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Emerging and re-emerging viruses pose a significant public health challenge around the 
world, among which RNA viruses are the cause of many major outbreaks of infectious 
diseases. As one of the early lines of defense in the human immune system, RIG-I-like 
receptors (RLRs) play an important role as sentinels to thwart the progression of virus 
infection. The activation of RLRs leads to an antiviral state in the host cells, which triggers 
the adaptive arm of immunity and ultimately the clearance of viral infections. Hence, 
RLRs are promising targets for the development of pan-antivirals and vaccine adjuvants. 
Here, we discuss the opportunities and challenges of developing RLR agonists into 
antiviral therapeutic agents and vaccine adjuvants against a broad range of viruses.

Keywords: RiG-i-like receptor, pan-antivirals, vaccine adjuvants, interferon, interferon-stimulated genes,  
RnA therapeutics

inTRODUCTiOn

RNA viruses account for a third of all emerging and re-emerging infections (1). Due to the changes 
of abiotic and biotic landscape encountered by RNA viruses and the error-prone nature of viral 
replication, RNA viruses evolve quickly and contribute to the outbreak of infectious diseases (2). 
Many recent outbreaks of emerging and re-emerging viruses involve RNA viruses, and thus, there is 
an urgent need to develop antivirals against these viruses.

The innate immune system confronts viral infection via a specialized group of receptors known 
as pattern recognition receptors (PRRs) (3). Some PRRs recognize RNA viral infections including 
toll-like receptors 3 and 8 (TLRs), NOD-like receptors NLRP6 and 9 (NLRs), certain DDX/DHX 
helicases, and RLRs (retinoic acid inducible gene 1 (RIG-I) and melanoma differentiation associ-
ated protein 5 (MDA5)) (4–9). These PRRs usually activate interferon production and the secretion 
of pro-inflammatory cytokines (10). Interferon activates the Janus kinase/signal transducers and 
activators of transcription (JAK-STAT) signaling pathway in surrounding cells and the expression of 
interferon-stimulated genes (ISGs). ISGs inhibit virus replication and spread to surrounding cells by 
degrading viral nucleic acids and inhibiting viral gene expression (11, 12). Here, we focus on RLRs, 
the major sensors for pathogenic RNA species which trigger antiviral responses and discuss how 
modulation of RLRs may lead to broad-spectrum antivirals and new vaccine adjuvants.

RiG-i-LiKe ReCePTORS

RIG-I-like receptors are a class of DExD/H box RNA helicases which recognizes double-stranded 
RNA (dsRNA) (13–17). RLRs consist of RIG-I, MDA5, and laboratory of genetics and physiology 2 
(LGP2) (18). RIG-I and MDA5 have similar structural domains with N-terminal caspase activation 
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and recruitment domains (CARDs), central helicase domain, and 
C-terminal domain, which recognizes viral RNA ligands (19–21). 
RIG-I recognizes short dsRNA and binds to blunt-ended RNA 
with 5′ triphosphate moiety (22–27). In contrast, MDA5 binds 
to the stem region of longer dsRNA in a cooperative manner 
(28–30). LGP2, on the other hand, only have the helicase and 
C-terminal domain and are involved in the regulatory function 
of RIG-I and MDA5 (31, 32).

The CARD domains of RIG-I and MDA5 are involved in the 
activation of downstream signaling event via a protein known 
as mitochondria antiviral signaling protein (MAVS) (33–36). 
RIG-I binds to unanchored lysine-63 polyubiquitin chains and 
promotes efficient interaction with the CARD domain on MAVS 
(37, 38). MAVS protein polymerizes and forms fibrils when acti-
vated and will be polyubiquitinated and phosphorylated (38–42). 
The MAVS oligomer act as a platform to promote downstream 
antiviral signaling by recruiting several different proteins, such 
as tumor necrosis factor receptor type-1-associated death domain 
(TRADD), receptor interacting serine/threonine-protein kinase 1 
(RIP1), Fas-associated protein with death domain (FADD), tumor 
necrosis factor receptor-associated factors (TRAF6, TRAF2, and 
TRAF3), as well as caspase 8 and caspase 10 (43,  44). TRAF3 
activates TANK binding kinase 1/IκB kinase ε/IκB kinase γ/
TANK (TBK1/IKKε/IKKγ/TANK) complex which phosphoryl-
ates and dimerizes interferon regulatory factors 3 and 7 (IRF3 and 
IRF7). The activated IRF3 and IRF7 translocate into the nucleus 
and activate IFN production (45, 46). TRAF 2 and 6 activate the 
IKKα/β/γ (also known as NEMO) by ubiquitination and resulting 
in activation of NFκB and the expression of pro-inflammatory 
cytokines (Figure 1) (41, 47).

PAn-AnTiviRALS TARGeTinG RiG-i

Since RLRs are the key component for the antiviral immune 
response, these sensors are targets for antiviral therapeutics 
development. Current antiviral interventions focus on the use of 
direct-acting antivirals (DAAs), which target the essential com-
ponents in the life cycle of a virus and thus are virus-specific (48). 
Although DAAs are highly effective, the low fidelity repli cation 
of the RNA virus genome could ultimately lead to the emergence 
of DAA therapies escape mutant (49). To circumvent this prob-
lem, broadly targeting antiviral therapeutics need to be used 
synergistically with DAAs. To this end, RIG-I agonists or RIG-I 
pathway activators represent a novel group of promising antiviral 
candidates. Lists of the antiviral candidates are discussed below as 
three categories based on their chemical nature (Table 1).

nUCLeOTiDe-BASeD AnTiviRALS

A dinucleotide-derived small molecule compound, SB9200, has 
been shown to induce IFN via RIG-I and nucleotide-binding 
oligomerization domain containing protein 2 (NOD2). SB9200 
is believed to interact with RIG-I and NOD2 that are associated 
with pre-genomic RNA thus blocking the HBV viral polymerase 
from replicating the genomic RNA (60). SB9200 was shown to 
confer dose-dependent and long-lasting induction of IFNα, 
IFNβ, and ISGs in liver tissue (50). Treatment of this compound 

in woodchucks infected with Woodchuck Hepatitis Virus (WHV) 
showed no sign of toxicity with reduced hepatic WHV antigen 
and nucleic acid. The sequential treatment of WHV-infected 
woodchuck with SB9200 followed by entecavir (ETV), a currently 
used antiviral to treat Hepatitis B (HBV), showed a reduction 
in viremia and delayed recrudescence of viral replication. The 
viral reduction from the treatment of SB9200 was comparable 
with current antivirals, such as Emtricitabine, Tenofovir, and 
Adefovir, when administered for up to 12 weeks (51). Drugs such 
as Emtricitabine, Tenofovir, and Adefovir are commonly used 
for the treatment of HBV. These drugs, however, may cause side 
effects such as lactic acidosis and possible liver, and kidney failure. 
SB9200 is effective for HCV patients with relapse after DAA and 
interferon treatment and could serve as a promising treatment 
option for patients who are not responding to the current regimen 
of DAA therapy (52). The phase 1 clinical trial on naïve adult with 
chronic hepatitis C showed an association between the decline in 
viral RNA and the peak of SB9200 detection in plasma (Clinical 
trial no NCT01803308). Currently, SB9200 is being tested in 
phase 2 clinical trials for treating subjects chronically infected 
with the HBV.

RnA-BASeD AnTiviRAL CAnDiDATeS

5′ triphosphorylated and diphosphorylated short dsRNAs are 
RIG-I specific ligands (22, 26, 61, 62). Goulet et  al. showed 
that 5′pppRNA could activate a broad spectrum of antiviral 
and inflammatory genes such as IRF3, IRF7, NFkB, and the 
downstream ISGs. Treatment of lung epithelial cells A549 with 
5′pppRNA confers protection against vesicular stomatitis virus 
(VSV), vaccinia virus, and dengue virus (DENV). The antiviral 
effect of 5′pppRNA was also detected against HIV in CD4+ 
T cells and HCV in Huh 7.5 cells (53). Besides that, 5′pppRNA 
was also an effective antiviral against influenza virus infection 
in vitro and in vivo. Treating mice with 5′pppRNA prior to influ-
enza virus challenge also reduces pneumonia related to influenza 
virus infection (53). In another study, 5′pppRNA was shown 
to stimulate host antiviral response and reduce the infectivity 
of DENV and chikungunya virus (CHIKV) in human myeloid, 
fibroblast, and epithelial cells via RIG-I specific activation (54).

Several studies were also carried out to determine factors such 
as sequence, length, and structure of 5′pppRNA to enhance the 
antiviral activities of RIG-I (55, 56). Chiang et  al. showed that 
5′pppRNA with uridine-rich sequence with 99 nucleotides hair-
pin (M8) triggered higher interferon response when compared 
to other RIG-I aptamer and poly(I:C). M8 specifically activates 
RIG-I without triggering MDA5 or TLR3 activation. Prophylactic 
and therapeutic treatment using M8 protect cells from dengue 
and influenza viral infections. Furthermore, administration of M8 
followed by influenza virus challenge improves the survival rate 
of mice with low lung virus titer detected at day 3 post-infection 
(55). In another study carried out by Lee et al., different RNA fold 
was shown to elicit different antiviral properties via RIG-I. Short 
hairpin RNA with a bent in the stem structure with phosphoro-
thioate backbone was used as antiviral and was more potent than 
oseltamivir against influenza A H1N1 virus in vitro (56). Linehan 
et al. recently showed that short RNA with stable tetraloop at one 
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FiGURe 1 | Viral RNA is recognized by RIG-I-like receptors (RLRs), RIG-I, or melanoma differentiation-associated protein 5 (MDA5). Activated RLRs interacts with 
mitochondria antiviral signaling protein (MAVS) adapter protein via CARD–CARD interactions. Activated MAVS then interacts with tumor necrosis factor receptor-
associated factors 3 (TRAF3), tumor necrosis factor receptor-associated factors 6 (TRAF6), tumor necrosis factor receptor type-1-associated death domain 
(TRADD), receptor interacting serine/threonine-protein kinase 1 (RIP1), Fas-associated protein with death domain (FADD), and other signaling molecules. TRAF3 
activates TANK binding kinase 1 (TBK1) and IκB kinase ε (IKKε), which phosphorylates interferon regulatory factors 3 and 7 (IRF3 and IRF7). The phosphorylated 
IRF3 and IRF7 dimerize and translocate into the nucleus to induce type 1 interferon response. On the other hand, MAVS interaction with receptor interacting serine/
threonine-protein kinase 1, FADD, TRAF6, and TRADD. TRAF 6 ubiquitinate NF-kappa-B essential modulator (NEMO) which then activates IκB kinase and activates 
NF-κB. NF-κB transcription factor drives the expression of type 1 interferon and proinflammatory cytokines.
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end of duplex RNA triggers a robust IFN 1 response in vivo. These 
short stem-loop RNA (SLR) induces a subset of genes involved in 
antiviral and effector responses as well as represses gene involved 
in T cell maturation and could potentially be developed into a 
highly effective antiviral or vaccine adjuvant (57).

SMALL MOLeCULAR COMPOUnDS

High throughput screening (HTS) of small molecule compounds 
identified a group of novel agonists of the innate immune pathway. 
The isoflavone-like compound confers protection against HCV 

and Influenza A virus in vitro. These compounds were also shown 
to activate a narrower subset of genes and thus have potential to 
be useful antiviral without causing cytokine toxicity (58).

Another class of small molecule compounds, hydroxyqui-
nolines, identified via HTS of compound library in cell culture  
induces the expression of innate immune antiviral genes such 
as RIG-I, IFIT1, IFIT2, IFITM1, OAS3, and MX1. Remarkably, 
although these compounds were able to induce high expression of 
antiviral genes, the expression of type I and III interferon remains 
low, suggesting the activation of distinct antiviral pathway than that 
of RIG-I agonists. The specific target(s) of these hydroxyquinoline 
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TABLe 1 | Pan-antivirals targeting RLRs.

Pan-antivirals Formula Target pathway Reference

nucleotide-based

SB9200 RLR and NLR (50–52)

RnA-based

5′ppp RNA derived from the 5′  
and 3′ UTRs of the negative-strand  
RNA virus Vesicular Stomatitis Virus 

GACGAAGACC ACAAAACCAG AUAAAAAAUA AAAUUUAAUG  
AUAAUAAUGG UUUGUUUGUC UUCGUC

RLR (53, 54)

5′ppp RNA (M8) GACGAAGACCACAAAACCAGAUAAAAAAAAAAAAAAAAAAAAAAAAAAUAAU 
UUUUUUUUUUUUUUUUUUUUUUUUUUAUCUGGUUUUGUGGUCUUCGUC

RLR (55)

5′OH RNA with kink (CBS-13-BPS) GGUAGACGAAACCAGAUAUAAUAUCUGGUUUCGUUUGCC RIG-I, ISG56 (56)

5′PPP SLR Stem loop RNA with the length of 10 and 14 base pair (GGACGUACGUUUC 
GACGUACGUCC) and (GGAUCGAUCGAUCGUUCGCGAUCGAUCGAUCC) 

RIG-I (57)

Small molecular compounds

KIN 100 IRF 3 (58)

KIN101 IRF3 (58)

KIN 1000 IRF 3 (59)

KIN1400 IRF 3 (59)

(Continued)
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Pan-antivirals Formula Target pathway Reference

KIN1408 IRF3 (59)

KIN1409 IRF3 (59)

RLRs, RIG-I-like receptors.

TABLe 1 | Continued
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compounds are not known. These hydroxyquinoline compounds 
were effective antivirals against a broad range of RNA viruses 
from the families Flaviviridae, Filoviridae, Paramyxoviridae, 
Arenaviridae, and Orthomyxoviridae. Interestingly, these  
compounds exhibit both prophylactic and therapeutic activity 
against infection and could be used in combination with other 
antivirals (59).

innATe iMMUne POTenTiATOR  
AS vACCine ADJUvAnTS

Adjuvants act as an immune enhancer to a vaccine. Several different 
classes of adjuvant had been approved for use in human vaccines 
such as alum and oil in emulsion MF59, AS03 (oil in water emulsion),  
virosomes, and AS04 (aluminum with monophosphoryl lipid A)  
(63). Alum and MF59 act by increasing antigen uptake at the 
injection site and activates pro-inflammatory responses (64–66). 
Alum mainly acts via Th2 cellular immune response, which does 
not confer the best protection for viral infections such as HCV and 
HIV. Moreover, there are safety concerns with the use of alum as an 
adjuvant with reported cases of hypersensitivity and erythema (67, 
68). Well characterized agonists of innate immunity may serve as a 
better candidate of targeted vaccine adjuvants (Figure 2).

A small molecule compound named KIN 1148, discovered via 
HTS, was shown to activate IRF3 nuclear translocation. When this 
compound was tested with influenza split virus vaccine H1N1 A/
California/07/2009, it confers protection from lethal challenge of 
influenza virus strain A/California/04/2009. KIN1148 together 
with the vaccine confers protection via IL-10 and Th-2 response 
to T cells in lung and lung-draining lymph nodes. Immunization 
with vaccine and KIN 1148 showed a significant increase in 

IgG antibodies with serum from mice receiving prime-boost 
immuni zation conferring protection to naïve mice from influ-
enza challenge. KIN1148 was shown to be able to work alongside 
the vaccine to boost protective immunity and protect against 
influenza strain A/California/04/2009 (Table 2) (69).

5′triphosphorylated duplex RNA was tested as an adjuvant by 
Beljanski et al. M8 a potent triphosphorylated RNA was used in 
conjunction with virus-like particle (VLP) expressing H5N1 influ-
enza hemagglutinin and neuraminidase. The combination of VLP 
and RNA increases the survival rate of mice infected with H5N1 
influenza virus and induces higher antibody titer against influenza 
virus as compared to other adjuvants such as alum, addavax and 
poly(I:IC). Furthermore, vaccination with VLP and RNA stimu-
lates TH1-biased CD4 T cells response in mouse sera (70). Another 
5′triphosphorylated RNA derived from Sendai virus defective 
interfering RNA (SeV DI RNA) was also tested as adjuvant together 
with the H1N1 2009 pandemic vaccine and was shown to enhance 
production of influenza-specific IgG antibodies and influenza-
specific IgA antibodies indicating that this 5′triphosphorylated 
RNA could potentially be used as influenza vaccine adjuvant (71).

DeLiveRY OF RnA-BASeD AGenTS 
ReMAinS CHALLenGinG

To be effective as therapeutics, functional RNA species must be 
internalized into targeted cells. The delivery methods commonly 
used for RNA-based or nucleotide specific antivirals includes 
the lipid-oligo complexes, nanoparticle-based delivery, and 
viral-based delivery. The hydrophilic, negatively charge nature 
of RNA hinders the direct uptake of naked oligos into cells. The 
administration of RNA via inhalation was poorly efficacious in 
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TABLe 2 | Innate immune potentiator as virus vaccine adjuvants.

Adjuvant Target Status virus vaccine Reference

KIN 1148 IRF3 Laboratory testing Influenza H1N1 A/California/07/2009 (69)

M8
5′pppRNA
GACGAAGACCACAAAACCAGAUAAA 
AAAAAAAAAAAAAAAAAAAAAAAUA 
AUUUUUUUUUUUUUUUUUUUUUU 
UUUUUAUCUGGUUUUGUGGUCUUCGUC

RLR Laboratory testing H5N1 influenza (70)

5′pppRNA
Derived from SeV DI RNA

RLR Laboratory testing H1N1 2009 (71)

RLRs, RIG-I-like receptors.

FiGURe 2 | The use of innate immune potentiator as adjuvant triggers the stimulation of adaptive immune responses. Innate immune potentiator stimulates 
RIG-I-like receptors (RIG-I) and interacts with MAVS adapter. This results in the activation of downstream signaling pathways and release of type I interferon. Type I 
interferon couple with the presence of antigen trigger DC maturation by enhancing surface marker expression and antigen presentation. The activated DCs interact 
with CD4+ T cells and thus stimulate Type 1T helper (TH1) cells. TH1 cells in turn interact with B cells to produce antibodies and trigger clonal expansion of B cells 
and T helper cells.
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lung macrophages and only intratracheal administration leads 
to efficient delivery of RNA into the targeted site (72). Besides 
suffering from poor uptake, naked RNA is often prone to degra-
dation in plasma (73).

One favored method of delivery for RNA is lipid-oligo com-
plexes. This delivery method is more efficient due to the tendency 

of lipid to interact with the cell membrane and improve the uptake 
of RNA (74). A biocompatible lipid-based carrier can further 
reduce undesired immunogenic activation. However, the cationic 
nature of lipid is reported to interact with proteins in serum, and 
these aggregates are cleared by organs such as the spleen, lung 
and liver (75).
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the IFNβ level and RIG-I transcription in human dendritic 
cells when infected with Newcastle disease virus (NDV) (82). 
Individuals with these SNPs were also shown to have complica-
tions of brainstem encephalitis when infected with enterovirus 
71 (84). Several intronic SNPs also alter the cellular and humoral 
response to the measles vaccine. Genotype of individual carrying 
the SNP in minor allele of RIG-I (for rs12555727, rs12006123, 
and rs17289116) also showed less virus-specific IFN-γ secretion 
against measles. These findings imply that genetic variants are 
also involved in initial antiviral responses to vaccination (85) 
The haplotype of RIG-I rs3739674 which is located in the 5′UTR 
is associated with higher EV71 HFMD risk possibly by altering 
the expression level of the gene (86). In order to target RIG-I as 
pan-antiviral or vaccine adjuvant, the different haplotypes affect-
ing the disease outcome should be considered. Dosage concern 
should be taken into account to enhance the effectiveness of 
RIG-I as a broadly targeting antiviral or vaccine adjuvant.

COnCLUSiOn

Emerging and re-emerging viruses present a significant public 
health concern, and there is an urgent need for novel vaccina-
tion and treatment strategies. RIG-I agonists as new adjuvant 
candidates may work alone or couple to vaccine agents such as 
VLPs or recombinant proteins to improve the safety and efficacy 
of conventional vaccines. Antivirals targeting the innate arm of 
immunity (host-directed therapy) would be useful to confer protec-
tion against emerging and re-emerging viruses (87). However, the 
development of such vaccines and antivirals is still in its infancy 
and many challenges related to the production and safety evalua-
tion of vaccines and antivirals. Several key issues still need to be 
addressed including production platform, formulation, delivery, 
safety, and the ability of such class of the vaccine adjuvant or 
antivirals to be used in immunocompromised and elderly.
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Nanoparticle-based delivery is a versatile method for RNA 
delivery with many organic or inorganic materials available as 
nanocarriers. Nanoparticle requires less RNA material with a 
large surface area for interaction with cells (76). The material 
used as a carrier could also be tailored for application such as 
dose, circulation time, as well as passive or active release of RNA 
(77). To overcome the issue of toxicity or uncontrolled immune 
activation, multistage delivery of RNA from nanoparticles could 
be carried put (78). The downside of this strategy is the need to 
test various materials for RNA delivery and this would drive up 
the cost of therapeutics or vaccine.

THe DAnGeR OF UnCOnTROLLeD 
iMMUne ACTivATiOn ALwAYS eXiSTS

The therapeutic and prophylactic use of pan-antivirals was previ-
ously demonstrated in viral infection of influenza and dengue 
(55, 69, 71). Hotz et  al. demonstrated that the pre-exposure of 
murine APC to synthetic poly(I:C) inhibits RLR activation while 
augmenting the sensitivity of TLRs. This would also imply a nar-
row therapeutic window for the use of pan-antiviral RNA target-
ing RIG-I (79). For clinical usage, the dosage of therapeutics is 
important to minimize side effects such as exacerbated cytokine 
storms and toxicity. Prater et  al. showed that the injection of 
pregnant C57BL/6 mice with a high dose of CpG-ODN resulted 
in high fetal resorptions and craniofacial/limb defects (80). RIG-I 
agonists face similar concerns.

RiG-i SnPs MAY LeAD TO POOR  
OR HYPeR-ReSPOnSiveneSS

There are 324 RIG-I SNPs identified from NCBI SNPs database 
with 8 resulting in amino acid changes or truncation. The 
S183I mutation on RIG-I weakened the antiviral signaling and 
produces a low level of IFNβ and NFκB upon IAV and SeV 
challenges in a cell-based assay. Another SNP of RIG-I at P229 
resulted in frameshift mutation at the CARDs domain and  
triggers constitutive expression of IFNβ suggesting that indivi-
dual with this mutation could be linked to hyper-responsiveness 
in the immune system or autoimmune diseases (81). Another 
commonly found SNP (rs10813831) of RIG-I resulted in the sub-
stitution of R7C which could alter RIG-I interaction with MAVS 
(82). Individuals with these SNPs have a lower rubella-specific 
IgG titer when immunized with live measles-mumps-rubella 
(MMR-II) vaccine (83). This SNPs mutation also increased 
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