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Inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) is the most prom-
inent and evolutionarily conserved endoplasmic reticulum (ER) membrane protein. This 
transduces the signal of misfolded protein accumulation in the ER, named as ER stress, 
to the nucleus as “unfolded protein response (UPR).” The ER stress-mediated IRE1α 
signaling pathway arbitrates the yin and yang of cell life. IRE1α has been implicated in 
several physiological as well as pathological conditions, including immune disorders. 
Autoimmune diseases are caused by abnormal immune responses that develop due to 
genetic mutations and several environmental factors, including infections and chemicals. 
These factors dysregulate the cell immune reactions, such as cytokine secretion, anti-
gen presentation, and autoantigen generation. However, the mechanisms involved, in 
which these factors induce the onset of autoimmune diseases, are remaining unknown. 
Considering that these environmental factors also induce the UPR, which is expected 
to have significant role in secretory cells and immune cells. The role of the major UPR 
molecule, IRE1α, in causing immune responses is well identified, but its role in inducing 
autoimmunity and the pathogenesis of autoimmune diseases has not been clearly eluci-
dated. Hence, a better understanding of the role of IRE1α and its regulatory mechanisms 
in causing autoimmune diseases could help to identify and develop the appropriate 
therapeutic strategies. In this review, we mainly center the discussion on the molecular 
mechanisms of IRE1α in the pathophysiology of autoimmune diseases.

Keywords: autoimmune diseases, cytokines, inflammation, iRe1α, regulated iRe1α-dependent decay, unfolded 
protein response signaling pathways
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iNTRODUCTiON

Autoimmune diseases are the consequences of an abnormal 
immune response in the form of autoantibodies and T-cells 
attacking the host’s body. These diseases include both tissue-
specific and systemic disorders and affect approximately 3–5% 
of the population (1, 2). Most of the autoimmune diseases are 
heterogeneous in nature and are usually characterized by the 
expression of autoantibodies, pro-inflammatory cytokines, and 
autoreactive T-cells (3, 4). Many theories have suggested that a 
genetic predisposition is the main cause of autoimmune diseases. 
However, the concordance rates of autoimmune disease in 
monozygotic twins range from 12 to 67% (2, 5). Furthermore, in 
an in vivo study, collagen-induced arthritis in inbred mice of the 
single cage, which were comparable to identical twins, affected a 
minority (5). These studies give evidence that heredity accounts 
for only approximately one-third of the risk of developing an 
autoimmune disease, while environmental and epigenetic factors 
account for the majority of the risk (6). Many environmental 
factors, including microbial infection, chemicals exposure, free 
radicals, abnormal blood glucose, cholesterol, and inflammation 
are known to trigger autoinflammation (7–13). All of these fac-
tors are also known to induce endoplasmic reticulum (ER) stress  
(14, 15), indicating the possible association of ER stress to the onset 
of the autoimmune diseases. Further, several recent studies have 
shown that ER stress precedes the progression of autoimmune 
diseases (16–18). In addition, ER stress can lead to the upregula-
tion of many pro-inflammatory cytokines, including TNFα, IL-1β, 
IFN-γ, IL-6, and IL-23 (19), which comprise the hallmark of 
autoimmune diseases (20). In spite of significant development has 
been made in the treatments using immunosuppressive or immu-
nomodulatory agents, the prognosis is still poor for many patients 
in terms of a long-term cure (5). Therefore, clear knowledge on 
the mechanisms that are responsible for dysregulation of the 
immune system, which in turn leads to autoimmune disease, will 
help in developing therapeutics. Additionally, knowledge about 
the precise causes for the elicitation of the autoimmune response, 
especially ER stress-mediated immune response is required for 
developing treatment modalities, but these causes are still unclear.

HOw DOeS eR FUNCTiON CONTRiBUTe 
TO AUTOiMMUNe DiSeASeS?

The ER controls multiple cellular functions involving protein 
folding, post-translational modifications (PTMs), fatty acid bio-
synthesis, detoxification, and also stores the intracellular calcium 
(21). About one-third of cellular proteins majorly including 
secretory and transmembrane proteins reach maturation in the 
ER (22, 23). Once ribosomes translate the mRNA, the synthesized 
peptide is inserted into the ER based on its signal sequence. The 
signal sequence is then cleaved, and the protein is moved into the 
lumen of the ER. Inside the lumen, it is folded into its functional 
conformation and remains in the ER or, through the Golgi bodies, 
is transported to other cellular organelles or cytoplasmic mem-
brane or is secreted. However, regardless of its destination, newly 
synthesized proteins undergo various processes in the lumen of 

the ER (24). These processes include folding, formation of mul-
tisubunit complexes, disulfide bond formation, N-glycosylation, 
and many other PTMs (25). In addition, the ER has been impli-
cated in metabolism of glucose, lipids, and cholesterol, and also 
in the process of autophagy (22).

As the functions of the ER required, the environment in the 
ER is oxidative and rich in calcium and other protein folding 
machineries (26). The protein folding requirement and degree of 
secretory protein synthesis vary across cell types. Cells with secre-
tory functions, such as pancreatic β cells and liver cells are rich 
in ER to meet the high, fluctuating demand (27, 28). Inside the 
ER, secretory proteins are folded precisely to their native confor-
mations with the assistance of chaperones and protein disulfide 
isomerases (PDI), and then the properly folded proteins translo-
cate to their destined place based on the signal sequence (21, 29). 
However, cells can encounter conditions, such as viral infections, 
cancers, neurodegenerative diseases, diabetes, inflammation, a 
high demand of secretory proteins, and other aberrations at the 
cellular level during which ER protein folding functions can be 
disturbed (30). This can result in the accumulation of unfolded 
proteins inside the ER, entitled as ER stress (30–32). However, 
cells have developed a mechanism to sense these changes and try 
to reestablish homeostasis by stimulating specific signal trans-
ducing pathways, named as the unfolded protein response (UPR) 
(33, 34). This process is well conserved from yeast to humans (35).

The UPR system initially tries to restore homeostasis through 
transcriptional induction of folding enzymes, chaperones, oxi-
doreductases, reduced translation, autophagy, lipid biogenesis, 
vesicular trafficking, degradation of ER-associated mRNA, and 
degradation of unfolded proteins through ER-associated protein 
degradation (ERAD) (36). However, this adaptive process may 
fail, due to persistent stress resulting from a high demand for 
proteins, especially in secretory cells, and due to chronic diseases 
(37). In that case, the activated UPR transforms it signals from 
survival to a death inducing pathway to clear the affected cells 
from the system (38). However, unrestricted apoptosis leads to 
a loss of cells in organs (38, 39). These pro-death signaling path-
ways cause the pathogenesis of many diseases through increasing 
reactive oxygen species (ROS), activating proapoptotic proteins, 
and activating inflammatory molecules (40).

In addition to the secretion of inflammatory cytokines, distur-
bances in the ER environment result in abnormal PTM of many 
proteins, which can activate the autoimmune response by devel-
oping into neoantigens (41). The ER stress-mediated generation of 
autoantigens/neoantigens is reviewed elsewhere (42, 43). Indeed, 
several ER proteins, including insulin, glucose-regulated protein 
78 (GRP78), glutamic acid decarboxylase 65, and chromogranin 
A are turned into neoantigens due to abnormal PTM (41, 44, 
45). These neoantigens activate autoreactive T-cells, which leads 
to pathological conditions (46). Furthermore, in rat insulinoma 
(INS-1E) cells and non-obese diabetic (NOD) mice, cytokine-
induced ER stress produces the post-translationally modified 
chaperone protein GRP78 or immunoglobulin binding protein 
(BiP) (47, 48). This modified GRP78 generates autoreactive 
T-cells with higher levels of IL-17, TNFα, and IFN-γ production 
(17, 49). The cytokine-mediated calcium depletion in the ER 
also activates the cytosolic calcium-dependent PTM enzymes 
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transglutaminase 2 (Tgase2) and peptidylarginine deiminases, 
which generate the neoantigens (50). In addition, ER stress-
mediated UPR upregulates the production of the important pro-
inflammatory cytokines, such as IL-1β, TNFα, IL-17, and IL-23, 
which further enhance the tissue damage (51). These cytokines 
are known to contribute significantly in the pathogenesis of 
autoimmune disorders (52, 53). Interestingly, cytokines, in a 
feedback loop mechanism can induce ER stress and apoptosis 
through the UPR (54). Taken together these discoveries imply 
the contribution of ER stress to the development of autoimmune 
diseases. In this review, we center on the implications of the con-
served ER stress-transducing molecule IRE1α in the onset and 
pathogenesis of autoimmune diseases. We especially consider its 
role in immune cells and its signaling pathways in the immune 
response, along with potential IRE1α targeting therapies to treat 
autoimmune diseases.

iRe1α/eRN1 (iNOSiTOL-ReQUiRiNG 
eNZYMe1/eNDOPLASMiC ReTiCULUM 
TO NUCLeUS1)

IRE1α, the most evolutionarily conserved ER membrane protein 
regulates, many cellular processes involving cell survival and cell  
death (55–57). The IRE1 gene was first identified in yeast in the 
search of genes involved in the metabolism of inositol phos-
pholipids; it complemented a yeast mutant requiring exogenous 
inositol for its growth (58). Later, from the benchmark work of 
Peter Walter and Kazutoshi Mori, IRE1 was identified as a UPR 
molecule through the screening of yeast genes involved in signal 
transduction from the ER to the nucleus during misfolded protein 
accumulation (59, 60). In metazoans, IRE1 exists in two isoforms: 
IRE1α/ERN1 and IRE1β/ERN2. IRE1α is localized to the ER mem-
brane and has an N-terminal signal-sensing ER luminal domain 
(LD), a type I transmembrane domain (TD) and a dual enzymatic, 
hydrophilic, cytosolic C-terminal domain having both kinase and 
endoribonuclease functions (61). IRE1α is prevalent in almost all 
tissues, but IRE1β is expressed only in intestinal epithelial cells 
(IECs) (62) and airway mucous cells (63). The amino acid sequence 
of the sensor, kinase, and RNase domains (RDs) of human IRE1α 
and IRE1β have 48, 80, and 61% identity, respectively (64).

Activation Mechanism of iRe1α During eR 
Stress and its Downstream Signals
The disturbed environment in the ER during pathological condi-
tions and also at a low level in regular physiological conditions, 
leads to the activation of IRE1α (65) (Figure  1A). In normal 
conditions, it is negatively regulated by the attachment of the 
ER chaperonic protein BiP, on the ER LD of IRE1α (66, 67). 
However, during the accumulation of misfolded proteins, BiP 
separates and binds to the misfolded proteins due to its higher 
affinity for these proteins than IRE1α (68). The dissociation of 
BiP leads to self-association of IRE1α’s LD, causing IRE1α to 
dimerize and trans-autophosphorylate its cytoplasmic kinase 
domain (69). This leads to conformational change in the RD, 
which then becomes enzymatically active, and also forms higher 
order oligomers (69–73). It was reported recently that misfolded 

proteins can also bind directly to IRE1α and similarly activate it 
(74). In addition, membrane aberrancy, alteration in the cellular 
lipid composition and membrane lipid saturation also activate 
IRE1α through its TDs (75–77). Upon the activation of its kinase 
and endoribonuclease functions, IRE1α takes out an intron of 
26 nucleotide length from X-box binding 1 (XBP1) mRNA by 
an unconventional method in the cytoplasm: specifically, in 
a spliceosome-independent manner, leading to introduction 
of a new termination codon due to a frame-shift in the coding 
sequence (78, 79). The IRE1α endoribonuclease activity gives 
rise to two free ends of 2′3′-cyclic phosphate and 5′-OH at 5′ 
and 3′exons, respectively (80). However, this endoribonuclease 
activity depends on the presence of a specific pair of appropri-
ate stem-loop structures and a conserved consensus sequence, 
CNCNNGN (where N is any base) in the mRNA (55, 81). These 
ends are ligated by tRNA ligase, RtcB, generating the stable tran-
scription factor XBP1 (XBP1s) (82) (Figure 1B). XBP1s targets 
many genes involved in multiple cellular functions and this activ-
ity varies with cell type and condition (83). In particular, XBP1s 
induce the expression of proteins involved in ER stress attenua-
tion: protein folding chaperone GRP78, PDI, and translocation 
proteins (84, 85). In addition, XBP1s promotes the expression of 
the ER quality-control proteins heat shock protein 40 kDa (DnaJ), 
p58, ER-resident molecule (ERdj4), ER degradation-enhancing 
α-mannosidase-like protein (EDEM) involved in ERAD, and 
ER-to-Golgi transport components (81, 86–88). Further, XBP1s 
is necessary for basic physiological functions, mainly in secre-
tory and differentiating cells (89–91), and also contributes to 
inflammation (92). IRE1α is also inevitable for the placental and 
embryonic development. Lacking of IRE1α in mice resulted in 
embryonic mortality during gestation, due to liver hypoplasia 
and reduced angiogenesis (93).

In addition to the generation of a stable XBP1s transcription 
factor, IRE1α activation causes the cleavage of other ER-localized 
mRNAs, cytosolic mRNAs, ribosomal RNA, and miRNAs, leading  
to their degradation in a process named as regulated Ire1-
dependent decay (RIDD) (94–97) (Figure  1B). This cleavage 
activity is also sequence specific, but it does not necessarily 
require a double-loop structure, unlike in XBP1 splicing (55, 56). 
RIDD function helps in ER stress reduction, due to decreasing in 
the inflow of newly synthesized proteins into the ER, and it also 
participates in biological functions, such as glucose metabolism, 
inflammation, and apoptosis (55). In addition, cleaved mRNA 
fragments generate an inflammatory response (98). Notably, 
RIDD is hyperactivated under conditions of XBP1 deficiency 
and is implicated in both cell survival and death depending on 
the nature of tissue and level of stress intensity (19, 99, 100). 
Interestingly, another isoform, IRE1β, is primarily involved in 
RIDD activity but is less active in generating XBP1s compared 
with IRE1α and mediates the protein-folding process in lung and 
gut epithelial secretory cells (63, 101).

iRe1α-Mediated Cell Apoptosis Pathways 
involved in Pathogenesis
IRE1α induces the cell death pathway by activating different 
apoptosis-inducing molecules through its endonuclease and 
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FiGURe 1 | IRE1α structure and its downstream mechanisms in mild and severe stress. (A) A model depicting the IRE1α structure and its functional domains: 
luminal domain (LD), transmembrane domain (TD), linker region (LR), kinase domain (KD), RNase domain (RD), and an activation loop at the KD. (B) Stress factors, 
such as mutations, high demand for secretory proteins, ionic imbalance, and disease cause an accumulation of misfolded proteins, leading to activation of the 
unfolded protein response. Immunoglobulin binding protein regulates IRE1α through dimerization, autophosphorylation, and further oligomerization. During mild 
endoplasmic reticulum (ER) stress, activated IRE1α helps the cells to recover from stress through increasing the ER folding chaperones and ER-associated 
degradation (ERAD) components by generating stable transcription factor XBP1s, as follows: active IRE1α cleaves XBP1 mRNA, and the cleaved fragments are 
ligated by RtcB. Stable XBP1 mRNA is generated and translated to form the transcription factor XBP1s, which moves to the nucleus and induces the expression of 
chaperone proteins and ERAD process-associated genes. Another process, regulated IRE1α-dependent decay (RIDD), degrades mRNAs and reduces the load of 
new proteins entering ER, which helps in cell survival; in addition, the generation of small RNA fragments triggers the inflammatory response. (C) With severe stress, 
IRE1α induces the alternative pathway: apoptotic signaling by recruiting TNF receptor-associated factor 2 (TRAF2) and apoptosis signaling kinase1, leading to c-Jun 
N-terminal kinase (JNK) phosphorylation. Phosphorylated JNK induces apoptosis through many signaling pathways. It causes the proapoptotic proteins Bcl-2-
associated X protein (BaX), and Bim to translocate to the mitochondrial membrane by inhibiting antiapoptotic B-cell lymphoma family 2 (Bcl-2). The mitochondrial 
membrane is ruptured, and cytochrome C is released, which activates caspase-9 and -3, which in turn cleave many proteins and cause cell death. Phosphorylated 
JNK also translocates Sab protein, which increases the mitochondrial reactive oxygen species (ROS) and leads to cell death directly, as well as ROS inducing 
inflammation-mediated cell death. In addition, JNK-mediated transcription factor AP-1 induces pro-inflammatory cytokine-mediated cell death. IRE1α also can 
induce inflammation-mediated cell death by activating NFκB. Furthermore, RIDD activity, which degrades prosurvival mRNAs, which increases caspase-2 
expression, causes translocation of BH3-interacting domain to the mitochondria, and also degrades miRNA17, which stabilizes the thioredoxin-interacting protein 
thioredoxin-interacting protein, leading to inflammation and ROS-mediated cell death. In addition, spliced XBP1s stimulates the expression of the proapoptotic 
protein CCAAT-enhancer-binding protein homologous protein (CHOP), which induces cell death. Finally, IRE1α/TRAF2 association can activate  
caspase-12-mediated cell apoptosis.
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kinase functions (Figure 1C). However, this action of IRE1α is 
highly controlled or restricted, depending on the level and type 
of stress or tissue origin (102, 103). IRE1α activity is necessary for 
the normal functions of the cells and also for the stress adaptive 
process (104). However, when a threshold reached in terms of 
the balance of survival and death signals, IRE1α activates the 
cell death signaling, which is regulated by its regulating partner 
molecules (34, 105). IRE1α triggers cell death by promoting 
the intrinsic apoptosis pathway through interaction with a hub 
of diverse molecules through TNF receptor-associated factor 2 
(TRAF2) (40). IRE1α and TRAF2 association forms a complex 
with apoptosis signaling kinase 1 (ASK1) and phosphorylate 
c-Jun N-terminal kinase (JNK) (106–108). The phosphorylated 
JNK induces the apoptotic signal through many pathways. 

Sustained JNK activation is known to trigger apoptosis by regu-
lating specific proteins of the B-cell lymphoma family 2 (Bcl-2) 
(40, 109, 110), which activates the cytochrome C-mediated apop-
totic pathway. JNK translocates to the mitochondrial membrane 
and promotes apoptosis by phosphorylating and inhibiting the 
anti-apoptotic Bcl-2 proteins (111–113). In addition, it promotes 
the localization of the Bcl-2-associated X protein (BaX) and 
Bcl-2-associated death promoter (BaD) proapoptotic proteins to 
the mitochondria; this damages the mitochondrial membrane, 
leading to release of cytochrome C, which consequently activates 
the caspase-9 and -3, inducing cell death. Additionally, BaD 
can antagonize anti-apoptotic Bcl-2 proteins, thus promoting 
apoptosis (110, 111, 113). Furthermore, activated JNK binds to 
Sab (SH3 homology-associated BTK binding protein) on the 
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outer mitochondrial membrane, which promotes mitochondrial 
ROS production and induces cell death (114). JNK activation 
also mediates cell death through AP-1-mediated expression of 
pro-apoptotic genes (115–117). IRE1α/TRAF2 association is 
also implicated in the induction of the pro-apoptotic signaling 
pathway through caspase-12 activation (118, 119). Interestingly, 
receptor-interacting serine/threonine protein kinase 1 (RIPK1) 
stimulates the IRE1α-mediated JNK activation via a TNF-inde-
pendent interaction of tumor necrosis factor receptor 1 on the 
ER membrane (120, 121). The association of receptor-interacting 
serine/threonine protein kinase 1 (RIPK1) and IRE1α also 
promotes death receptor-independent caspase-8 activation, 
which then induce cell death through activating caspase-9 and 
caspase-3-mediated cell damage. Additionally, the IRE1α/TRAF2 
interaction promotes NFκB-dependent autocrine production of 
TNFα and apoptosis (122, 123). In addition, IRE1α/XBP1s also 
induce apoptosis of hepatocytes in an ER stress-dependent man-
ner by inhibiting Akt through increasing Pleckstrin homology 
like domain family A member 3 (PHLDA3) expression (124). In 
addition, XBP1s also enhance CCAAT-enhancer-binding protein 
homologous protein (CHOP)-mediated cell death (125).

Furthermore, the IRE1α-mediated RIDD process has also 
been implicated in cell apoptosis (55). During hyper-activation, 
IRE1α degrades cell-essential mRNA, which leads to reduced 
survival. RIDD activity also contributes to mitochondrial apop-
totic pathway through caspase-2 and BH3-interacting domain 
activation by degrading the caspase-2 repressing miRNA, 
resulting in enhanced expression and activation of caspase-2  
(126, 127). In addition, IRE1α degrades miRNA-17, a repressor 
of thioredoxin-interacting protein (TXNIP), resulting in TXNIP-
mediated activation of the nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-containing-3 (NLRP3) 
inflammasome, and its caspase-1 and caspase-2-dependent pro- 
death pathways (128, 129).

iRe1α iN iMMUNe CeLLS

The role of IRE1α in immune functions is being progressively 
identified as a possible mechanism for multiple complex immune-
related diseases (130). Primarily, IRE1α plays a very important 
role in the survival and functioning of many immune cell types 
(131). Due to their secretory function, immune cells have larger 
ER with higher protein-folding activity, and consequently they are 
more susceptible to agents, such as toxins, diseases, and pathogens 
that induce ER stress (132). This may necessitate the presence 
of IRE1α in immune cells. In addition to the pathophysiologi-
cal effects, IRE1α activation plays an important function in the 
normal physiology of immunologically important cell types. The 
functional requirements of IRE1α in different immune cell types 
are summarized in Table 1.

iRe1α-Mediated immune Response
Endoplasmic reticulum stress, as well as cytokine-mediated 
IRE1α activation with its kinase and RNase properties, triggers 
the immune response through various downstream pathways 
depending on the tissue types. These pathways are involved in 
pathogenesis of various diseases (Figure 2). Activation of IRE1α 

in immune cells and other stromal cells induces the secretion of 
many cytokines, such as IL-1β, IL-6, IL-23, IFN-β, and TNFα 
(40, 172, 173). The kinase function of IRE1α in association 
with TRAF2 mediates phosphorylation of JNK (p-JNK). Then, 
p-JNK interacts with Fos and forms the AP-1 transcription factor 
(115), which increases the gene expression of pro-inflammatory 
cytokine IL-6 (40, 174). In addition, IRE1α can activate the pat-
tern recognition receptors, which include the nucleotide-binding 
oligomerization domain containing proteins 1 and 2 (NOD1/2). 
This causes the release of IL-6 through receptor-interacting 
serine/threonine-protein kinase 2 (RIPK2) (175). Furthermore, 
activated IRE1α triggers IκBα kinase (IKK)-mediated phos-
phorylation of IκBα (the inhibitor of NFκB), leading to its 
degradation, NFκB activation, and further release of TNFα and 
interleukins (ILs) (122, 176, 177).

The RNase activity of IRE1α causes the release of pro-inflam-
matory cytokines through both the XBP1s and RIDD pathways. 
The IRE1α/XBP1s pathway is activated during TLR3, TLR4, and 
TLR7 ligand stimulation during pathogenesis inducing the type 
I interferons (IFNs), IFN-α and IFN-β genes expression and 
furthering the pathogenesis of autoimmune and inflammatory 
diseases (178, 179). In one study, knockdown or inhibition of 
IRE1α as well as XBP1 reduced the production of IL-1β in pri-
mary airway epithelial cells and the production of IL-1β along 
with the chemokine, C-C motif chemokine ligand 2 (CCL2), in 
macrophages (145, 180). In a study of apolipoprotein E (ApoE) 
knockout mice, IRE1α inhibition with 8-formyl-7-hydroxy-
4-methylcoumarin (4μ8c) markedly suppressed the T-helper-1 
(Th-1) immune responses, as evidenced by decreased IFN-γ 
(145). This outcome was mediated through the inhibition of the 
NLRP3 inflammasome, which otherwise stimulates the secre-
tion of IL-1β and IL-18, cytokines known to generate Th-1-type 
immune responses (145, 181–183); this might have implications 
toward the autoimmune response (181). In addition, in a study of 
dendritic cells (DCs), loss of XBP1 led to the reduction of IFN-α 
production in response to treatment with the TLR2 agonist CpG, 
causing the ER stress-associated cell death (135). Furthermore, 
XBP1s also stimulate the expression of the pro-inflammatory 
cytokines, such as IL-6, IL-15, and TNFα in splenic cells, mul-
tiple myeloma cells, and macrophages (51, 134, 144, 167, 184). 
Interestingly, IRE1α activation differentially regulates the expres-
sion of the pro-inflammatory cytokine IL-1β gene via activation 
of glycogen synthase kinase-3β (51).

In addition to XBP1s, IRE1α’s RIDD activity triggers the pro-
duction of type I IFNs. The RIDD generates single-strand mRNA 
fragments that lack 5′caps or 3′ poly (A) tails; these fragments 
activate retinoic inducible gene-I (RIG-I) protein. Further, RIG-I 
activates the cell-autologous inflammatory response through the 
mitochondria-associated antiviral system producing, IFN-β and 
other cytokines via the IFN and NFκB pathways, respectively 
(98, 185). Further, RIDD action causes sterile inflammation and 
apoptosis by increasing TXNIP mRNA stability via degradation 
of the TXNIP destabilizing microRNA miR-17 (128). This leads 
to an increase in the TXNIP protein level, which is known to acti-
vate the NLRP3 inflammasome, leading to caspase-1 activation 
through procaspase-1 cleavage and then production of IL-1β and 
IL-18 (128, 186). The NLRP3 inflammasome-mediated immune 
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TABLe 1 | IRE1α functions in different immune cells.

immune cell Functions of iRe1α Reference

B cells and plasma cells IRE1α and XBP1s are required for the terminal differentiation of B cells to plasma cells
IRE1α is required for the expansion of the endoplasmic reticulum (ER) and antibody production  
and secretion during both physiological and pathological immune responses

(53, 89, 133, 134)

T cell IRE1α and XBP1s are active in early stages of T-cell, in bone marrow pro-B cells, CD4+ T-cells, CD8+ thymic  
T-cells, CD8+ splenic T-cells, and cytotoxic T-cell
XBP1s is also required for the terminal differentiation of CD8+-effector T-cells
Active XBP1s was found in CD8+ T-cells in acute infection with Listeria monocytogenes

(135–139)

Dendritic cells (DCs) IRE1α and XBP1s were found constitutively active in DCs
Loss of XBP1s leads to significantly reduced numbers of both conventional and plasmacytoid DCs
XBP1s deficiency in DCs increased the rate of apoptosis
IRE1α/XBP1s-induced lipid accumulation in DCs impaired MHC class I-mediated antigen  
presentation to cytotoxic T-cells
Loss of XBP1s in splenic type 1 conventional dendritic cells (cDC1s) resulted in functional alterations,  
but also impaired the survival of mucosal cDC1s
Loss of XBP1s in CD8α+ DCs led to defects in phenotype and MHC class I antigen presentation

(135, 139–142)

Granulocytes (eosinophils) Hematopoietic deletion of XBP1s in mice led to the loss of fully mature eosinophils
Loss of XBP1s specifically in eosinophils led to a significantly smaller pool of eosinophils in the bone  
marrow and reduced eosinophil differentiation
XBP1s is needed for the sustained viability of eosinophils

(143)

Macrophages IRE1α and XBP1s are crucial for optimal and sustained production of pro-inflammatory cytokines  
in macrophages
Macrophage-specific loss of XBP1 impairs the production of IL-6, TNFα, IFN-β, IL1-β, and C-C  
motif chemokine ligand 2 (CCL2)
IRE1α functions in macrophage polarization

(144, 145)

Hematopoietic cells IRE1α and XBP1s play a role in the cell cycle and differentiation of hematopoietic cell (146)

Monocytes XBP1s and its downstream chaperone immunoglobulin binding protein are involved in the differentiation  
of monocytes into macrophages
The IRE1α/XBP1s pathway has importance in the development of monocytes into osteoclasts in response to RANKL

(147, 148)

Neutrophils IRE1α function is required for neutrophil infiltration
Knockdown of XBP1 in neutrophils impaired the release of granules

(149)

Natural killer (NK) cell Expression of XBP1s was observed in the initiation of NK cell-mediated direct cytotoxicity or antibody- 
dependent cell-mediated cytotoxicity (ADCC) in leukemia or lymphoma target cells
Pharmacological inhibition of the IRE1α/XBP1s pathway significantly impaired both NK cell-mediated direct- 
cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). This indicates that XBP 
1s is essential for optimal NK cell cytotoxicity

(150)

Mast cells IRE1α may involve mast cell functions. Since, application of IRE1α-specific inhibitor, 8-formyl-7- 
hydroxy-4-methylcoumarin, in mast cells reduced the IgE-mediated degranulation of mast cells as  
well as release of cytokines, such as TNF-α and IL-4

(151)

Paneth cells XBP1s is necessary for Paneth cell development in the gut
XBP1 deletion caused Paneth cell dysfunction and increased susceptibility to enteritis and induced  
colitis in intestinal epithelial cells

(92)
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response has been identified in various autoinflammatory and 
metabolic diseases (187). However, in some cases, many circulat-
ing pro-inflammatory cytokines, such as IL-1, IL-6, IL-8, and 
TNFα, trigger ER stress-mediated IRE1α activation (188).

Furthermore, both XBP1s and the RIDD activity of IRE1α 
play roles in conventional dendritic (cDC) cells and MHC 
class-I antigen presentation. IRE1α-induced XBP1s in airway 
epithelial cells increase miRNA-346, which inhibits the trans-
lation of antigen peptide transporter 1 (TAP1), a necessary 
component for the MHC class I subunits and peptides assembly 
(189, 190). The reduction of TAP1 affects the MHC class I linked 
antigen presentation during ER stress or disease pathogenesis 
(191, 192). In addition, RIDD activity inhibits the MHC class 
I antigen presentation in CD8+ cDCs by degrading the crucial 

component of the MHC class I machinery: transporter associ-
ated with antigen processing binding protein (TAPBP) mRNA 
(139). These functions of IRE1α indirectly affect the activity of 
CD8+ T-cells, which recognize MHC class I peptides during the 
cytotoxic process.

implications of iRe1α in eR Stress-
Mediated Autoimmunity
IRE1α plays a major role in ER stress-mediated autoimmun-
ity development possibly through five different mechanisms 
(Figure 3): including misfolded proteins identification by auto-
reactive immune cells, peptides released from apoptotic cells 
acting as neoantigens/autoantigens, disturbed immune-tolerance 
mechanisms increases ERAD-associated proteins that give 
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FiGURe 2 | IRE1α regulates the immune function through various mechanisms including both its kinase (A) and RNase (B) functions. (A) Endoplasmic reticulum 
(ER) stress-activated, serine/threonine-protein kinase/endoribonuclease IRE1α binds to TNF receptor-associated factor 2 (TRAF2), apoptosis signaling kinase1 
(ASK1), and receptor-interacting serine/threonine protein kinase 1 (RIPK1), resulting in phosphorylation of c-Jun N-terminal kinase. Then c-Jun interacts with c-Fos 
forms the active transcription factor AP-1, and increases the production of IL-6 and TNFα. Furthermore, the IRE1α/TRAF2/ASK1 complex activates the inhibitory 
kappa B kinase (IKK), which phosphorylates inhibitor of kappa B (IκB), leading to release of NFκB and its translocation to the nucleus, where it induces the 
expression of cytokines. The dissociated IκB is then degraded by proteasomes. The IRE1α–TRAF2 complex increases IL-6 production via the association of 
nucleotide-binding oligomerization domain (NOD)-containing proteins 1 and 2 (NOD1 and NOD2) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2). 
(B) IRE1α through its RNase function generates splices—X-box-binding protein 1 (XBP1s) transcription factor induces the expression of several pro-inflammatory 
cytokines and also decreases MHC class I antigen presentation. In addition, XBP1s increases NFκB nuclear translocation by mediating the degradation of FoxO1, 
an inhibitor of NFκB. Furthermore, IRE1α activation differentially regulates the expression of the pro-inflammatory cytokine IL-1β gene via activation of glycogen 
synthase kinase-3β. The regulated IRE1α-dependent decay (RIDD) degrades miR-17, leading to an increase in thioredoxin-interacting protein expression. This in 
turn activates nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activity, which leads to procaspase-1 cleavage, 
which subsequently activates IL-1β, IL-18, and IFN-β, and also increases the Th-cell 1 immune response. RIDD generates small fragments of RNA, which activate 
the retinoic inducible gene-I and mitochondrial antiviral protein, increasing IFNβ production via NFκB. In addition, RIDD reduces the TAPBP mRNA level, leading to 
decreased antigen presentation. Toll-like receptors 2, 4, and 7 and other cytokines can directly activate the IRE1α/XBP1s pathway without ER stress and cause the 
release of many pro-inflammatory cytokines.
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the survival advantage to autoreactive cells (193), and reduced 
antigen presentation.

The first mechanism, in which misfolded proteins can gen-
erate an immunogenic response, has been observed in Akita 
mice, an experimental model for the autoimmune disease type 
1 diabetes (T1D). A point mutation (Ins2, C96Y) caused pro-
insulin to be misfolded and to accumulate in the pancreatic  
β cells, which led to UPR activation, inflammation, and ultimately 
β cell apoptosis (194, 195). Notably, IRE1α has a crucial function 
in the generation of the Akita mouse phenotype: inhibition of 
IRE1α’s kinase function mitigates the disease phenotype (196). 
Furthermore, in ankylosing spondylitis, the human leukocyte 

antigen B27 (HLA-B27) protein is prone to be misfolded, even 
under physiological conditions (197, 198). The abnormally folded 
HLA-B27 is involved in autoimmune diseases in two ways: either 
it is expressed on the cell surface as an autoantigen, inducing 
an autoimmune response, or it causes the pro-inflammatory 
immune response by activating the UPR (197–200). The IL-17 
and IL-23 cytokines including IL-23R are highly activated during 
HLA-B27 misfolding and UPR activation (198, 201). The produc-
tion of these cytokines during HLA-B27-induced UPR is mainly 
contributed from the IRE1α/XBP1s pathway, which enhances 
IL-23 production during ER stress (202, 203). In addition, IFN-α,  
IFN-β, or TNFα stimulation in HLA-B27 overexpressing 
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FiGURe 3 | Potential mechanisms of IRE1α in the development of autoimmune diseases. IRE1α activation by environmental factors or gene mutations that induce 
endoplasmic reticulum (ER) stress can lead to autoimmune disease development through various pathways. Spliced XBP1s increases the expression of the 
microRNA miR-346, which binds to the 3′-UTR of transporter associated with antigen processing (TAP) mRNA, leading to TAP mRNA decay. This reduces MHC 
class I complex formation and antigen presentation. XBP1s increases the expression of ER degradation-enhancing α-mannosidase-like protein and homocysteine-
induced ER protein, leading to enhanced ER-associated degradation (ERAD), which can lead to autoimmune disease by increasing immune cell survival especially 
that of fibroblast-like synoviocytes. Misfolded proteins may act as autoantigens; for example, human leukocyte antigen B27 (HLA-B27), immunoglobulin binding 
protein (BiP), and pro-insulin. IRE1α has a role in the increased expression of BiP, and pro-insulin during stress and these proteins may act as autoantigens/
neoantigens. IRE1α activation during the response to misfolded HLA-B27 misfolded response may contribute to autoimmunity in ankylosing spondylitis. ER stress or 
toll-like receptor-activated IRE1α mediates the production of pro-inflammatory cytokines through c-Jun N-terminal kinase, such as NFκB, XBP1s, and regulated 
IRE1α-dependent decay (RIDD), which increases the pathogenesis in autoimmune diseases. RIDD activity reduces MHC class I antigen presentation by reducing 
TAPBP protein synthesis. In addition, RIDD-mediated activation of nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 
inflammasomes leads to increased secretion of IL-1β and IL-18, which increase the T-helper-1 cell immune response, which is characteristic of many autoimmune 
diseases. Furthermore, through inhibition of IRE1α, either with small chemical molecules, such as 8-formyl-7-hydroxy-4-methylcoumarin (4μ8c), sunitinib, imatinib,  
or by enhancing expression of negative regulators of IRE1α such as fortilin, it may be possible to reduce the progression of autoimmune diseases.
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trans genic rats enhanced the BiP and spliced XBP1 compared to 
wild-type rats (201, 204). Furthermore, in severe UPR, IRE1α-
mediated cell apoptosis would also contribute in the autoimmune 
response, as apoptotic cells that contain self-antigens known to 
act as neoantigens induce autoantibody production (205, 206).

In the second mechanism, the ER chaperone protein GRP78 
can act as an autoantigen and also known to evoke autoreactive 
response of B and T-cells (49). IRE1α/XBP1s may contribute to 
this process through increasing the GRP78 level of expression 
during ER stress (207). In the case of rheumatoid arthritis (RA), 
high expression of BiP in the synovium selectively triggered 

synovial T cells (208, 209). In support to this, autoantibodies of 
GRP78 were found in 80% of patients with RA (210).

In the third mechanism, defects in the immune tolerance 
mechanism in IECs may contribute to the progress of inflamma-
tory colitis (211). IRE1β is highly expressed in these cells; interest-
ingly in a study of IRE1β–/– mice, BiP and XBP1s expression levels 
were increased in IECs indicating ER stress activation (63, 101). 
In addition, IRE1β−/− mice with dextran sodium sulfate-induced 
colitis in showed intestinal inflammation earlier than in control 
mice (62). This is due to the increased permeability of IECs in 
IRE1β−/− mice which exacerbated their colitis.
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The fourth mechanism, may involve increasing the viability 
of autoreactive cells through the ERAD pathway, enhancing the 
autoimmune response during ER stress; this is known to reduce 
the misfolded proteins, easing the ER folding process, and reducing 
the apoptosis (212–214). The IRE1α/XBP1s pathway increases the 
expression of several ERAD-associated proteins and contributes 
to the establishment of homeostasis, further enhancing survival. 
One of the best examples of this mechanism is synoviolin (SYvN1) 
in R. IRE1α/XBP1s upregulates ERAD genes and genes impor-
tant for protein folding such as EDEM1 and protein disulfide 
isomerase-P5 (81, 215). In addition, ERAD-associated proteins 
such as EDEM and homocysteine-induced ER protein (HERP) 
are modified and behave as neoantigens during overloading of 
the ER (47). This could be one of the contributions in β cell ER 
stress-mediated neoantigens.

The fifth mechanism is through regulating antigen presenta-
tion and affecting Th-1 cell function. The main immune activity 
in nucleated cells to combat pathogens or tumor cell progression 
is antigen presentation. Disturbance in antigen presentation 
may lead to the development of autoimmune disease (216). ER 
has a key function in MHC class I antigen presentation: usually, 
peptides derived from pathogens or other antigenic peptides 
through processing by proteasome will be transported to the ER, 
where they bind molecules of MHC class I, which exhibit them 
on the surface of cytotoxic T lymphocytes or CD8+ T-cells for the 
surveillance (217, 218). This binding to MHC class I molecules 
is required for the functioning of ER proteins, tapasin, and TAP 
(189, 190, 219). IRE1α activity affects this process during stress 
by decreasing TAP protein. IRE1α-mediated XBP1s increase the 
expression of miR-346, which directly represses the translation 
of TAP and other MHC class I-related mRNAs (189, 190, 192). 
Subsequently, the reduction of TAP protein leads to defects in 
MHC class I complex formation and thereby reduces antigen 
presentation. Interestingly, miR-346 increases the autoimmune 
response by regulating IL-8 release from activated synoviocytes 
in RA (220), and in addition, high expression of miR-326 is found 
in patients with T1D and ongoing islet autoimmunity (221). In 
addition, RIDD activity is also implicated in the reduction of 
MHC class I antigen presentation in CD8+ cDCs. IRE1α cleaves 
the crucial MHC class I machinery component, TAPBP mRNA, 
and reduces the antigen presentation (139), which results in auto-
immunity. In support to this mechanism, a report showed that the 
reduced expression of MHC class I molecules on lymphocytes/
lymphoid cells resulted in autoimmunity (222). Furthermore, in 
another study, the MHC class I molecules of abnormal expression 
on antigen-presenting cells resulted in the activation of auto-
reactive T-cells (223). These studies suggest that IRE1α activities 
interfere with the appropriate development of MHC class I mol-
ecules, which are necessarily required for self-immune tolerance; 
this also enhances the chances of development of autoimmune 
diseases.

In addition, IRE1α is implicated in increased IFN-γ release 
from Th-1 cells, which is a hallmark in the pathogenesis of ather-
osclerosis through IL-18 and IL-1β production from activated 
NLRP3 inflammasomes (145). The cytokines IL-1β and IL-18 
play an important role in the polarization of Th-1 responses 
(182). Infiltration of these IFN-γ-producing Th-1 cells has been 

implicated in the development of autoimmune activity in mouse 
disease models of atherosclerosis (181), multiple sclerosis (224), 
and T1D as well as in human T1D (225).

iRe1α iNvOLveMeNT iN AUTOiMMUNe 
AND iNFLAMMATORY DiSeASeS

A faulty immune response can lead to the self-destruction of healthy 
cells or tissues, causing the development of autoimmune disorders 
(226). Immune cells target the modified self-cellular components 
as antigens and induce severe inflammatory responses, which 
normally lead to cell death (18, 227). There are a number of causa-
tive agents, such as oxidative stress; metabolic disorders; genetic 
factors; ER stress; dysregulation of production of cytokines, such 
as ILs, IFNs, and TNFα; and auto reactive T-cells; all of these are 
the hallmarks of autoimmune diseases (193, 226). However, in 
this section, we highlight the possible mechanisms of IRE1α’s 
contribution to the progression of autoimmune diseases such as 
T1D, RA, inflammatory bowel disease (IBD), vitiligo, systemic 
lupus erythematosus (SLE), and scleroderma (Table 2).

Type 1 Diabetes
Type 1 diabetes is a chronic autoimmune disorder characterized 
by reduced insulin levels and increased blood glucose/hypergly-
cemia due to autoantigen-induced destruction of pancreatic islet 
β cells. Subsequently, the burden on the surviving β cells increases 
(228, 229), which augments the pathologic state of the T1D, which 
may be due to the ER stress-mediated inflammatory response and 
also the infiltration of autoreactive immune cells (230). Normally, 
β cell loss occurs due to impairment in the PTM of endogenous 
proteins and due to the production of pro-inflammatory cytokines 
by infiltrated immune cells (41, 231, 232).

Although genetic weakness is a major critical risk factor for 
β cell destruction (233, 234) and other inflammation inducing 
environmental factors, such as age, viral infection, drug exposure, 
ROS, and metabolism fuel the onset or progression of T1D (10). 
In addition to these environmental triggers, the β cells inherent 
secretory function even in physiological conditions predisposes 
them to significantly higher levels of ER stress and UPR activa-
tion, compared to other nonsecretory cells (18, 235). Many 
factors such as pro-inflammatory cytokines, high glucose, and 
free fatty acids are known to expose β cells to ER stress in Ref. 
(236–238). Furthermore, these factors induce changes in β cell 
identity, which makes β cells more vulnerable to autoimmune 
destruction and results in the progression of T1D (239). Notably, 
the expression levels of ER stress markers CHOP and BiP are 
higher in pancreatic islets from T1D individuals compared to 
healthy individuals (240, 241). In addition, the ER stress-induced 
misfolded insulin complex can function as a neoantigen and is 
recognized by autoreactive T-cells (242). Therefore, high level of 
ER stress would be a common factor that precedes the patho-
genesis of T1D (18, 50). These facts signify the association of ER 
stress in the occurrence of T1D.
β cells express high levels of IRE1α, which is necessary for 
pro-insulin synthesis (243, 244). In one study, specific deletion 
of IRE1α in β cells impaired proliferation, proinsulin synthesis 
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TABLe 2 | Possible mechanisms of IRE1α involved in different autoimmune diseases.

Type of disease iRe1α downstream mechanisms Reference

Type1 diabetes IRE1α-associated β cell damage occurs through activation of intrinsic apoptotic pathways
Increases insulitis through infiltered immune cells and proinflammatory genes  
through c-Jun N-terminal kinase (JNK)-AP1 and NFκB pathways
β cell death through IRE1α/JNK/CCAAT-enhancer-binding protein homologous protein  
(CHOP)/DR5 and caspase 12 activation regulated IRE1α-dependent decay (RIDD)- 
mediated insulitis and β cell death through IL-1β and caspase-1 and caspase-2 activation
Enhanced reactive oxygen species (ROS) and NO production through IRE1α/RIDD/ 
thioredoxin-interacting protein (TXNIP)
Potentiation of neoantigens development in β cells

(152–158)

Rheumatoid arthritis Enhances proinflammatory cytokines, such as IL-β, IL-6, and TNFα in infiltered  
macrophages as well as in fibroblast-like synoviocytes
IRE1α contributes increased inflammation and angiogenesis through toll-like receptors mediated  
activation in infiltered macrophages
Enhances synovial fibroblasts survival through endoplasmic reticulum-associated  
degradation genes upregulation

(87, 88, 144, 159–161)

Systemic lupus erythematosus Contributes to tissue apoptosis through IRE1α/XBP1s/CHOP and IRE1α/JNK/Bcl-2-associated  
X protein pathways

(162, 163)

Vitiligo Cause melanocyte loss through IRE1α/XBP1s-mediated cytokines production
IRE1α/XBP1s/TNFα pathway inhibits melanocyte stem cell differentiation
Enhances the recruitment of CD8+ T cells to skin lesions through increasing the levels of chemokines  
such as CXCL16
Contributes in increased survival of CD8 α+ cDCs
Contributes in ROS production at skin lesions through RIDD-mediated TXNIP and nucleotide-binding  
domain, leucine-rich-containing family, and pyrin domain- 
containing-3 inflammasome activation

(128, 139, 164–166)

Inflammatory bowel disease In inflammatory bowel disease, IRE1α contributes to secondary consequences  
of the disease by inducing the JNK and NFκB-mediated cytokines productions

(167–169)

Systemic sclerosis (scleroderma) Activated IRE1α/XBP1s pathway in myofibroblasts contributes ER biogenesis,  
which helps in adaptation to increased protein folding requirement in myofibroblasts
IRE1α/XBP1s pathway may also contribute in efficient protein folding by providing ER chaperones,  
such as glucose-regulated protein 78
IRE1α/RIDD pathway degrades miRNA-150, a repressor αSMA and collagen I and IV expression,  
which results in enhanced fibrosis
IRE1α/JNK/AP1 and IRE1α/NFκB pathways possibly involved endothelin-1 expression  
in systemic sclerosis

(170, 171)
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processing, and secretion (245). However, in other studies, pro-
longed activation of the IRE1α pathway in chronic exposure to 
hyperglycemia triggered alternative molecular pathways along 
with XBP1s, which led to β cell dysfunction and apoptosis (99, 
246, 247). In T1D, IRE1α-associated β cell damage can occur 
through two processes. First, prolonged ER stress in the β cells 
due to their high levels of secretion, can induce the intrinsic 
apoptotic pathway by increasing pro-apoptotic and inflam-
matory molecules (152, 153). A second process is mediated by 
insulitis: during the initial phases of the disease immune cells, 
such as macrophages, DCs, T-cells, and natural killer (NK) cells 
infiltrate the islets and release pro-inflammatory cytokines, such 
as IL-1β, TNFα, IFN-γ, IL-17, IL-23, IL-24, and also free radicals 
ROS and nitric oxide (144, 152, 248). These cytokines enhance β 
cell apoptosis in T1D (158, 249) by inducing ER stress-mediated 
activation of AP-1, NFκB, XBP1s, and JNK (54, 238). In addition, 
pro-inflammatory cytokines stimulate β cells to secrete cytokines 
and chemokines. These attract T-cells, which then infiltrate the 
islets, which causes β cell destruction in T1D (152, 153).

IRE1α activates the JNK-AP1 and NFκB pathways, which 
increases the expression of the pro-inflammatory genes, such 

as IL-β, TNFα, and IL-6 and regulate the transition from adap-
tive UPR to apoptotic β-cell death during diabetes (144, 248). 
Additionally, IRE1α-mediated JNK activation upregulates 
CHOP and causes β cell death through IRE1α/JNK/CHOP/DR5 
expression (154, 155). In the non-obese diabetic mouse (NOD) 
mice study, the expression of NFκB target genes and ER stress 
markers increased before the development of hyperglycemia (16), 
which indicates the inflammatory-mediated IRE1α contribution 
in T1D. In T1D disorder, pro-inflammatory cytokines are initial 
mediators of β cell apoptosis (250). Furthermore, the IRE1α/
XBP1s pathway also increases NFκB activation by increasing 
the proteasome-mediated degradation of Forkhead box O1 
(FoxO1), an inhibitor of NFκB (Figure  2) (249, 251, 252). In 
contrast, Hassler et  al. recently demonstrated that the IRE1α/
XBP1s absence in the islets of adult mouse caused the increase 
of IL-1β, iNOS, and chemokine (C-X-C motif) ligand 2 (CXCL2) 
after treatment with high glucose (244). These studies demon-
strate that the inflammatory effects of XBP1s are differentially 
regulated and may depend on the stress intensity. IRE1α also 
enhances IL-23 expression in DCs (203). This causes the massive 
T-cell infiltration within the islets and ultimately results in β cell 
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destruction. Furthermore, in a rat model of virus-induced T1D, 
IRE1α specifically activated caspase-12 and caused β cell death 
and thus contributed to virus-induced autoimmune T1D (253).

In addition to JNK and NFκB activation, RIDD activity also 
propagates insulitis and diabetes-related β cell death. IRE1α/
RIDD mediates cytokine IL-1β production, and caspase-1 and 
-2 activation through TXNIP, which is activated by the NLRP3 
inflammasome by degradation of TXNIP repressor miRNA 
(128), and this could also integrate mitochondria-mediated 
inflammation (129). TXNIP is known to be associated with 
progression of T1D and is one of the genes, which upregulated 
during conditions of hyperglycemia in case of human islet cells 
as well as in animal models of diabetes (156, 157). However, islets 
from NLRP3−/−and caspase-1−/− mice were not protected from 
ER stress or high glucose-induced death (254), and knocking out 
of the NLRP3 inflammasome in Akita mice also did not show the 
protection to ER stress-induced diabetes progression or β-cell 
damage (255). These studies indicate three possibilities: first, 
that the NLRP3 inflammasome is dispensable for β cell death; 
second that it may be an intermediate molecule in cytokine 
production; and third, that its role could be context dependent, 
because elimination of NLRP3 protects against obesity-induced 
pancreatic damage (256).

Furthermore, IRE1α may potentiate the development of 
neoantigens in β cells. Exposure of pancreatic β cells to the 
pro-inflammatory cytokines IL-1β, TNFα, and IFNs induce 
ER calcium depletion (257). This depletion results in abnormal 
PTMs through the Ca2+-dependent PTM enzyme Tgase2 (18). 
Furthermore, abnormally folded self-peptides act as neoanti-
gens and increase β cell immunogenicity. These peptides are 
recognized by autoreactive T-cells, which then destroy the β 
cells, furthering the pathogenesis of T1D (18). Human islets and 
human EndoC-βH1 cells exposed to IFN-α showed impaired 
insulin production via increased ER stress and increased XBP1s 
levels (158). Furthermore, predisposition of pancreatic β cells to 
ER stress in cases of insulin resistance and obesity exacerbates the 
activation of IL-1β, TNFα, and NFκB (252). Therefore, the initial 
activation of IRE1α by mild ER stress exposes β cells to a feedback  
loop of exacerbated inflammatory responses, causing β cell death 
and subsequent T1D. These studies suggest that the tight regula-
tion of IRE1α activation, in β cells, is crucial for maintenance 
of their function. Therefore, a better understanding of IRE1α’s 
possible role in T1D would open the gate for the discovery of 
therapeutic options.

Rheumatoid Arthritis
Rheumatoid arthritis is a chronic autoimmune disorder, in 
which immune system attacks own body’s tissue and cause bone 
and joints deformities. This disorder is commonly defined by 
increased synovial cell proliferation, inflammatory cell infiltra-
tion, angiogenesis, and damage in the lining of joints (258). 
Fibroblast-like synoviocytes (FLS) are key effector cells: they 
release cytokines and proteases that contribute to cartilage dam-
age (259). The pro-inflammatory cytokines TNFα and IL-1β are 
significantly upregulated in RA. Synovial fibroblasts in RA are 
resistant to apoptosis (260), but the mechanisms for this are not 
yet clear. Recent studies have shown the possible involvement of 

ER stress due to the increase in the ER stress marker GRP78 in 
synoviocytes. GRP78 has been implicated in the pathogenesis of 
RA synovium and synovial cells because of its contribution to 
synoviocyte proliferation and to angiogenesis, and it can also act 
as an autoantigen (17). In mice with Grp78 haploinsufficiency 
induction of arthritis was suppressed, but GRP78 injection 
failed to induce arthritis in several strains of rats and mice (210). 
Additionally, ER stress is well recognized for its functions in cell 
survival and pro-inflammatory properties; these effects are usu-
ally mediated through IRE1α, PERK, and ATF6 (79). Therefore, 
IRE1α plays a vital role in cell survival, apoptosis, cytokines pro-
duction, and angiogenesis. Understanding the role of IRE1α in 
synoviocyte antiapoptotic mechanisms and cytokines production 
might aid in the design of possible treatment strategies.

Cell surface TLR2 and TLR4, and endosome TLR7, play a 
very important role in RA pathogenesis by increasing the inflam-
mation and angiogenesis (261). The mechanism through which 
toll-like receptors (TLRs) induce pathogenesis may be dependent 
on the IRE1α/XBP1s signaling pathway. The activation of IRE1α/
XBP1s signaling  found in cells of synovial fluids, obtained from 
patients with RA, can be due to the TLRs in macrophages, which 
are usually significantly  well expressed in synovial fibroblasts of 
RA patients (160, 161). In addition, TLRs specifically activated 
the IRE1α/XBP1s pathway and this is found to be essential for the 
optimal production of pro-inflammatory cytokines IL-1β, IL-6, 
and TNFα in macrophages as well as in FLS (144, 159) (Figure 3). 
In activated synovial fibroblasts of RA patients, XBP1s is highly 
expressed, but this expression appears to occur independently of 
ER stress. Instead it is activated through TLR2 and TLR4 ligation-
induced IRE1α/XBP1s, leading to increased production of the 
pro-inflammatory cytokines TNFα and IL-6 (144, 159). This 
activity of IRE1α could have a special importance in pathogenesis 
of RA, because expression of TLR2 and TLR4 is distinctly high 
in the joints of patients with RA (262). Additionally, TLR7 is also 
implicated in XBP1 induction and IFNα production (179).

Toll-like receptors induced neovascularization in RA is also 
may be mediated through IRE1α/XBP1s pathway, which is known 
to upregulate the proangiogenic VEGF-A, IL-1β, IL-6, and IL-8 
factors (263). This interrelation of TLRs and IRE1α in RA can 
further potentiate inflammation via increased leukocyte infiltra-
tion. Although TLRs are primarily for pathogen receptor recogni-
tion, they are also reported as sensing endogenous ligands, such 
as SNARE associated protein (SNAPIN) (264). In addition, the 
enhanced TLR2 ligand expression in synovial tissue macrophages 
has been found to have the importance in the pathogenesis of 
RA through SNAPIN (265). Therefore, by interference with TLR/
IRE1α/XBP1s could be treatment strategy for RA.

Corroboration to above studies, in mice with experimental 
arthritis, deletion of the IRE1α gene specifically in myeloid tis-
sue- or inhibition of IRE1α with 8-formyl-7-hydroxy-4-methyl-
coumarin (4μ8c) compound decreased the production of pro- 
inflammatory cytokines, which further subsidized the joint 
inflammation (266). This indicates that IRE1α/XBP1s signaling 
act as a focal point, where different stimuli are converge and 
function to maintain the activation of FLS. On the other hand, 
an earlier study reported that the reduction of IRE1α protected 
the FLS from apoptosis, which led to the enhanced proliferation 
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of synovial cells and influenced the development of RA (267). 
Furthermore, a recent study reported that hyper-activation of 
IRE1α inhibited IL-4 and IFN-γ through reducing the t-bet and 
gata-3 mRNA by its RIDD activity in palmitic acid-treated NK 
T-cells, thereby suppressing arthritis (268). These studies suggest 
that FLS in RA maintain an optimal level of IRE1α activation for 
survival, allowing XBP1s activity but avoiding hyperactivation of 
IRE1α-mediated apoptosis by promoting synoviolin1 (SYvN1)-
associated IRE1α degradation. The pathogenesis of RA is mostly 
due to the activated synovial fibroblasts, showing enhanced sur-
vival and a destructive phenotype (269). This enhanced survival 
is thought to result from the dysregulation of UPR and ERAD 
(212, 270, 271). The IRE1α/XBP1s signaling pathway upregulates 
the ERAD genes during ER stress and may promote the synovial 
fibroblasts in RA (81, 86–88).

SLe or Lupus
Systemic lupus erythematosus is an autoimmune disease and it 
has been described by abnormal apoptosis of healthy tissue in 
multiple organs of the body, such as lung, heart, skin, kidney, and 
many other parts (272). SLE pathogenesis is a complex of genetic 
and environmental factors resulting in an overactive innate 
immune system, cytokine imbalance, autoantibody production, 
and abnormal B-cell and T-cell function (273). However, the 
exact cause of pathogenesis is still not clear. Recently, several 
studies have tried to establish how ER stress is involved because 
of its association with other autoimmune diseases, as well as 
with B-cell, and cytokine production. Additionally, HERP, an ER 
stress-associated protein has been observed as an autoantigen for 
anti-DNA antibodies in SLE (274). Further characterization of ER 
stress-related genes in patients with SLE demonstrated increased 
expression of XBP1s and CHOP (162). Bone-marrow derived 
mesenchymal stem cell apoptosis in SLE patients was found 
to be mediated through the IRE1α/JNK/BaX pathway (163). 
Differentiation of antibody producing B-cells requires the IRE1α/
XBP1s axis: B-cell-specific deletion of XBP1 protected mice from 
developing a lupus-like disease (275). These studies indicate that 
abnormalities in the IRE1α/XBP1s axis may contribute to SLE 
pathogenesis and could be a target for the treatment. However, 
some more work needs to be carried out to better appreciate the 
role of IRE1α in SLE pathogenesis.

inflammatory Bowel Disease
Inflammatory bowel disease is generally characterized by recur-
rent, destructive inflammation of the gastrointestinal tract (276) 
and comprises both Crohn’s disease and ulcerative colitis forms 
of IBD. It is estimated to affect millions of people worldwide 
(277). The definite causes of IBD, either inflammatory-mediated 
or autoimmune-mediated responses, are highly debated (278). 
However, there is ample evidence regarding the involvement of 
autoimmunity in IBD pathogenesis (279, 280). Anti-TNFα drug 
molecules have shown the positive efficacy against IBD; in fact, 
TNFα is one of the dominant pro-inflammatory cytokines in 
autoimmune diseases (281, 282). These studies indicate the pos-
sible involvement of autoinflammation in IBD. The loss of toler-
ance to indigenous enteric flora due to genetic or environmental 
factors, defects in T-cell function, excessive mucosal DCs, and 

autoantigens results in IBD pathogenesis (278). ER stress in the 
intestinal epithelial goblet and Paneth secretory cells is another 
cause of IBD. ER stress has been reported in IBD inflammation, 
and all three signal transducing wings (ATF6, IRE1, and PERK) 
of the UPR are activated (283). The IRE1α role in IBD is focused 
upon here: as mentioned earlier, both human isoforms IRE1α as 
well as IRE1β are ubiquitously expressed in the epithelium of the 
gastro-intestine. Furthermore, IRE1α involvement in optimized 
production of mucin in intestinal goblet cells indicates the 
requirement of IRE1α function in the goblet cells ER homeostasis 
(101). The function of IRE1α/XBP1s signaling pathway is neces-
sarily required for the optimal function and survival of intestinal 
secretory cells, as such cells are more susceptible to ER stress due 
to their function (284). Additionally, impairment of the IRE1α/
XBP1s axis due to stress leads to the secondary consequence 
of inflammation (167). With conditional XBP1 gene knockout 
mice, specifically at epithelium of small and large intestine 
Paneth cells as well as goblet cells disappeared (92). This deletion 
further resulted in IRE1α-activated JNK and NFκB-mediated 
inflammation, leading to development of the features of human 
IBD. In addition, the supportive blockade of NFκB activation 
or the genetic deletion of IRE1α in IECs, protected Xbp1ΔIEC 
mice from spontaneous enteritis (92, 168, 169, 284). p-JNK was 
increased when XBP1-deficient epithelium was exposed to bacte-
rial antigen, flagellin, and TNFα; a major pathogenic cytokine 
in IBD was increased. Deficiency of IRE1β and XBP1 within the 
intestinal epithelium caused the spontaneous inflammation that 
enhanced the susceptibility to colitis during the treatment with 
dextran sodium sulfate (62, 92, 285). This could be due to another 
isoform, IRE1α, as it was observed that, in the absence of XBP1, 
IRE1α activity augmented JNK phosphorylation. Added to this, 
IRE1β−/− mice showed accumulation of abnormal MUC2 inside 
the ER of goblet cells (101). These result in the IL-23 and Th-17 
cell inflammatory axis-mediated UPR activation and spontane-
ous ulcerative colitis (286, 287).

Further, IRE1α accumulation in autophagy defective 
Atg16l1ΔIEC mice increased Crohn’s disease ileitis (285). In contrast, 
disruption of IRE1α gene in IECs also led to spontaneous colitis, 
loss of goblet cells, intestinal epithelial barrier function, and IBD 
in mice (288) but the colitis could have been due to the lack of 
XBP1s protein. XBP1 splicing is necessary: in a study of patients 
with ulcerative colitis, decreased XBP1s levels were observed 
(289). A recent study reported that the use of the XBP1 agonist 
HLJ2 inhibited inflammation and ameliorate the ulcerative colitis 
(290). IRE1α, IRE1β, and XBP1 are very much required for the 
IECs homeostasis maintenance and also have a functional role 
in defending against IBDs. However, during severe conditions or 
during damage caused by other factors, the IRE1α pathway may 
contribute to extend inflammation and death of IECs.

vitiligo
Vitiligo is a condition characterized by white patchy areas on the 
skin, appeared due to the death of pigment producing melano-
cytes. It affects approximately 1% of the population worldwide 
(291). It is a multifactorial disorder with a complex pathogenesis. 
Oxidative stress and autoimmune mechanisms play major roles 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


13

Junjappa et al. IRE1α Implications in Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1289

in the onset and progression, respectively (164, 292). The mecha-
nisms, which are involved in the triggering of the disease and the 
spread of lesions, still need to be clarified. However, increased 
expression of local and systemic cytokines, oxidative stress, and 
expansion of the ER in melanocytes at the margins of lesions in 
vitiligo patients indicates the possible involvement of ER stress in 
pathogenesis (293). Treating melanocytes with chemical inducers 
of vitiligo, upregulated the expression of XBP1s, and its activa-
tion enhanced the release of IL-6 and IL-8 (164). Additionally, 
polymorphism in the XBP1gene increases the risk of develop-
ing vitiligo (294). Thus, IRE1α/XBP1s activity in melanocytes 
contributes to cytokine-associated immune reactions and also 
melanocyte loss following the onset of vitiligo due to environ-
mental stressors or ROS. TNFα released through IRE1α/XBP1s 
may inhibit melanocyte stem cell differentiation (165).

Furthermore, CD8+ T-cells are key effectors of melanocyte 
destruction in patients with vitiligo (295, 296). The recruitment of 
CD8+ T-cells to skin lesions is carried out by the IFN-γ-mediated 
T-cell chemokine receptor, C-X-C motif chemokine receptor 
3 (CXCR3), and its ligands CXCL9, CXCL10, and CXCL11, 
which are abundant in skin biopsy specimens from patients with 
vitiligo (297). Blockade of this pathway ameliorated the vitiligo 
in mice as well as in human subjects (298, 299). IRE1α/XBP1s 
signaling in stressed keratinocytes increased the level of CXCL16, 
a major chemokine involved in CD8+ T-cell recruitment (166). 
Additionally, IRE1α/XBP1s also contributes to homeostasis and 
survival of CD8α+ conventional DCs (139). Chemically induced 
skin inflammation in a mouse model showed activation of NLRP3 
inflammasome and the downstream effector IL-1β in the milieu of 
vitiligo (300). IRE1α activity also may lead to activation of NLRP3 
inflammasome and release of ROS through regulation of TXNIP 
expression (128). All these data show the possible involvement 
of ER stress-induced IRE1α in pathogenesis of vitiligo. However, 
more studies in relation to IRE1α and the expression patterns of 
its downstream molecules in clinical samples of vitiligo are neces-
sary for treatment development.

Systemic Sclerosis (Scleroderma)
IRE1α involvement has also been observed in systemic sclerosis, 
a complex connective tissue autoimmune diseases, characterized 
by multi-organ fibrosis due to the fibroblast dysfunction resulted 
in increased collagen and other extracellular matrix components 
accumulation in skin and internal organs (301, 302). Increased 
expression of IRE1α-mediated GRP78 and XBP1s were observed 
in a subtype of systemic sclerosis, pulmonary arterial hyper-
tension (170). Furthermore, activation of IRE1α contributes 
to systemic sclerosis through both RIDD and XBP1 splicing 
activities. RIDD activity degrades the miRNA-150, a repressor 
of fibrosis components αSMA, collagen I and IV, which influ-
ences the myofibroblast formation (171). Spliced XBP1 helps the 
myofibroblasts in the ER biogenesis and enlargement (303). This 
activity is required for the myofibroblasts during extracellular 
matrix proteins secretion and increased ER volume functions 
as an adaptive mechanism for increased protein folding require-
ment (171, 303). In the same study, it was shown that, inhibition 
of IRE1α with 4μ8C prevented the TGF-β induced myofibroblast 
activation and reduced the fibrosis of liver and skin in animal 

models. Interestingly, inhibition of IRE1α reverted the diseased 
phenotypes of myofibroblasts isolated from patients with sclero-
derma (171). Therefore, targeting the IRE1α with the inhibitors 
such as 4μ8C could be a possible treatment approach for patients 
with systemic sclerosis. In addition, endothelin-1 plays a very 
important functional role in progression of systemic sclerosis 
(304, 305). This endothelin-1 expression is also regulated by 
JNK/AP1 and NFκB pathways (306–308). As mentioned above, 
IRE1α activation increases the JNK/AP1 and NFκB pathways-
mediated transcription. Therefore, it could be possible that 
IRE1α-mediated endothelin-1 expression has a role in systemic 
sclerosis pathogenesis.

iRe1α in Other Autoimmune Diseases
In addition, IRE1α importance can be expected in other auto-
immune disorders including Sjögren’s syndrome (SS). In this 
disease, secretory cells are the main type affected, which leads 
to reduced secretion, resulting in pathologies such as dry mouth 
and dry skin (309). Normally, salivary gland acinar cells, due to 
their secretory function, are highly susceptible to ER stress under 
physiological circumstances due to their high rate of protein 
synthesis (310–312). Therefore, activation of IRE1α and other 
UPR molecules is expected due to their regulation of secretion 
and also to alleviate the ER folding load (87, 313). Further, in 
patients with SS, accumulation of mucins caused dilatation of the 
ER, and high levels of pro-inflammatory cytokines were observed 
in SS patients (214). However, there are fewer data available 
regarding the IRE1α association with SS. Future studies aiming 
to characterize the role of IRE1α and its downstream molecules in 
SS would pave the way for understanding the causes.

IRE1α influences can also be surmised in myasthenia gravis, 
an autoimmune disease of the neuromuscular junction character-
ized by muscle fatigue (314). Recently, ER stress has also been 
implicated in myasthenia gravis, due to the increased expression 
of ER chaperons GRP78 and GRP94 in skeletal muscle from 
myasthenia gravis (315, 316). IRE1α/XBP1s, as a potential path-
way in ER stress-mediated GRP78 and GRP94 expression (317), 
possibly have a role in the pathogenesis of myasthenia gravis; 
however, there is no direct evidence of IRE1α pathway yet.

Furthermore, IRE1α-induced apoptosis has been suspected in 
the thyroid cytotoxicity that is induced by excessive iodide and 
fluoride. High levels of IRE1α and XBP1s were observed in the 
Nthy-ori 3-1 thyroid cell line upon exposure to iodide and fluoride 
(318). Interestingly, ER stress activation reduced the expression of 
genes involved in thyroid hormone synthesis. FRTL-5 thyrocytes 
treated with tunicamycin, an ER stress inducer, showed increased 
levels of XBP1 and other UPR molecules but also showed a reduc-
tion in thyroid hormone synthesis. This indicates the role of ER 
stress-activated molecules in thyroid hormone synthesis (319). 
However, IRE1α has not been studied extensively in this disease.

MODULATiON OF iRe1α ACTiviTieS iN 
AUTOiMMUNe DiSeASe TReATMeNT

The different magnitudes of IRE1α activity under physiological 
and pathological conditions suggest that the activity levels of its 
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downstream substrates XBP1, ER localized mRNA, miRNA, JNK, 
and NFκB are crucially dependent on the stress intensity, tissue 
type, and attributes of the pathology. Interestingly, the structure–
activity relationship studies have demonstrated that an allosteric 
association within the two enzymatic kinase and RDs of IRE1α, 
which provided the opportunity to modulate its downstream 
activities (99, 320, 321). Kinase inhibitors/ATP-competitive 
molecules have been studied to examine how they modulate the 
RNase activity of IRE1α. Type 1 kinase inhibitors, such as 1NM-
PP1, APY29, staurosporine, and sunitinib inhibit autophospho-
rylation but induce change to the active conformation in both 
kinase and RDs. Type II kinase inhibitors are kinase-inhibiting 
RNase attenuators, these allosterically block both kinase and 
RNase activity by disrupting oligomers of IRE1α (322). Since 
IRE1α plays a role in both adaptive pro-survival and pro-apop-
totic activity, modulating it through inhibition or activation will 
yield different clinical benefits depending on the type and state of 
the disease. Many studies have been reported on the application 
of small chemical modulators in other disease, such as cancer  
(145, 323, 324). Inhibition of IRE1α with optimized application 
of KIRA, KIRA6, in rat promoted the cell viability and protected 
photoreceptor cells function under ER stress (196). Additionally, 
KIRA6 application in Akita diabetic mice protected pancreatic β 
cells through improved insulin production and reduced hyper-
glycemia (196). The details of various chemical modulators of 
IRE1α have been reviewed elsewhere (325). Treatment of ApoE 
knockout mice with STF-083010 and 4μ8C, which are IRE1α-
specific inhibitors, reduced the hyperlipidemia-induced immune 
response and alleviated atherosclerosis. Furthermore, treatment 
with liraglutide, a glucagon-like peptide 1 analog, protected 
INS-1 cells, a pancreatic cell line, from thapsigargin-induced ER 
stress-associated cell apoptosis, mainly by suppressing the PERK 
and IRE1α pathways (326). Application of resveratrol, protected 
rats against acute kidney injury through inhibition of IRE1α 
phosphorylation and IRE1α/NFκB pathway-triggered inflamma-
tory response (327).

However, application of IRE1α inhibitor in few experimental 
models of autoimmune diseases showed the glimpse of treatment 
possibilities. Treatment with 4μ8c in a mouse inflammatory 
arthritis model (266) and systemic sclerosis (171) had suppressed 
the disease phenotypes. In another recent study, application of 
imatinib, an anti-neoplastic tyrosine kinase inhibitor, protected 
non-obese diabetic (NOD) mice from T1D by interfering with 
the interaction between ABL kinase and IRE1α, resulting in 
reduced enzyme activity (328). In addition to the above small 
molecule applications, there are some intrinsic molecules that 
negatively regulate IRE1α activity during stress. However, these 
molecule interactions are context dependent. Briefly noted here, 
BaX inhibitor-1, an antiapoptotic, ER stress inhibition molecule 
that negatively regulates IRE1α-mediated XBP1 splicing and 
JNK activation, protects against ER stress-associated cell apop-
tosis (329, 330). In RA, SYVN1 overexpression inhibits IRE1α-
mediated cell death by promoting proteasome degradation. This 
leads to enhanced survival and overgrowth of synovial cells, 
which escalates the pathogenicity of synovial cells in RA (267). 
Ubiquitin D expression in a type 1 diabetic condition influenced 

by IL-1β and IFN-γ reduced the IRE1α/JNK axis-mediated 
inflammation in cytokine-exposed β cells (331). However, IRE1α 
is still under investigation for target-specific drug development. 
In addition, fortilin, a pro-survival molecule, inhibits both kinase 
and endoribonuclease activities of IRE1α. Treatment protected 
mice from ER stress-induced liver failure (332). However, the 
development of therapeutic strategies for modulating IRE1α is 
still under investigation. Since this molecule plays a role in both 
cell survival and death, it is very crucial to consider its transition 
from the pro-survival to the pro-death pathway in developing 
new therapeutic modes. Fine-tuning of the above mentioned 
small molecules and intrinsic modulators of IRE1α will probably 
pave the way forward.

CONCLUSiON

Accumulating evidence from a variety of recent studies has dem-
onstrated that ER perturbations affect the folding and PTMs of 
several proteins that develop as auto/neoantigens. Along with this, 
increased secretion of pro-inflammatory cytokines contributes 
to the development and pathogenesis of autoimmune diseases. 
In most cases, the emerging clues suggest that the activation of 
IRE1α could play a major role in autoimmune disorders. The 
XBP1 splicing activities of IRE1α and its RIDD activity are espe-
cially known to contribute to the pro-inflammatory responses in 
several inflammatory disorders. Additionally, the release of AP-1 
and NFκB-mediated pro-inflammatory cytokines augments 
pathogenesis. Furthermore, TLR-mediated activation of IRE1α/
XBP1s in an ER stress-independent manner also contributes to 
the production of pro-inflammatory cytokines, exacerbating 
the disease condition. Recent studies on the design of small 
chemical molecules to modulate IRE1α activity are increasing 
the detailed understanding of IRE1α mechanisms and also may 
be of therapeutic benefit. Despite the success achieved with the 
application of small chemical molecules in experimental T1D 
and RA, more efforts in this direction would better pave the way 
to meet future challenges with regards to autoimmune disease 
treatment.
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