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Immune checkpoint inhibitors (ICI) used for cancer immunotherapy were shown to boost 
the existing anti-tumor immune response by preventing the inhibition of T cells by tumor 
cells. Antibodies targeting two negative immune checkpoint pathways, namely cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), 
and programmed cell death-ligand 1 (PD-L1), have been approved first for patients with 
melanoma, squamous non-small cell lung cancer (NSCLC), and renal cell carcinoma. 
Clinical trials are ongoing to verify the efficiency of these antibodies for other cancer types 
and to evaluate strategies to block other checkpoint molecules. However, a number of 
patients do not respond to this treatment possibly due to profound immunosuppression, 
which is mediated partly by myeloid-derived suppressor cells (MDSC). This heteroge-
neous population of immature myeloid cells can strongly inhibit anti-tumor activities of 
T and NK  cells and stimulate regulatory T  cells (Treg), leading to tumor progression. 
Moreover, MDSC can contribute to patient resistance to immune checkpoint inhibition. 
Accumulating evidence demonstrates that the frequency and immunosuppressive 
function of MDSC in cancer patients can be used as a predictive marker for therapy 
response. This review focuses on the role of MDSC in immune checkpoint inhibition and 
provides an analysis of combination strategies for MDSC targeting together with ICI to 
improve their therapeutic efficiency in cancer patients.

Keywords: myeloid-derived suppressor cells, immunosuppression, cancer immunotherapy, immune checkpoint 
inhibition, combination therapy
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iNTRODUCTiON

Cancer immunotherapy has become a promising approach to 
treat patients over the past decade (1). Furthermore, new types 
of cancer immunotherapy that are currently under investigation 
will impact the treatment of cancer patients in the future. Among 
immunotherapeutic approaches, immune checkpoint inhibition 
is very promising. However, other types of immunotherapies such 
as monoclonal antibodies against tumor-associated antigens, can-
cer vaccines, cell therapy, and unspecific boosting of the immune 
system with interleukins (IL), interferons (IFN), or toll-like recep-
tor (TLR) ligands are also used and/or under investigation (2).

Immune checkpoint pathways are important to restrict exces-
sive immune responses (3). However, under cancer conditions, 
tumor cells can exploit these mechanisms to impair or prevent the 
tumor-targeted immune response. Signals transmitted to T  cells 
either via programmed cell death protein 1 (PD-1) or cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) promote T cell anergy 
and thereby switch off the immune response. Therefore, blockers of 
these immune checkpoint molecules have been shown to restore an 
immune response against cancer and increase patient survival (4, 5).

Ipilimumab (monoclonal antibody against CTLA-4) is used 
for the therapy of cutaneous melanoma. Nivolumab and pem-
brolizumab (monoclonal antibodies against PD-1) are approved 
for the therapy of cutaneous melanoma, non-small cell lung 
cancer (NSCLC), kidney cancer, bladder cancer, head and neck 
cancers, and Hodgkin lymphoma. Atezolizumab [monoclonal 
antibody against programmed cell death-ligand 1 (PD-L1)] is 
approved for the treatment of NSCLC and bladder cancer and 
avelumab (monoclonal antibody against PD-L1) is approved for 
gastric cancer and Merkel cell carcinoma therapy. Despite the fact 
that these immune checkpoint inhibitors (ICI) have proved to be 
effective, therapeutic resistance occurs in the majority of patients, 
leading to tumor progression (5, 6). This occurs due to the immu-
nosuppressive tumor microenvironment represented by several 
immunosuppressive factors and cells, including myeloid-derived 
suppressor cells (MDSC) (7–10). Importantly, the efficacy of 
cancer immunotherapy has been reported to be negatively cor-
related with an increased MDSC frequency and function (11–15).

Myeloid-derived suppressor cells play a leading role in immu-
nosuppression in various cancer types. Accumulating evidences 
in recent years have even highlighted them as a major driver of 
an immunosuppressive tumor microenvironment (7–10, 16). 
Therefore, MDSC could be a promising target in cancer immu-
notherapy especially in combination with ICI. In this review, 
we discuss the phenotypic and functional properties of MDSC 
as well as strategies for their therapeutic targeting. In particular, 
we address the role of MDSC in immune checkpoint inhibition 
and provide an analysis of the combination strategies for MDSC 
targeting together with ICI to improve their therapeutic efficiency 
in cancer patients.

PHeNOTYPiC AND FUNCTiONAL 
PROPeRTieS OF MDSC

Myeloid-derived suppressor cells represent a heterogeneous pop-
ulation of myeloid cells that fail to differentiate into granulocytes, 

macrophages, or dendritic cells (DC) but expand during cancer 
and chronic infection (17–20). They can strongly suppress the 
activity of T cells, natural killer (NK) cells, and some myeloid cells 
such as DC (8). MDSC have been identified to expand and play 
an important role in various cancer types, for example, in patients 
with melanoma (15, 21–24), multiple myeloma (25), hepatocellu-
lar carcinoma (26), NSCLC (27), renal cell carcinoma (28), breast 
cancer (29), prostate cancer (30), and colorectal cancer (31).

MDSC Phenotype
In mice, MDSC were characterized by the expression of CD11b 
and Gr1. However, the use of these markers is no longer sufficient,  
since MDSC can be divided into two subpopulations in mice: 
CD11b+Ly6G−Ly6Chigh monocytic MDSC (M-MDSC) and CD11b+ 
Ly6GhighLy6Clow polymorphonuclear MDSC (PMN-MDSC) (32).  
Human M-MDSC are defined as Lin−CD11b+CD14+CD15−HLA- 
DR−/low and PMN-MDSC as Lin−CD11b+CD14−CD15+HLA-DR− 
or Lin−CD11b+CD14−CD66b+ (32, 33). One-third subtype of 
human MDSC, containing more immature HLA-DR−CD33+CD
15−CD14− MDSC, has been recently proposed and was termed 
early stage MDSC (eMDSC) (32).

MDSC expansion and Activation
Myeloid-derived suppressor cells are absent in the circulation 
under homeostatic conditions, but they can be accumulated 
under pathological conditions like chronic inflammation and 
cancer (34–39). The expansion and activation of MDSC are 
controlled by a complex network of soluble factors like IL-6, 
granulocyte-macrophage colony stimulating factor (GM-CSF), 
IL-10, M-CSF, G-CSF, and vascular endothelial growth factor 
(VEGF) as well as TLR ligands (8, 17, 20, 32, 40). The process 
of MDSC generation is supposed to be divided into two phases 
that include MDSC accumulation and activation (8, 18–20, 40). 
MDSC enrichment is mediated by the blockade of the terminal 
differentiation of immature myeloid cells into granulocytes, 
macrophages, and DC due to an alteration of the growth factor 
composition, where G-CSF, GM-CSF, and VEGF play a major 
role. MDSC activation is mediated by the long-term secretion 
of cytokines like IL-6, IL-10, IL-1β, and IFN-γ, as well as TLR 
ligands, such as damage-associated molecular pattern molecules 
produced under chronic inflammation (8, 18–20, 40).

The production of immunosuppressive factors is driven via the 
Janus kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT) and myeloid differentiation primary response 88/
nuclear factor “kappa-light-chain-enhancer” of activated B-cells 
signal transduction cascades in MDSC (17, 40).

MDSC Function
Activated MDSC produce elevated levels of nitric oxide (NO) via 
inducible nitric oxide synthase (iNOS) and upregulate the expres-
sion of arginase-1 (ARG-1), both leading to cell cycle arrest in 
T cells via depletion of the amino acid l-arginine from the tumor 
microenvironment (41, 42) and to T cell anergy induced by the 
downregulation of T  cell receptor (TCR) ζ-chain expression  
(16, 43). Moreover, NO and reactive oxygen species produced 
by MDSC can induce T  cell apoptosis or TCR nitrosylation  
(44, 45). In addition, activated MDSC express high levels of PD-L1  
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(46, 47) that interacts with PD-1 on T  cells and causes their 
exhaustion (48). MDSC also express elevated levels of indoleam-
ine 2,3-dioxygenase (IDO), an enzyme degrading l-tryptophan 
into N-formylkynurenine (49). The starvation from the amino 
acid l-tryptophan can lead to T  cell arrest and anergy (50). 
Furthermore, it has been shown to drive the differentiation of 
CD4+ T cells into immunosuppressive regulatory T cells (Tregs) 
(51). MDSC can also induce Treg expansion and reduction of the 
anti-tumor activity of effector T cells via the expression of CD40 
(52) and the secretion of transforming growth factor-β and IL-10 
(53–55). Furthermore, MDSC impair the Fc receptor-mediated 
functions of NK cells by the production of NO (56).

In addition to their immunosuppressive properties, MDSC 
can have other tumor promoting effects. In particular, they stimu-
late tumor angiogenesis by secreting VEGF and basic fibroblast 
growth factor (57, 58). By secreting matrix metalloproteinases 
(MMP), especially MMP9, they mediate a lower integrity of the 
extracellular matrix and the basal membrane, which enables 
tumor cells to enter the blood stream and form metastasis  
(59, 60). MDSC were also shown to play an important role in the 
formation of the pre-metastatic niche, a microenvironment in a 
secondary organ, facilitating metastasis (61).

MDSC AS A PReDiCTive MARKeR iN 
iMMUNe CHeCKPOiNT iNHiBiTiON  
FOR CANCeR THeRAPY

Myeloid-derived suppressor cells have been reported to be an 
important prognostic marker for ICI treatment. Interestingly, 
MDSC levels could be used to predict therapy response or resist-
ance to ipilimumab treatment in metastatic melanoma patients 
(62). Clinical responders to ipilimumab therapy showed a sig-
nificantly lower percentage of Lin−CD14+HLA-DR− M-MDSC 
in the peripheral blood as compared to non-responders. This 
finding suggests the use of circulating M-MDSC frequency as 
a marker of response, since low frequencies identified patients 
who could benefit from ipilimumab treatment (62). These data 
are in agreement with the results from another study, showing 
that a higher M-MDSC frequency prevented ipilimumab-
induced activation and expansion of tumor-specific T  cells 
resulting in the lower clinical response (23). It was shown by 
three more studies that a lower frequency of circulating MDSC 
at baseline can be used as a predictive marker for ipilimumab 
treatment of malignant melanoma patients (14, 15, 63). 
Moreover, in prostate cancer patients treated with a cancer 
vaccine in combination with ipilimumab, a lower frequency 
of circulating MDSC was found to correlate with an increased 
overall survival of patients (64).

STRATeGieS FOR MDSC THeRAPeUTiC 
TARGeTiNG TO OveRCOMe ReSiSTANCe 
TO iCi

Due to important role of MDSC in tumor-induced immunosuppres-
sion, these cells could be a promising target for a combination therapy 
with ICI. There are three different approaches to target MDSC,  

namely the inhibition of (i) MDSC accumulation; (ii) MDSC 
trafficking; and (iii) MDSC-mediated immunosuppression.

Reduction of MDSC Frequency
To reduce MDSC frequency, the process of myelopoiesis has to 
be normalized and MDSC accumulation has to be blocked. Some 
chemotherapeutics were shown to affect MDSC in tumor-bearing 
hosts. Using the RET transgenic mouse model of malignant 
melanoma, it was demonstrated that ultra-low non-cytotoxic 
doses of paclitaxel induced a reduction of MDSC numbers and 
immunosuppressive activity, resulting in an increased survival 
of melanoma-bearing mice (65). Furthermore, the treatment 
of pancreatic cancer patients with gemcitabine led to a reduced 
number of PMN-MDSC (66). In colorectal cancer patients, the 
treatment with FOLFOX (folinic acid, 5-fluorouracil, and oxali-
platin) resulted in a reduced immunosuppression and a better 
clinical outcome that could be attributed to a decrease in MDSC 
frequency and restored anti-tumor immunity (67).

It has been described that the blockade of retinoic acid signal 
transduction by all-trans retinoic acid (ATRA) led to the dif-
ferentiation of MDSC into macrophages and DC in murine and 
human cell samples (68). ATRA has been applied in two clinical 
trials, including patients with metastatic renal cell carcinoma and 
late stage small cell lung cancer, leading to a reduction of MDSC 
frequencies and an improvement of the patient survival (69, 70).

Blockade of MDSC Recruitment
To exhibit their immunosuppressive phenotype, MDSC have to 
be recruited to the tumor site. This process is mediated mainly 
by chemokines secreted in the tumor microenvironment and 
chemokine receptors expressed on MDSC (71, 72). The role of C-C 
motif chemokine ligand (CCL)2 and its receptors C-C chemokine 
receptor (CCR)2 and 4 in the recruitment of M-MDSC has been 
well-documented (71, 73). Moreover, it was recently found that 
CCR5 is expressed on MDSC in RET transgenic melanoma-
bearing mice and melanoma patients, playing an important role 
in their recruitment to the tumor microenvironment via the 
CCR5 ligands (CCL3, CCL4, and CCL5) (74, 75). Interestingly, 
CCR5+ MDSC were reported to display higher immunosup-
pressive potential than their CCR5− counterpart both in mice 
and patients (74). Moreover, the blockade of the interaction of 
CCR5 with its ligands by a mCCR5-Ig fusion protein significantly 
improved the survival of melanoma-bearing animals (74). In 
addition, in a prostate cancer mouse model, the recruitment 
of CD11b+Gr1+ MDSC could be blocked by a CXC chemokine 
receptor 2 antagonist, thereby potentiating the therapeutic effect 
of the chemotherapeutic drug docetaxel (76).

inhibition of MDSC-Mediated 
immunosuppression
Phosphodiesterase-5 inhibitors (sildenafil, tadalafil, and vardena-
fil) are currently in clinical use for non-tumor conditions (77). 
However, sildenafil was already shown in several transplantable 
tumor mouse models to downregulate ARG-1 and iNOS expres-
sion in MDSC reducing thereby their immunosuppressive capac-
ity and leading to an enhanced intratumoral T  cell infiltration 
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and activation, a reduction of tumor growth, and an improve-
ment of the anti-tumor efficacy of adoptive T cell therapy (78). 
In the RET transgenic melanoma mouse model, sildenafil could 
also prolong mouse survival that was associated with reduced 
levels and activity of MDSC in the tumor microenvironment and, 
therefore, with a restored CD8+ T cell infiltration and function 
(79). Furthermore, in an inflammation-dependent murine colon 
cancer model, sildenafil prevented tumorigenesis by inhibiting 
tumor infiltration with MDSC (80).

In clinical trials, tadalafil was applied in patients with head and 
neck squamous cell carcinoma and metastatic melanoma (81–83). 
It improved clinical outcome and augmented the anti-tumor 
immune response of patients due to the reduction of peripheral 
and tumor-infiltrating MDSC, highlighting thereby its potential 
application in combined immunotherapy (81–83).

Another promising approach is targeting of STAT3, since it is 
a main regulator of MDSC immunosuppressive activity (8, 18–20,  

40, 84). Systemic administration of the STAT3 antisense oligo-
nucleotide inhibitor AZD9150 was already tested in a phase I 
clinical trial in patients with lung cancer and lymphoma (85).  
It has been recently developed a strategy aiming to target STAT3 
decoy oligonucleotides specifically to myeloid cells by coupling 
them to the TLR9 ligand CpG, which led to a reduced ARG-1 
expression and to the restoration of T cell functions in patients 
with acute myeloid leukemia (86).

COMBiNATiON OF iCi AND MDSC 
NeUTRALiZATiON

In recent years, the combination of MDSC targeting with ICI 
treatment has been applied in preclinical tumor models and 
cancer patients. Figure 1 illustrates the effect of combination 
of ICI and MDSC-targeted therapy to enable an anti-tumor 
immune response. Interestingly, it was shown that anti-PD-1 
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TABLe 1 | Clinical trials combining myeloid-derived suppressor cell (MDSC) targeting with immune checkpoint inhibitors (ICI) in cancer patients.

No Title Disease or conditions interventions Trial number

1 Atezolizumab in combination with entinostat and bevacizumab in  
patients with advanced renal cell carcinoma

Advanced renal cell carcinoma Atezolizumab, entinostat, 
bevacizumab

NCT03024437

2 Ipilimumab and all-trans retinoic acid (ATRA) combination treatment of  
stage IV melanoma

Melanoma ATRA, ipilimumab NCT02403778

3 Depletion of MDSC to enhance anti-programmed cell death  
protein 1 therapy

Non-small cell lung cancer Nivolumab, gemcitabine NCT03302247

4 SX-682 treatment in subjects with metastatic melanoma  
concurrently treated with pembrolizumab

Melanoma SX-682, pembrolizumab NCT03161431

5 RTA 408 capsules in patients with melanoma—REVEAL Melanoma Omaveloxolone, ipilimumab, 
nivolumab

NCT02259231

6 Antibody DS-8273a administered in combination with nivolumab in  
subjects with advanced colorectal cancer

Colorectal neoplasm DS-8273a, nivolumab NCT02991196
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antibodies themselves seem to have a direct effect on periph-
eral blood mononuclear cells (PBMC) from cancer patients. 
It was reported that anti-PD-1 antibodies stimulated in vitro 
PBMC proliferation induced by anti-CD3 antibodies and 
inhibited the induction of MDSC in the same experimental 
settings (87).

iCi Plus Reduction of MDSC Frequency
In two different tumor mouse models, the reduction of MDSC by 
a histone-deacetylase inhibitor, entinostat, in combination with 
antibodies against CTLA-4 and PD-1 led to 80% tumor eradica-
tion although the application of these ICI alone failed to induce 
anti-tumor effects (88). In Lewis lung and renal cell carcinoma 
mouse models, MDSC blocking by entinostat in combination 
with PD-1 blockade resulted in a significantly increased survival 
in comparison to anti-PD-1 therapy alone (89). Furthermore, 
MDSC inhibition by phenformin, an antidiabetic drug from the 
biguanide class, was able to enhance the effect of PD-1 blockade 
reflected by an increased CD8+ T  cell infiltration in the BRAF 
V600E/PTEN-null melanoma mouse model (90).

In a murine oral cancer model, anti-Ly6G antibodies were 
applied to deplete PMN-MDSC that resulted in the restoration 
of antigen-specific T cell responses but failed to improve mouse 
survival (91). However, the combination of anti-Ly6G and anti-
CTLA-4 antibodies induced a complete tumor rejection (91).

iCi Combined with an Alteration  
of MDSC Function
In a B16 melanoma mouse model expressing IDO, it has been 
shown that the blockade of colony stimulating factor 1 receptor 
(CSF-1R) by the kinase inhibitor PLX647 could inhibit tumor-
infiltrating MDSC and enhance anti-tumor T cell responses (92). 
Moreover, this therapy sensitized the tumor for anti-PD-1 and 
anti-CTLA-4 antibodies, since the combination therapy led to 
an increased tumor regression and prolonged mouse survival 
as compared to the therapy with ICI alone (92). The same effect 
could be shown in CT26 colon and 4T1 breast cancer mouse 
models, where the combination of anti-CTLA-4 treatment 
with CSF-1/CSF-1R blockade enhanced the beneficial effect by 
reprogramming MDSC (93). Moreover, the expression of CSF-1 
on tumor cells in melanoma and NSCLC patients correlated with 

the enrichment of MDSC that could be inhibited in vitro by the 
blockade of CSF-1/CSF-1R signaling (93). This observation was 
supported by another study, demonstrating that the blockade 
of M-CSF/CSF-1R interaction by BLZ945 could result in an 
improved efficacy of PD-1 blockade by inhibiting MDSC in mice 
with neuroblastoma (94).

The blockade of the VEGF receptor by axitinib in combination 
with anti-CTLA-4 antibodies increased survival of mice with sub-
cutaneous melanoma and intracranial melanoma metastasis (95). 
This effect was due to an increased antigen-presenting capacity of 
DC and to a reduced suppressive capacity of M-MDSC, inducing 
the stimulation of CD8+ and CD4+ T cells (95).

Importantly, ICI treatment of head and neck cancer was 
reported to be noneffective due to the recruitment of MDSC (96). 
However, the treatment of mice bearing head and neck tumors 
with IPI-145, an inhibitor of phosphatidylinositol-4,5-bispho-
sphate 3-kinase (PI3K)δ and PI3Kγ isoforms, in combination 
with anti-PD-L1 antibodies resulted in the inhibition of MDSC 
activity associated with CD8+ T cell-dependent delay of tumor 
growth and with an improved survival (97).

It has been demonstrated that cell cycle-related kinase 
(CCRK) from human hepatocytes stimulated an expansion of 
CD11b+CD33+HLA-DR− MDSC via an NFκB/IL-6-dependent 
mechanism (98). Similarly, in CCRK transgenic mice, PMN-
MDSC frequency and activity were shown to be increased. 
Thus, upon inhibition of CCRK, PMN-MDSC numbers were 
decreased, an increased infiltration of IFN-γ+TNF-α+CD8+ 
T cells was observed, and tumor progression was impaired (98). 
The beneficial effect was even stronger upon the combination 
with anti-PD-L1 antibodies (98).

Ongoing Clinical Trials
Some strategies modulating MDSC frequency and immunosup-
pressive function are already used in various clinical trials in com-
bination with ICI (Table 1). Thus, a combined therapy with the 
anti-PD-L1 antibody atezolizumab and the histone-deacetylase 
inhibitor entinostat is currently under investigation in a phase I/II 
clinical trial in renal cell carcinoma patients. Furthermore, ATRA 
was applied in combination with ipilimumab in a phase II clinical 
trial in melanoma patients, inducing an improvement of clinical 
outcome associated with increased tumor antigen-specific T cell 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


6

Weber et al. Combining MDSC Neutralization and ICI

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1310

responses and decreased MDSC frequencies as compared to ipili-
mumab alone (99). Two other clinical trials in melanoma patients 
are utilizing the combination of ICI treatment with MDSC 
targeting by SX-682, a small-molecule dual-inhibitor of C-X-C 
motif chemokine ligand 1 and 2, or by the antioxidative and 
anti-inflammatory drug omaveloxolone (RTA 408). Since it was 
shown that gemcitabine induced a reduction in MDSC numbers 
in pancreatic cancer patients (66), potentially increasing thereby 
the efficacy of nivolumab treatment, the combination of these 
drugs is applied in a phase II clinical trial in NSCLC patients. 
Furthermore, the tumor necrosis factor-related apoptosis induc-
ing ligand (TRAIL) receptor 2 blocking antibodies DS-8273a, 
targeting MDSC in cancer patients (100), were applied in a phase 
I clinical trial in colorectal cancer patients in combination with 
nivolumab.

CONCLUSiON

Immune checkpoint inhibitors for cancer therapy are approved 
for the treatment of cutaneous melanoma, NSCLC, kidney 
cancer, bladder cancer, head and neck cancers, Merkel cell 
carcinoma, gastric cancer, and Hodgkin lymphoma and could 
significantly improve the clinical outcome of cancer patients. 
However, the resistance to ICI after initial response or total lack 
of response is still a problem. Resistance can be mediated by 
MDSC, which makes these cells a promising target for combina-
tion therapy.

In various preclinical tumor models, it has been reported that 
MDSC targeting potentiated the effect of ICI and led to a signifi-
cantly increased survival and even to full tumor regression, which 
was not observed upon the treatment with ICI alone. However, 
only six early phase clinical trials are running to date to improve 
ICI outcome in cancer patients by reducing MDSC-mediated 
immunosuppression.

Therefore, more combinatorial trials are needed to use the 
strategies of MDSC neutralization to further improve the out-
come of cancer immunotherapy by ICI.
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