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Innate immunity plays an important role in orchestrating the immune response, and the 
complement cascade (ComC) is a major component of this ancient defense system, 
which is activated by the classical-, alternative-, or mannan-binding lectin (MBL) path-
ways. However, the MBL-dependent ComC-activation pathway has been somewhat 
underappreciated for many years; recent evidence indicates that it plays a crucial role in 
regulating the trafficking of hematopoietic stem/progenitor cells (HSPCs) by promoting 
their egress from bone marrow (BM) into peripheral blood (PB). This process is initi-
ated by the release of danger-associated molecular patterns (DAMPs) from BM cells, 
including the most abundant member of this family, adenosine triphosphate (ATP). This 
nucleotide is well known as a ubiquitous intracellular molecular energy source, but when 
secreted becomes an important extracellular nucleotide signaling molecule and mediator 
of purinergic signaling. What is important for the topic of this review, ATP released from 
BM cells is recognized as a DAMP by MBL, and the MBL-dependent pathway of ComC 
activation induces a state of “sterile inflammation” in the BM microenvironment. This 
activation of the ComC by MBL leads to the release of several potent mediators, includ-
ing the anaphylatoxins C5a and desArgC5a, which are crucial for egress of HSPCs into 
the circulation. In parallel, as a ligand for purinergic receptors, ATP affects mobilization 
of HSPCs by activating other pro-mobilizing pathways. This emerging link between the 
release of ATP, which on the one hand is an activator of the MBL pathway of the ComC 
and on the other hand is a purinergic signaling molecule, will be discussed in this review. 
This mechanism plays an important role in triggering defense mechanisms in response 
to tissue/organ injury but may also have a negative impact by triggering autoimmune 
disorders, aging of HSPCs, induction of myelodysplasia, and graft-versus-host disease 
after transplantation of histoincompatible hematopoietic cells.
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iNTRODUCTiON

The basic function of innate immunity is to alarm the organism of an infection or tissue/organ injury 
in order to launch an appropriate response. An important part of this response is the release or 
mobilization of effector cells, such as granulocytes, monocytes, and lymphocytes, from bone marrow 
(BM) and other hemato-lymphatic organs into peripheral blood (PB) and the lymphatics and will be 
involved in eliminating invading pathogens (1–4). In parallel, hematopoietic stem/progenitor cells 
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(HSPCs) are also released, which locally supply mature granulo-
cytes or dendritic cells by clonal expansion of progenitors in the 
damaged tissues (3–6). Moreover, in addition to HSPCs, other 
types of stem cells are also released at a much slower pace into 
the circulation, including (i) mesenchymal stem cells (MSCs), (ii) 
endothelial progenitor cells (EPCs), and (iii) rare, primitive very 
small embryonic-like stem cells (VSELs). If needed, all of these 
stem cells may be involved in repair mechanisms in damaged 
tissues (4, 7–9).

Bone marrow is a semi-solid tissue spread within the spongy 
or cancellous portions of bones and contains hematopoietic 
“red marrow,” which is the most important source of cells 
circulating in PB and in the lymphatics (1–6). The estimated 
total mass of BM tissue in an average human being is as much 
as 6 pounds. This dynamic organ daily produces approximately 
5  ×  1011 erythrocytes, leukocytes, monocytes, and platelets, 
which enter the systemic circulation by crossing the BM–PB 
barrier via a permeable vasculature of small-vessel sinusoids 
within the medullary cavity. As mentioned above, BM is also the 
birthplace of stem cells that circulate in PB (1–6). While stem 
cells reside in stem cell niches, which are located around small 
vessels (endothelial niches) and in contact with osteoblasts lin-
ing trabecular bones in BM (osteoblastic niches), granulocytes, 
monocytes, and other types of maturing hematopoietic cells 
(mostly erythroblasts) occupy the entire volume of the hemat-
opoietic microenvironment (1, 10–13).

Under steady-state conditions, maturing erythrocytes, leuko-
cytes, monocytes, and platelets enter the PB to replace blood cells 
that have a limited half-life along with stem cells that are patrolling 
peripheral tissues, keeping the stem cell pool at distant locations 
of the hematopoietic microenvironment in balance (1–6). This 
balance may rapidly change in response to inflammation and 
tissue/organ damage when more cells need to be released into 
the circulation. This requires intensification of hematopoiesis 
in the BM microenvironment to supply more blood cells, while  
at the same time more stem cells are released from their BM 
niches (1–4). Increased release of cells from BM occurs also in 
clinical settings after pharmacological mobilization of HSPCs in 
response to administration of certain pro-mobilizing drugs, such 
as granulocyte colony-stimulating factor (G-CSF), CXCR4 recep-
tor antagonists, or some chemokines (growth-regulated protein 
beta, Gro-β) (14–16).

In this review, we will present the accumulated evidence 
that a major orchestrator in the release of cells from BM into 
PB is the complement cascade (ComC), which induces a “sterile 
inflammation” state in the hematopoietic microenvironment  
(17, 18). The ComC can be activated by the classical, alternative, 
or mannan-binding lectin (MBL) pathways. Recent evidence 
indicates that acute activation of the MBL pathway of ComC acti-
vation plays the most important role in the release of cells from 
BM in response to tissue/organ injury, pathogens, and certain 
pro-mobilizing drugs (17–19). On the other hand, chronic acti-
vation of the MBL pathway is most likely an important element in 
BM aging and myelodysplasia (20–23). This pathway also likely 
contributes based on some clinical observations to induction 
of graft-versus-host disease (GvHD) after histoincompatible 
hematopoietic transplantation (24–27).

What is important for the topic of this review is that the MBL 
pathway of ComC activation is triggered by danger-associated 
molecular patterns (DAMPs) (28–33). Adenosine triphosphate 
(ATP) is one of the most important members of this family 
of molecules. However, it is well known that this ubiquitous 
intracellular molecular energy source, when secreted from cells, 
becomes an important signaling molecule and mediator of 
purinergic signaling (34–36). The release of ATP from cells in 
the BM microenvironment provides a molecular basis, involving 
activation of the ComC, for the link between purinergic signaling 
and activation of the innate immune response.

In this review, we will focus on the role of this ATP-mediated 
link between purinergic signaling and innate immunity in BM 
stem cell homeostasis, mobilization, and aging as well as in 
certain pathological conditions, including myelodysplasia and 
GvHD. Because of space limitation, our short review will not 
discuss several pathologies related to (i) chronic activation of 
ComC seen in paroxysmal nocturnal hemoglobinuria or atypical 
hemolytic-uremic syndrome, (ii) coagulation consequences due 
to interaction between ComC and coagulation cascade (CoaC), 
and (iii) ComC activation related to some cases of leukopenia or 
thrombocytopenia.

ReTeNTiON OF HSPCs iN BM AND THeiR 
ReLeASe DUe TO ACTivATiON OF 
iNNATe iMMUNiTY

Hematopoietic stem/progenitor cells reside in BM niches, and 
some important mechanisms mediating their BM retention have 
already been identified (1, 10–13, 37). The most important mecha-
nisms include (i) the interaction between the chemokine receptor 
CXCR4 expressed on the surface of HSPCs and its specific ligand, 
the α-chemokine stromal-derived factor 1 (SDF-1) expressed 
by cells in stem cell niches and (ii) the interaction between the 
integrin receptor known as very late antigen 4 (VLA-4), which is 
expressed by HSPCs, and its ligand in stem cell niches, vascular 
adhesion molecule 1 (VCAM-1) (1–4). What is important for 
the retention process is that both receptors, CXCR4 and VLA-
4, are located in special cell membrane domains enriched for 
cholesterol and glycosyl phosphatidylinositol anchor protein 
(GPI-A) known as membrane lipid rafts (38, 39). Of note, the 
same membrane lipid rafts also contain the cell-surface proteins 
CD55 and CD59 that regulate complement activity (29, 30, 40). 
Accumulating evidence indicates that the structural integrity of 
membrane lipid rafts on the surface of HSPCs is important for 
their retention in BM niches (38, 39). A significant role in reten-
tion of HSPCs in BM niches is also played by the third protein 
component (C3) of the ComC, as its cleavage fragments, C3a 
and desArgC3a, promote incorporation of CXCR4 and VLA-4 into 
membrane lipid rafts (41). In addition, the interaction of C3a 
with C3aR, which is expressed on the surface of HSPCs, directly 
increases adhesion of HSPCs in the BM microenvironment (41).

Results from our group also indicate that the release of HSPCs 
from BM niches into PB in response to administration of phar-
macological mobilizing agents, as well as to mediators released 
during tissue/organ injury, is triggered by activation of the ComC 
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FiGURe 1 | Interaction between elements of purinergic signaling and activation of the complement cascade (ComC) in the induction of sterile inflammation in 
bone marrow (BM). Stimulatory factors released during tissue/organ injury, systemic mediators of inflammation, and pharmacological inducers of hematopoietic 
stem/progenitor cells (HSPC) mobilization activate Gr-1+ leukocytes in BM to release danger-associated molecular patterns (DAMP) molecules, including 
adenosine triphosphate (ATP) and reactive oxygen species (ROS). As a DAMP molecule, ATP is recognized by MBL, which activates the ComC and CoaC in an 
MASP-dependent manner (indicated on a graph as 1). By contrast, ROS exposes neoepitopes, and neoepitope–IgM complexes are also recognized by 
mannan-binding lectin (MBL). This leads to activation of the ComC by the MBL-dependent pathway. Both classical C5 convertase, as a product of C3 cleavage, 
and C5-like convertase activity, provided by thrombin cleaving C5 to release cleavage fragments C5a and desArgC5a, are crucial in the egress of HSPCs from BM. In 
addition to serving as a DAMP (indicated on a graph as 2), ATP also activates purinergic receptors expressed on the surface of HSPCs, in which P2X7 plays an 
important role in promoting calcium influx into cells (indicated on a graph as 2). This facilitates intracellular actin fiber rearrangement that is crucial in cell migration 
and egress from BM.
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(4, 18, 19). The same mechanism plays a pivotal role in the release 
of other types of stem cells, including MSCs, EPCs, and VSELs. 
In support of the regulatory involvement of the ComC in the 
retention of HSPCs in BM niches, we have already demonstrated 
that, while blockage of C3aR on the surface of HSPCs promotes 
the mobilization process (42), cleavage of the fifth protein 
component (C5) and release of C5a and desArgC5a anaphylatox-
ins is crucial for egress of HSPCs into PB (43). Mice that were 
deficient in C5 and C5aR turned out to be poor mobilizers (43). 
We propose that the proximal and distal part of ComC regulates 
retention of HSPCs in the BM microenvironment in opposite 
manner (18, 42, 43). While activation of the proximal part of this 
cascade via C3 cleavage fragments promotes retention of cells 
in BM, activation and cleavage of C5 have the opposite effect, 
as C5 cleavage fragments promote their egress (4, 18, 42, 43). 
This demonstrates a fine-tuned ComC-mediated mechanism in 
auto-controlling this process.

At the beginning of our work on the role of the ComC in 
regulating trafficking of HSPCs, we posed the basic question of 
which of the ComC-activation pathway (classical, alternative, or 
MBL) plays a crucial role in triggering egress of cells from BM. 
Initially, we considered the involvement of the classical pathway. 
To our surprise, however, mice deficient in the C1q component 
of classical pathway activation turned out to be good mobilizers 
in response to administration of the most commonly used HSPC 
mobilizing agent, G-CSF (44). Therefore, we shifted our attention 
to the MBL pathway of ComC activation and performed mobi-
lization studies in MBL-KO animals (19). In our experiments, 
MBL-KO or wild-type (WT) control mice were mobilized with 
G-CSF or the CXCR4 antagonist AMD3100. We found that 
MBL-KO animals displayed a significant decrease in the release of 

cells from BM into PB compared with control WT mice (19). This 
result provided evidence for the pivotal role of the MBL path-
way in the mobilization process. However, despite a significant 
decrease in egress of HSPCs from BM to PB, this process was not 
completely inhibited, which suggests the presence of redundant 
pro-mobilizing mechanisms. Based on our finding that factor 
B deficiency in mice also impairs mobilization of HSPCs, the 
persistence of some level of mobilization in MBL-KO mice could 
be explained by parallel activation of an alternative pathway (45). 
This possibility is currently being investigated in more details in 
our laboratory.

THe PivOTAL ROLe OF THe MBL 
PATHwAY OF ComC ACTivATiON iN 
TRiGGeRiNG MOBiLiZATiON OF HSPCs

Recognition of the involvement of the MBL pathway in egress of 
cells from BM not only further supported a crucial role of innate 
immunity in triggering the mobilization process but also shed 
more light on the cellular and molecular events regulating this 
process. Our understanding of this phenomenon is supported by 
the experimental data depicted in Figure 1.

As indicated in Figure 1, pharmacological mobilizing agents, 
including recombinant G-CSF, synthetic AMD3100, and natural 
mediators of inflammation or tissue organ/injury, such as (i) 
endogenous G-CSF secreted by endothelium, macrophages and 
immune cells, (ii) C5a and C3a released in damaged tissues, (iii) 
interleukin 8 (IL-8), (iv) bacteria-derived N-formylmethionyl-
leucyl-phenylalanine, or (v) leukotriene B4 (LTB4) secreted 
from activated granulocytes, are all able to initiate the sequence 
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of events leading to activation of the ComC (1–6). The important 
role of BM-residing leukocytes, which are crucial in the mobiliza-
tion process, has been demonstrated by seminal papers showing 
that neutrophil depletion in BM negatively affects the efficiency 
of this process (46, 47).

Overall, activated leukocytes release several pro-inflammatory 
factors, including DAMPs and free radicals (ROS) (5, 48–50). 
DAMP molecules secreted by leukocytes include mainly ATP but 
also other members of this family, including high mobility group 
box 1 (HMGB-1) protein, heat shock proteins, and the S100 mul-
tigenic family of calcium-modulated proteins (28). What is highly 
relevant for the topic of this review is that ATP is the most impor-
tant DAMP and is recognized by a soluble pattern-recognition 
receptor, MBL (19, 29, 40, 51). On the other hand, in addition to 
DAMPs, cells under stress release reactive oxygen species (ROS). 
When released from leukocytes, ROS expose neoepitope antigens 
on the surface of cells in the BM microenvironment that are rec-
ognized by naturally occurring antibodies, mainly from the IgM 
class (52). Of note in addition to ATP, neoepitope–IgM complexes 
are also recognized by the same MBL molecule (Figure 1).

In the next step, MBL activates mannan-binding serum 
proteases (MASPs) that cleave C3 and thereby trigger ComC 
activation in the MBL-dependent pathway (19, 33). As shown 
in Figure  1, MASP-1 activates the CoaC in parallel (33). 
Activation/cleavage of C3 creates C5 convertase, which cleaves 
C5 to the anaphylatoxins C5a, desArgC5a, and releases iC5b during  
the cleavage process. iC5b, in turn, is involved in generation of the 
membrane attack complex (C5bC9) (29, 43). Moreover, in paral-
lel, cleavage of C5 is augmented by thrombin generated during 
activation of the CoaC, as thrombin is a proteolytic enzyme with 
C5 convertase-like activity (53). This activity explains why both 
the ComC and the CoaC are activated during the mobilization 
process (54, 55).

As mentioned above, activation of the distal part of the ComC 
is crucial for the egress of cells from BM. First, after the ComC 
is activated in the BM microenvironment, C5a and desArgC5a acti-
vate granulocytes that help to release HSPCs from their niches 
by (i) secretion of several proteolytic enzymes that disrupts the 
SDF-1–CXCR4 and VCAM-1–VLA-4 retention axes operat-
ing between HSPCs and the cells lining the BM niches and (ii) 
release of phospholipase Cβ2 that digests the GPI-A component 
of membrane lipid rafts, which is crucial in maintaining lipid 
raft integrity (38). Disruption of membrane lipid rafts negatively 
impacts the retention functions of the CXCR4 and VLA-4 recep-
tors, which are membrane lipid raft-associated receptors (38). 
Next, the ComC activated in BM sinusoids directly chemoat-
tracts granulocytes, which are the first cells to egress from BM 
into circulation. These cells are rich in proteolytic enzymes and 
help to disrupt the endothelial barrier and thus pave the way for 
HSPCs to follow behind (43). Finally, the HSPCs that are released 
from their niches follow a steep gradient of bioactive sphin-
golipids, such as sphingosine-1-phosphate (S1P) and ceramide-
1-phosphate (C1P), which are present at high concentrations in 
BM sinusoids (5, 56–58). Both of these phosphosphingolipids 
are potent chemoattractants for HSPCs at the physiological 
concentrations present in PB (56). The gradients of both S1P 
and C1P are already very steep under steady-state conditions in 

PB and may additionally steepen due to the release of S1P form 
red blood cells in BM sinusoids exposed to MAC. As mentioned 
above, the egress of HSPCs that do not respond directly to a C5a 
chemotactic gradient is facilitated by granulocytes, which are the 
first cells to egress BM in a C5a gradient-dependent manner (43).

Besides activating MBL, ATP released from cells activates 
in parallel certain purinergic receptors on the cell surface that 
augment the mobilization process. The most important of these 
receptors seems to be a P2 family member, the P2X7 receptor ion 
channel (6, 17, 59, 60). As discussed below, P2X7 allows an influx 
of Ca2+ ions into cells that activate changes in the cell cytoskeleton 
that are important for cell migration and adhesion (61).

PURiNeRGiC SiGNALiNG iN BM AND iTS 
LiNK TO ComC ACTivATiON

As shown in Figure 1, ATP is an important DAMP and extracellu-
lar nucleotides (EXN) that is released from activated neutrophils, 
and as a DAMP, it activates the MBL pathway of the ComC, and as 
an EXN, it activates purinergic signaling pathways that addition-
ally promote egress of HSPCs from BM into PB (17, 61–69).

Purinergic signaling is an ancient form of extracellular signal-
ing mediated by EXNs, including most importantly the purine 
ATP and its metabolite nucleoside, adenosine (34). Purinergic 
signaling also involves certain rare extracellular pyrimidines, 
such as UTP and UDP. Purinergic receptors for EXNs are 
expressed on all cells in the body and are represented by sev-
eral families of P1, P2X, and P2Y receptors, which are among 
the most abundant receptors in living organisms (34). HSPCs 
express several receptors that belong to two different purinergic 
receptor families, P1 and P2 (34). While the P1 receptor family 
consists of four G protein-coupled receptor subtypes, A1, A2A, 
A2B, and A3, which are activated by adenosine (62), the P2 fam-
ily includes a total of eight receptors (P2Y1, 2, 4, 6, 11, 12, 13,  
and 14) identified so far, which are G protein-coupled receptors 
and respond to stimulation by ATP, ADP, UTP, and UDP. The 
P2X ionotropic channel receptor family consists of seven mem-
bers (P2X1, 2, 3, 4, 5, 6, and 7), which are activated by ATP (34).

However, the main purpose of this review is to show the role 
of EXNs and purinergic signaling in inducing sterile inflamma-
tion in BM, which plays a role in the mobilization of cells into 
PB, and it is important to realize that EXNs also have pleiotropic 
effects in regulating hematopoiesis (59–64). For example, EXNs, 
particularly ATP and adenosine, have been reported to promote 
proliferation of HSPCs in zebra fish and murine embryos (63). 
By contrast, UTP has been reported to inhibit the proliferation 
and migration of leukemic cells. The overall role of purinergic 
signaling in maintaining BM homeostasis is discussed in excel-
lent review elsewhere (64).

It has been postulated that in the induction of sterile inflam-
mation in BM a crucial role is played by ATP, which is secreted 
from activated BM  cells, mainly granulocytes, via pannexin 
channels as a DAMP molecule, and as we have demonstrated, 
pharmacological inhibition of pannexin by employing a drug 
(probenecid) or a specific anti-Panx1 blocking peptide decreases 
G-CSF- and AMD3100-induced mobilization of HSPCs (17). 
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FiGURe 2 | A self-limiting purinergic signaling mechanism in the induction of sterile inflammation in bone marrow (BM). Adenosine triphosphate (ATP), which is 
abundantly released from cells via pannexin channels as a danger-associated molecular pattern (DAMP), is also processed in the extracellular space by 
several ectonucelotidases, including cell-surface-expressed CD39 and CD73, and these are crucial to generating extracellular adenosine. While ATP promotes 
sterile inflammation in the BM microenvironment and mobilization of hematopoietic stem/progenitor cells (HSPCs), adenosine has the opposite effect. 
Inhibitors of ectonuclotidases facilitate sterile inflammation in BM and egress of HSPCs. By contrast, inhibitors of adenosine receptors are expected to inhibit 
this process.
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Connexin-43 is also involved in the release of ATP, and some 
ATP is also secreted in an extracellular microvesicle-dependent 
manner (31, 65). The involvement of connnexin 43 gap junction 
proteins in ATP secretion is supported by the fact that connexin-
43-KO mice are poor mobilizers (65). This defect could be at 
least partially explained as we envision by impaired release of 
ATP from cells.

Based on this finding, ATP secreted by granulocytes and 
other BM cells is recognized as a DAMP by MBL, which trig-
gers activation of the ComC (Figure 1). On the other hand, as 
depicted, ATP also interacts with P2 purinergic receptors, and 
the P2X7 receptor plays an especially pivotal role in mobiliza-
tion. In support of this notion, we found that P2X7-KO mice 
are poor mobilizers (17). Moreover, studies in chimeric mice 
in which WT animals were reconstituted with P2X7 BM cells, 
and P2X7-KO mice were reconstituted with WT marrow cells 
revealed that this defect is due to a lack of P2X7 on the surface 
of hematopoietic and not non-hematopoietic cells in the hemat-
opoietic microenvironment (17).

Figure 2 shows that when ATP is released into the extracel-
lular space, if it does not bind to MBL, it activates the P2X7 
receptor to allow influx of Ca2+ or, in parallel, is converted by 
cell-surface ectonucleotidase CD39 to AMP, which is then con-
verted by ectonucleotidase CD73 to the nucleoside adenosine 
(34, 64). The importance of the purinergic signaling cascade is 
further supported by our recent observation that CD73-deficient 
mice, which because of ectonucleotidase deficiency have less free 
adenosine in the extracellular space, mobilize greater numbers of 
HSPCs, which indicates a negative regulatory role for adenosine 
in the mobilization process (17). The inhibitory mobilizing 
effect of adenosine has been confirmed by injecting mice with 
this nucleoside along with pro-mobilizing agents (17). These 
results demonstrate that, while ATP triggers and promotes the 

mobilization process, adenosine generated from ATP provides 
negative regulatory feedback and plays an opposing inhibitory 
role (Figure 1).

Based on these findings, ATP triggers, on the one hand, as a 
DAMP, activation of the ComC in an MBL-dependent manner 
and, on the other hand, regulates the mobilization process in 
a more complex way by activating P2 receptors and providing 
negative feedback control mechanisms for this process through 
its metabolite, adenosine, which engages P1 receptors on the 
surface of cells (17, 62, 64).

What is also important is to realize that purinergic receptors 
are expressed on the surface of several types of cells that comprise 
innate immunity cellular components, including granulocytes, 
basophils, eosinophils, monocytes, and dendritic cells as well 
as cells in the BM microenvironment, including stromal cells, 
osteoblasts, osteoclasts, pericytes, and endothelial cells (64). ATP 
is also released from the synapses of neural fibers innervating 
BM tissue (34). Furthermore, the C3 and C5 cleavage fragment 
receptors, C3aR and C5aR, respectively, are expressed by several 
hematopoietic and non-hematopoietic cells in the BM microen-
vironment (41–43). All these add significant complexity to the 
relationship between purinergic signaling and innate immunity 
in BM and requires further study.

Moreover, it is important to pin point that extracellular ATP 
also exerts strong pro-inflammatory effects that are independent 
from MBL activation (28). ATP may also activate NLRP3 inflam-
masome pathway in cells that controls in caspase-1-dependent 
manner maturation of two important pro-inflammatory mem-
bers of interleukin (IL-1) family cytokines—namely IL-1β and 
IL-18 (67–69). It has been postulated that activation of the 
NLRP3 inflammasome is regulated at both the transcriptional 
and post-translational levels. While the transcription of inflam-
masome is induced by the signal mediated by toll-like receptor/
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nuclear factor-kB pathway, NRLP3 inflammasome activation 
at post-translational level is mediated e.g., by various DAMPs 
including ATP. Both IL-1β and IL-18 are released from cells in 
response to ATP-mediated activation of NLRP3 inflammasome 
and potentiate state of sterile inflammation in BM microenviron-
ment that promotes mobilization process.

PURiNeRGiC SiGNALiNG, iNNATe 
iMMUNiTY, BM STeRiLe iNFLAMMATiON, 
AND HeMATOPOieTiC AGiNG

Aging is an inevitable and complex process involving a sequence 
of pathological events (22, 23, 66). Several mechanisms are cur-
rently being proposed that accelerate this process at the cellular 
level, including shortening of the tips of chromosomes (telom-
eres); generation of ROS, which contribute to replication stress 
and oxidative DNA damage; impairment over time of the process 
of autophagy, a major degradation pathway essential for remov-
ing damaged organelles and macromolecules from the cytoplasm 
in eukaryotic cells, and which promotes recycling of amino acids 
during periods of starvation; the occurrence of pathologic lipid 
metabolism; and chronic inflammation (22, 66).

Aging also occurs in the hematopoietic system and is charac-
terized by a myeloid bias, in which BM increases the number of 
myeloid progenitors along with impaired differentiation of these 
cells, gradually developing anemia and decreasing the number 
and fitness of B cell progenitors, which is accompanied by oligo-
clonal expansion of memory B and T cells (22, 23). Additional 
evidence indicates that this process is triggered by low-grade 
chronic inflammation that is a result of an increase in activation 
of innate immunity and impaired acquired immunity (22, 23). 
These changes may lead to the appearance of BM myelodysplasia 
and, in consequence, to clonal cell expansion and overt leuke-
mia (22). These changes also lead to an increased incidence of 
autoimmunological diseases that are observed in patients with 
advancing age (22, 23, 66).

Since aged cells in the BM microenvironment are a rich source 
of DAMP molecules, including mostly ATP and HMGB-1, one 
can speculate that low-grade chronic inflammation in the BM 
microenvironment may be triggered by chronic activation of the 
ComC (6). A similar mechanism is also most likely involved in 
the aging of other organs, such as heart, brain, or kidney. This 
suggests that an effective countermeasure to ameliorate this 
unwanted effect would be anti-inflammatory treatment.

To shed more light on this phenomenon, there is a need for 
more long-term studies in ComC-deficient mice to see whether 
these animals are protected from age-related dysfunction of 
vital organs. The earlier study showing that C3-deficient mice 
fail to display age-related hippocampal decline lends support to 
undertaking more complex studies (70). In particular, it would 
be interesting to see whether MBL-KO mice or C5-KO mice 
are endowed with an extended life span and develop fewer age-
related pathologies in vital organs. Such experiments, of course, 
should prevent exposure of these animals to potential pathogens, 
as their susceptibility to infection may affect the final long-term 
experimental results.

iNNATe iMMUNiTY AS A POTeNTiAL 
TRiGGeR OF GvHD

Graft-versus-host disease is a serious medical complication seen 
in patients who are recipients of transplanted tissue or cells from 
a genetically histoincompatible donor (25, 71). GvHD is com-
monly observed after hematopoietic stem cell transplants, when 
T cells present in the graft attack the tissues of the transplanted 
recipient. After perceiving host tissue antigens, among them 
the human leukocyte antigens, as antigenically foreign, T  cells 
produce an excess of cytokines, including tumor necrosis factor 
alpha (TNFα) and interferon gamma (IFNγ) (25, 27, 71).

An important question remains: To what degree are innate 
immunity, in particular the ComC, and purinergic danger 
signaling involved in triggering this T-cell-mediated process? 
Unfortunately, conclusive experiments in animal models have 
not been performed. However, a very recent report indicates 
that patients with defects in activation of the MBL pathway 
of ComC activation are partially protected from this so often 
devastating transplant complication (25). It would be interesting 
to see whether MBL-KO mice are more resistant to GvHD after 
allogeneic BM transplants than their WT littermates.

THeRAPeUTiC iMPLiCATiONS FOR 
MODULATiNG STeRiLe iNFLAMMATiON 
iN BM

While activation of the ComC is important for optimal mobiliza-
tion, its inhibition is highly relevant to ameliorating the chronic, 
sterile inflammation process seen in aging and myelodysplasia. 
Inhibition of the ComC may also be of importance in ameliorat-
ing the onset of GvHD, which occurs after infusion of histoin-
compatible hematopoietic cells.

Overall, since ATP-mediated activation of the MBL pathway 
of ComC activation leads to induction of sterile inflammation 
in the BM microenvironment, an anti-inflammatory treat-
ment may have the opposite effect. However, this process, as 
depicted in Figure  2, tends to be somewhat self-limiting due 
to ATP conversion to adenosine. In fact, adenosine is known 
in immunology as an anti-inflammatory nucleoside (72). 
Therefore, appropriate activators of adenosine receptors would 
help to control sterile inflammation in the BM microenviron-
ment. However, in proposing such a treatment, one would have 
to take into consideration the fact that adenosine is a powerful 
cardiovascular mediator, and a hyperphysiological dosage of 
adenosine mimetic may lead to cardiac complications (34). 
Moreover, taking into consideration the involvement of the 
P2X7 receptor in activating sterile inflammation in BM (6, 17), 
it would be important to test whether specific inhibitors of this 
receptor could be employed as potential anti-inflammatory 
drugs to dampen sterile inflammation in BM.

Another recently identified inhibitor of stem cell mobilization 
is heme oxygenase 1 (HO-1) (73–78). This anti-inflammatory 
enzyme, which is induced by oxidative stress in the BM micro-
environment, counteracts the induction of sterile inflammation 
in BM. We provided evidence that HO-1 is a potent inhibitor of 
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hematopoietic cell migration and the responsiveness of HSPCs 
to crucial chemoattractants, such as S1P, C1P, and SDF-1  
(72, 78). Moreover, mice that lack HO-1 are easy mobilizers 
(72). The biological anti-inflammatory and ComC-activation 
properties of HO-1 have been demonstrated both in HO-1-
deficient mice and in a case of rare human HO-1 deficiency in 
which the ComC became continuously hyperactivated (77). 
This hyperactivity of the ComC related to HO-1 deficiency leads 
to chronic inflammation in affected individuals. In our most 
recent work, we demonstrated that ATP and adenosine directly 
modulate expression of HO-1 in hematopoietic cells (17). While 
ATP inhibits HO-1 expression at the mRNA level, adenosine, by 
contrast, upregulates HO-1 mRNA expression. These results cor-
respond with the opposing effects of ATP and adenosine on the 
mobilization process. Therefore, based on the results cited above, 
small-molecule activators of HO-1 could be employed to control 
sterile inflammation in the BM microenvironment.

By contrast, inhibition of adenosine generation in the BM 
extracellular space, for example, by employing inhibitors of the 
ectonucleotidase CD73 or downregulation of HO-1 expression in 
the BM microenvironment by employing small-molecule HO-1 
inhibitors, should promote the onset of sterile inflammation. This 
would be beneficial for facilitating egress of hematopoietic cells 
into the circulation to harvest more HSPCs for transplantation 
(17, 72). In support of this possibility, our recent study showed 
that CD73-KO mice, which do not convert AMP to adenosine in 
the extracellular space, are in fact easy mobilizers of HSPCs (17). 
Other potential targets for facilitating this process are inhibitors 
of other ectonucleotidases, such as CD39, or even a P2X7 recep-
tor mimetic.

CONCLUSiON

In this review, we presented the concept that sterile inflamma-
tion in the BM microenvironment is involved in the egress of 
hematopoietic cells, including HSPCs, into the circulation (6, 17). 
We also presented a novel link between activation of purinergic 
signaling and the release of EXNs, mainly ATP, which is a cru-
cial activator of the MBL pathway of ComC activation. We are 
aware that purinergic signaling and EXNs play pleiotropic roles 
in modulating the activity of the innate and acquired immune 
systems, but our recent results highlight the importance of ATP 

as a DAMP molecule in triggering the mobilization process.  
A similar mechanism regulating the egress of cells from BM into 
PB is probably also involved in the egress of cells into lymphatics 
(3, 6). Besides HSPCs, the interplay between purinergic signaling 
and innate immunity also plays a role in mobilization of lympho-
cytic progenitors and other types of stem cells, including MSCs, 
EPCs, and VSELs, and this is currently being investigated in our 
laboratory.

Functional P1 and P2 purinergic receptors are expressed on 
the surface of several types of non-hematopoietic cells in the 
BM microenvironment (64, 79), including cells forming stem 
cell niches, such as perivascular SDF-1+ and KL+ mesenchymal 
stromal cells and endothelial cells as well as cells in quiescent 
nestinbright NG2+ arteriolar and proliferative nestindimLepr+ sinu-
soidal niches. This wide distribution of these receptors opens up 
a new area of investigation to better understand the complexity of 
stem cell mobilization and to design optimal mobilization strate-
gies. Purinergic receptors are also expressed by osteoblasts lining 
trabecular bones as well as osteoclasts (64). Finally, ATP may 
also be involved as a neurotransmitter, in addition to catecho-
lamine, in neural fibers that innervate BM tissue in modulating 
β-adrenergic-mediated egress of HSPCs from BM niches (12, 34).

On the other hand, it is important to better understand the 
role of sterile inflammation in the aging of hematopoietic cells 
and its potential involvement in myelodysplasia and GvHD. 
Shedding more light on these phenomena will also allow us to 
develop more efficient treatment strategies. Purinergic signaling 
in both steady-state hematopoiesis and pathology has become an 
exciting field of investigation.
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