inflam-
matory M1 macrophage phenotype and the immunosuppressive, 

M2 phenotype (71). While lung macrophages from adult mice 
effectively induce M1 macrophage markers in response to RSV, 
neonatal macrophages require exogenous IFNγ to express M1 
markers, produce inflammatory cytokines and drive efficient viral 
clearance (71). Moreover, administration of intranasal clodronate 
liposomes that depletes macrophages significantly reduces the 
ability of IFNγ to promote viral clearance (178). Furthermore, 
Yamaguchi and colleagues (179) have shown that treatment of 
neonatal mice with the powerful Th1 adjuvant, CpG, prior to RSV 
infection prevents enhanced disease upon re-infection, possibly 
by promoting activation of antigen-presenting cells and produc-
tion of IFNγ from NK  cells. Remarkably, CpG treatment even 
4 weeks after early-life infection provides protection (179). These 
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observations raise the possibility that RSV vaccines incorporating 
CpG or other Th1-biasing adjuvants might be useful not only to 
prevent infection (180) but also to block the later development of 
asthma. Whether or not the effects of “more” IFNγ are antigen-
specific or simply reflect an adjuvant-modified baseline “potential 
to respond” in the lung is also an important question. This last 
possibility is strongly suggested by the work of Remot and col-
leagues who observed that mucosal vaccination of neonatal mice 
with nanostructures formed by the RSV nucleoprotein (N) and 
a combination of Th1-biasing adjuvants (E. coli enterotoxin LT 
and CpG) provides greater protection from immunopathology 
upon reinfection by RSV later in life compared to nanostructures 
containing the N protein + LT (181). Together, these data suggest 
that preventing too much Th2 activity (driven by RSV or other 
stimuli) or promoting Th1-type activity (or both) may establish 
a long-term more “balanced” lung microenvironment that resists 
subsequent development of asthma.

As discussed above, RSV infection inhibits type I IFN pro-
duction and plasmacytoid dendritic cell (pDC) responses (71, 
150, 178).As a result, the maintenance of pDCs during RSV 
infection may promote beneficial Th1-type responses including 
the expansion of RSV-specific CD8+ T  cells. In the challenge–
rechallenge model, treatment of neonatal mice during the initial 
RSV infection with either IFNα or adoptively transferred adult 
pDCs leads to upregulation of IFNα expression and diminished 
Th2-biased lung inflammation when these mice are reinfected 
as adults (182). Further support for the role of pDCs comes 
from experiments in which adult mice are exposed to FMS-like 
tyrosine kinase 3 ligand (Flt3-L) prior to RSV infection. In 
response to Flt3-L, both conventional DC (CD11b+CD11c+) and 
pDC (CD11b−CD11c+B220+) populations expand in the lung 
and draining lymph nodes but only the pDCs protect against 
airway hyperreactivity, exaggerated Th2 cytokine expression, 
airway inflammation and mucus production (183). These 
Flt3-L-induced pDCs have upregulated type I IFN (IFN-α/β) 
expression and support the expansion of CD8+ T  cell popula-
tions that decrease viral load. Depletion of these pDCs reduces 
the protective CD8+ Th1 response with greater AHR, mucus, 
viral titers, and Th2 cytokine expression (183, 184). Similarly, 
Flt3-L administration prior to neonatal RSV infection reduces 
airway mucus secretion and airway eosinophilia but promotes 
Th1 RSV-specific CD8+ T  cells upon adult re-infection (185). 
Although these observations suggest that Flt3-L protects against 
RSV infection by inducing pDCs to produce type I IFN, alveolar 
macrophages (CD11c+SiglecF+) rather than pDCs (or epithelial 
cells), are thought to be the main producers of type I IFN in 
the adult mouse lung (186, 187). Regardless of whether pDCs 
or alveolar macrophages are the predominant source of type I 
IFN, these studies strongly suggest that promoting type I IFN 
production in the lung during early-life RSV infection is likely to 
lead to adaptive Th1 responses while suppression of type 1 IFN 
production may favor maladaptive Th2 responses.

Taken together, the data summarized above strongly suggest 
that RSV infection of the neonatal lung adds a further Th2 influ-
ence to an already Th2-biased respiratory microenvironment, 
with likely contributions from respiratory epithelial cells as well 
as multiple innate cell populations (e.g., macrophages, DCs, 

NK  cells, ILC2s). The presence of multiple autocrine and par-
acrine amplification loops between these cells likely leads to the 
production of excessive IL-4 and IL-13 in the lung that increase 
both the short- and long-term risk that exposures to otherwise 
innocuous allergens will lead to immunopathologic responses 
including asthma (Figure 1).

influenza A and B viruses
Background, Prevention, and Treatment
Influenza viruses are far more diverse than RSV due, in large 
part, to their genetic organization (eight independently segre-
gating genes in the A and B viruses that most commonly infect 
humans) and the enormous genetic reservoir of influenza viruses 
in aquatic birds and a number of mammalian species (e.g., most 
notably pigs but also cats, whales, elephants, skunks, among 
others) (188). The influenza viruses remain a leading cause of 
childhood pneumonia globally (189) and early-life infections 
are common despite the near universal availability of influenza 
vaccines in resource-rich settings (190). It has been estimated 
that without vaccination 10–40% of young children are infected 
by an influenza virus every year (191). Although a number of 
antivirals are available for influenza infections (e.g., M2 and 
neuraminidase inhibitors), these drugs have only modest efficacy 
and their use is further limited by resistance that is either pre-
existing or is rapidly induced during treatment (192). Although 
influenza infections are clearly associated with exacerbations of 
asthma [reviewed in Ref. (193)], the putative link between early-
life influenza and the subsequent development of asthma is much 
more tenuous. Compared to the large body of work implicating 
RSV (above), far less work has been done to address this question 
for influenza viruses.

Evidence for a Link Between Influenza Viruses  
and Asthma
At the current time, there is neither epidemiologic nor experi-
mental evidence in humans suggesting a strong association 
between early-life influenza infection and asthma. Although work 
with murine models tends to support an association, these data 
are not consistent from one model or laboratory to another. 
Differences in the age of infection, both mouse and virus strain 
(i.e., human vs. mouse-adapted) and the infective dose may all 
contribute to these apparently contradictory results. For example, 
a study by Dahl et al. (194) showed that LRT infection of adult 
BALB/c mice with influenza A (HKx31 strain) at 6–8 weeks of age 
could predispose to AHR upon subsequent allergen sensitization 
(keyhole limpet). Surprisingly, AHR in this model was associated 
with both Th1-type (IFNγ, IgG2a) and Th2-type (IgG1) antigen-
specific responses and the allergic phenotype could be adoptively 
transferred with pulmonary DCs. Using a similar protocol with 
OVA as a model allergen in BALB/c mice, Barends et al. found 
that infection with a mouse-adapted influenza A strain (A/
PR/8/34) at the time of OVA challenge decreased Th2 cytokine 
production in the lungs but increased infiltration by eosinophils 
(195). Chang et al. have reported that infection of adult BALB/c 
mice with a reassortant H3N1 influenza A (Mem71) increases 
alveolar macrophage IL-33 production, driving natural helper 
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cells (i.e., ILC2s) to produce IL-13 that promotes the develop-
ment of AHR (132). Recently, elevated pleural IL-33 and ILC2s 
were found to mediate the induction of asthma-like responses 
(e.g., AHR, production of Th2 cytokines) following pdmH1N1 
infection in Rag1−/− mice (on a C57Bl/6 background) that lack 
functional T and B lymphocytes (196).

Like the observations in adult mice, the reported outcomes 
after early-life influenza A infection are highly variable, some-
times protecting against, but sometimes promoting the develop-
ment of AHR. When suckling BALB/c mice (2  weeks old) are 
infected with influenza H3N1 (again Mem71) and challenged 
with allergens as adults, AHR typically does not occur and the 
protective effect appears to be mediated by a subset of NKT cells 
that produce large amounts of IFNγ (197). At high inocula, many 
influenza viruses are lethal for young mice (198). Using low titer 
H1N1 virus (PR8), Lines and colleagues found a delayed T cell 
response with a pronounced influx of eosinophils into the lungs 
of C57Bl/6J neonates compared to adult mice (198). Ex vivo 
stimulation of lung cells with phorbol 12-myristate 13-acetate/
ionomycin in these experiments showed delayed and lower levels 
of IFNγ in the neonatal immune T cells (198). Others have shown 
that infection of BALB/c mouse pups with PR8 on day 7 of life can 
result in long-term pulmonary dysfunction, AHR and an increase 
in inflammatory cytokines, neutrophils and alveolar macrophages 
in the lungs (199). In this model, IFNγ was not produced by the 
neonatal pulmonary CD8+ T cells, but adoptive transfer of adult 
CD8+ T cells prevented the long-term AHR (199). Although this 
body of work is much smaller than that dealing with RSV, the 
available data raise the possibility that deficient IFNγ production 
in the neonate during influenza virus infection may play a role 
in the induction of an asthmatic phenotype upon subsequent 
exposure to viruses or allergens. Further studies, including the 
development of a “standard” early-life mouse model of influenza 
infection are required to begin to understand the potential con-
tribution of these viruses to asthma initiation.

Rhinoviruses
Background, Prevention, and Treatment
Rhinoviruses are the most important etiological agents of the 
“common cold”. Similar to RSV, RV can cause both upper and 
lower respiratory-tract illness at all ages. There are 100–150 
strains of RV, divided into three groups: A, B, and C. Groups A 
and B were discovered in the 1990s, while RV-C, a new group 
with over 50 strains, was identified only in 2006 (200, 201). 
Most RV infections are thought to be minimally symptomatic or 
completely asymptomatic. Under 4 years of age, at least one RV 
can be found by nasal swab in 12–32% of asymptomatic children 
[reviewed in Ref. (202)]. Although both the scientific literature 
and the internet offer a wide variety of therapies to prevent or cure 
the common cold (203, 204), at the current time neither antivirals 
nor vaccines are available for RV infections.

Association of RV With Human Asthma
Similar to RSV, the RVs, and particularly the RV-C group, have 
been implicated in both the development of asthma and in 
exacerbation of wheezing illness (87, 96, 205–207). Interestingly, 

RV-associated wheezing tends to be more common in older 
infants (>1 year old) in contrast to RSV infection in which the 
most serious manifestations (i.e., bronchiolitis) occur primarily 
in those <1 year old (208, 209). However, both RSV and RV are 
frequently isolated in infants hospitalized with severe respiratory 
symptoms and wheezing (210). As noted above for RSV, it is very 
difficult to know if this observation means that children with a 
genetic propensity to wheeze are more likely to be hospitalized 
or if RV infections are a causal factor in the onset of wheezing 
illness (83, 168).

Immunology of RV and Asthma
Until recently, animal models suffered from the absence of a 
receptor for human RV on mouse cells. Most human RV strains 
bind to intracellular adhesion molecule-1 (ICAM-1) but not 
mouse ICAM-1 and only a minority (~10%) binds to low-density 
lipoprotein of both humans and mice (211). Bartlett et al. (212) 
have described two mouse models of RV infection, one in which 
BALB/c mice are infected with a low-density lipoprotein-binding 
isolate and a second based upon transgenic expression of human 
ICAM-1. Infection of adult mice in the latter model results in a 
strong Th1 response with abundant IFNγ production as well as 
exacerbation of allergic responses. To date, the transgenic model 
has not been used to study RV infection and asthma initiation in 
neonatal mice. A third model was recently described by Schneider 
et  al. (213) in which 7-day-old BALB/c mice are infected with 
RV-1B, leading to the development of AHR and mucus produc-
tion 4 weeks later. Surprisingly, this neonatal infection resulted 
in the production of IFNγ along with increases in inflammatory 
cytokines and chemokines, including TNFα, CXCL1, and CXCL2 
in the lungs. These observations are very different from the find-
ings in RSV-infected neonates. However, IL-13 was also strongly 
induced by RV-1B infection in neonatal mice but not in adult 
mice (214). Analysis of the lungs 35 days after infection showed 
that a majority of cells producing IL-13 were NKT cells, while 
CD4 T cells predominantly expressed IFNγ. There was also an 
increase in M2 macrophages in the lungs, cells that contribute 
to RV-1B-induced AHR in allergen-sensitized mice infected 
as adults (215). Neutralizing IL-13 or IL-4R decreased AHR in 
mice infected as neonates, suggesting that mechanisms similar 
to those operating in influenza (197) and RSV (138, 170, 173) 
may also play a role in RV infection. In HDM (Dermatophagoides 
farina)-sensitized BALB/c mice, RV infection decreases IL-10 
and increases production of IL-13, RANTES and TNFα as well as 
eosinophil infiltration into the lungs (216). Th2 cytokines (IL-4,  
IL-13) increase the expression of the RV receptor (ICAM-1) 
on human respiratory epithelial (H292) cells (217). Antiviral 
responses (IFNβ/λ) appear to be decreased in primary bronchial 
epithelial cells isolated from children with atopy/asthma and are 
more permissive of RV16 replication (218). Serum IgE levels in 
these infants are positively correlated with viral RNA levels in 
ex vivo-infected epithelial cells and negatively correlated with 
RV-induced IFNβ/λ. Other investigators have found a nega-
tive correlation between IFN-induction by RV and airway Th2 
responses, including eosinophilia and detectable IL-4, in children 
with a history of asthma both with and without atopy (218). In 
a human challenge study with RV14, both atopic and non-atopic 
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subjects with low IFNγ/IL-5 ratios had more symptoms and 
prolonged viral shedding (219).

The dearth of studies on RV infection in neonatal mice makes 
it hard to draw conclusions about potential mechanisms of 
RV-mediated asthma initiation. Further work on neonatal models,  
particularly using the group C strains associated with clinical 
asthma in infants (87, 96, 205–207), would be useful. Like RSV, 
RV primarily targets respiratory epithelial cells, although RV 
infections are typically “patchy” and thus may not cause the same 
degree of damage as RSV.

Recent investigations of RV infection in both animal models 
and human studies have focused on the innate type 2 cytokines 
IL-25, TSLP, and IL-33. TSLP is secreted at a low concentration 
from primary human bronchial epithelial cells infected ex vivo 
with RV, but rise dramatically with the addition of IL-4 (220). 
TLSP and IL-33 are also upregulated in bronchial epithelial cells 
in response to in vitro RV infection but even greater increases in 
IL-25 are seen in cells from asthmatic patients post-RSV infection 
(221, 222). RV-induced production of IL-33 and/or TSLP blocks 
OVA-induced inhalational tolerance, with resultant lung eosino-
philia and neutrophilia, as well as increased Th2 and decreased 
Treg cells. Delivery of neutralizing antibodies that target ST2 (the 
IL-33 receptor) or RV infection of TSLPR knock-out mice both 
disrupt the ability of RV to block tolerance in this model (222). 
These data suggest that RV may increase susceptibility to allergic 
airways disease, by increasing TSLP and/or IL-33, generating a 
lung environment conducive to immune recognition of normally 
harmless antigens/allergens. In a murine model of RV-induced 
asthma exacerbation using OVA, lung levels of IL-25, expressed 
by epithelial cells and infiltrating immune cells are greatest in mice 
exposed to both OVA and RV (221). OVA-RV exposed mice have 
increased levels of IL-4+ basophils, IL-4+ CD4+ T and ICOS+ ST2+ 
non-T (ILC2?) cells in the bronchoalveolar lavage (BAL) fluid, 
as well as enhanced airway eosinophilia and neutrophilia, and 
exacerbated Th2 cytokine production, all of which are reduced 
upon delivery of neutralizing IL-25 receptor antibody (α-IL-
17RB) prior to RV infection. Interestingly, α-IL-17RB treatment 
also decreases lung tissue IL-33 and TSLP protein levels. These 
data suggest that targeting IL-25 receptor may hold therapeutic 
promise through mitigation of viral- and allergen-induced 
inflammation promoted by innate type 2 cytokines.

Interleukin-33 is produced by cultured bronchial epithelial 
and smooth muscle cells when infected with RV (223, 224). In 
response to in vivo infection with RV16, asthmatics have greater 
viral loads, increased BAL eosinophilia, and greater respiratory 
symptom scores compared to non-asthmatic controls. These para-
meters are also associated with reductions in both peak expira-
tory flow and FEV1. Moreover, elevated levels of the Th2 cytokines 
(IL-4, IL-5, IL-13) as well as IL-33 are present in the BAL fluid of 
RV16-infected asthmatics. Ex vivo incubation of activated (undif-
ferentiated) CD4+ T cells (Th0) or ILC2 cells with supernatants 
from RV-infected bronchial epithelial cells leads to production of 
IL-5 and IL-13 by both cell types in an IL-33-dependent manner 
(223). Significantly, production of IL-5 and IL-13 is 100- to 200-
fold greater in ILC2 cells compared to CD4+ T cells suggesting 
that IL-33-dependent activation of ILC2 cells during RV infection 
could play a major role in the development of asthma. Taken 

together, these data suggest that pronounced IL-33 secretion by 
smooth muscle cells and/or IL-25, TSLP, and IL-33 secretion by 
epithelial cells in response to RV infection may skew the lung 
microenvironment toward Th2-biased allergic airways disease 
through activation of both innate (e.g., macrophage, DCs, and 
ILC2 cells) and adaptive immune cells.

CONCLUSiON

At the current time, a large body of RSV data in both humans 
and murine models strongly suggest that there is a maladaptive 
and “asthma-genic” interaction between the Th2-biased nature 
of the infant immune system and the Th2-promoting effects of 
the virus itself. It is also very likely that host genetics play an 
important role in determining both the short-term (e.g., hos-
pitalization) and long-term (e.g., asthma) consequences of this 
interaction (90, 93). To date, the only factors known to increase 
susceptibility to RSV-induced asthma are family history of 
atopy, premature birth, and certain host genetic polymorphisms 
that are linked with severe disease (111). Whether or not any 
child, regardless of his/her genetic background can be “made” 
asthmatic by early-life RSV infection is an important question 
that cannot be answered at the current time. In favor of the 
hypothesis that asthmatics are “born” and not “made”, Gern 
and colleagues have reported bi-directional cytokine responses 
in cord blood mononuclear cells stimulated with mitogen or 
viral antigens (e.g., RSV, RV) from children who were later clas-
sified as either wheezing vs. non-wheezing at one year of age 
(225). Whether or not RSV is unique among early childhood 
respiratory virus exposures with regard to asthma development 
is also of great interest. The more limited data available suggest 
that the RV but not influenza virus infection may have effects 
similar to RSV. Bonnelykke et al. (88) reported that the number 
of viral or bacterial respiratory infection episodes within the first 
year of life is a greater predictor of asthma development than 
the particular viral or bacterial type(s) (88). In contrast to the 
contribution of respiratory viruses to asthma development, the 
role of several viruses, including RSV, RV, and influenza viruses, 
in asthma exacerbations is very clear (9, 84, 206, 226, 227). Of 
course, neonates and infants are not just exposed to respiratory 
viruses in the first weeks-months of life. Rather, they experience 
a wide range of immunologic challenges with both commensal 
and potentially pathogenic organisms at multiple epithelial sites 
throughout childhood. For example, Ege and colleagues have 
shown that children exposed to wide range of microbes early in 
life, including children that live on farms, have a reduced risk of 
developing asthma (the hygiene hypothesis) (228) and germ-free 
mice can more easily be made airway hyperresponsive than their 
non germ-free littermates (229). A great deal of work remains 
to be done to fully understand how the ubiquitous respiratory 
viruses discussed in this review, as well as other early-life micro-
bial exposures, contribute to the development and perpetuation 
of asthma.

Such an improved understanding is essential to develop strat-
egies to both prevent asthma development and to mitigate the 
symptoms of asthma once developed. This review has focused 
on how a small number of viruses may also contribute to the 
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induction of asthma. In particular, we have described the growing 
evidence that innate immune effector cells may orchestrate early-
life events in the lung to “set the stage” for the later development 
of asthma. Until very recently, the potential asthma-inducing role 
of respiratory epithelial cells, macrophages, DCs, ILC2s, and NK/
NKT cells has been under-appreciated. Although vaccination to 
protect the very young from early-life respiratory viruses (includ-
ing maternal immunization) is one possible strategy (230), these 
new data suggest that modulation of innate responses during 
early-life viral infections may also be successful. Of course, any 
strategy that seeks to alter either the antigen-specific or the “over-
all” immune response pattern of neonates/infants would have to 
be approached with great caution (e.g., risk of exaggerated Th1 
immunopathology, less effective responses to other pathogens 
or vaccines). As outlined above, the Th2-biased nature of the 
neonatal immune system is a strategy that has been “proven” 
by evolution. Nonetheless, given that asthma has now reached 
essentially “pandemic” proportions, very few questions in clinical 
medicine are of greater importance. The concepts described in 

this review raise the possibility of completely novel strategies for 
dealing with this pandemic.
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