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Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter 
and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from 
the amino acid histidine through a reaction catalyzed by the enzyme histidine decarbox-
ylase (HDC), which removes carboxyl group from histidine. Despite the importance of 
histamine, transcriptional regulation of HDC gene expression in mammals is still poorly 
understood. In this review, we focus on discussing advances in the understanding of 
molecular regulation of mammalian histamine synthesis.
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inTRODUCTiOn

Bill Paul’s impact on immunology is broad and enormous. Like many of his former trainees, I had 
the good fortune to learn from him. Bill’s mentorship has nurtured my lifelong interest in studying 
type 2 immune responses that cause allergic diseases and protect against parasitic infections. In 
the early years of my laboratory, we had investigated how naïve CD4+ T cells commit into T helper 
type 1 cells by silencing the potential to transcribe the Il4 gene (1–3). More recently, we extended 
our efforts to understand how a bi-potential basophil and mast cell progenitor acquires the capacity 
to transcribe a set of basophil-specific or mast cell-specific genes while simultaneously repressing 
transcription of a gene set that is specific for the other cell type (4). With a newly gained understand-
ing of a network of transcription factors and their targeted enhancers (5), our laboratory has chosen 
to investigate the Hdc gene (encode histidine decarboxylase, a rate-limiting enzyme for histamine 
synthesis) in greater detail.

Anaphylaxis is a serious allergic reaction that is rapid in onset and can be life threatening. The 
clinic manifestations include symptoms that involve the skin, gastrointestinal track, respiratory 
system, and cardiovascular system (6). Anaphylaxis can be caused by allergy to foods, insect venoms, 
medications, and other agents (6). The incidence of food-induced anaphylaxis has risen dramatically 
in developed countries during the past several decades (7–9). The cost of treating food allergy is 
estimated at about 25 billion dollars annually in the US alone (10).

Histamine plays an essential role in IgE-medicated anaphylaxis, the most common type of 
anaphylaxis (11–14). Histamine was first purified from ergot fungi (15) in 1910 and from human 
tissues (16) in 1927. Histamine has pleiotropic effects on skin and the cardiovascular, respiratory, 
digestive, central nervous, and immune systems (17). It is a profound vasodilator that increases 
blood vessel permeability, allowing blood leukocytes to enter tissues to promote inflammatory 
responses. Relatively large quantities of histamine can cause a rapid decrease in body temperature 
due to massive leakage of blood plasma into the extravascular space. Rapid release of large amounts 
of histamine leads to anaphylaxis (12, 14). Histamine belongs to a family of biogenic amines that 
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FigURe 1 | Histamine synthesis.
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includes neurotransmitters, such as serotonin and dopamine, and 
hormones, such as epinephrine. Biogenic amines that contain one 
or more amine groups are formed mainly by decarboxylation of 
amino acids. Histamine is a monoamine synthesized from the 
amino acid histidine through a reaction catalyzed by the enzyme 
histidine decarboxylase (HDC), which removes carboxyl group 
from histidine (Figure 1). Although histamine can be synthesized 
by bacteria found in contaminated food (18) and in the gut of 
asthma patients (17, 19), in this review, we focus on discussing 
advances in the understanding of molecular regulation of mam-
malian histamine synthesis.

HiSTAMine-PRODUCing CeLLS  
in MAMMALS AnD STiMULi THAT 
TRiggeR HiSTAMine ReLeASe

Histamine is synthesized primarily by mast cells, basophils, 
histaminergic neurons in the basal ganglia of the brain and 
enterochromaffin-like cells (ECL) in the stomach. These cells 
produce large amounts of histamine and are thought to be the 
major histamine-producing cells (Figure 2). They continuously 
synthesize histamine, which is then linked to the carboxyl group 
of heparin and stored in intracellular granules until the cells 
receive the appropriate activating stimulus. Upon external stimu-
lation, these cells degranulate, releasing the stored histamine. 
Stimuli that trigger histamine release by these major histamine-
producing cells have been reviewed extensively (20–25). Antigen 
crosslinking of antigen-specific IgE bound to the high-affinity 
IgE receptor, FcεRI, on the mast cell and basophil surface is the 
most robust stimulus that triggers histamine release by these cells 
(20–23). Substance P and allergy-inducing drugs that bind to 
G-protein-coupled receptors can also trigger basophils and mast 
cells to release histamine via different signaling pathway (23, 26).  
In addition, complement components, such as the C3a and C5a 
“anaphylatoxins,” have also been shown to induce histamine 
release by mast cells (27). Many cytokines, including IL-3, IL-18, 
IL-33, GM-CSF, and SCF, promote histamine synthesis (28–30). 
In general, cytokines alone do not induce histamine release 
although it remains controversial whether IL-33 can have this 
effect. Some reports describe that IL-33 stimulates histamine 
release (31, 32), while other reports dispute this (33, 34). It is 
suggested that IL-33 alone does not induce histamine release by 
basophils, but enhances histamine release in response to IgE/
FcεRI crosslinking (35).

Additional histamine-producing cells have also been identi-
fied, including T  cells (36), dendritic cells (37), macrophages  
(38, 39), and epithelial cells (40, 41) (Figure 2). In contrast to 
mast cells and basophils, these cells produce relative small quan-
tities of histamine and do not store it in their cytoplasm (42). 
The small amounts of histamine that they produced are released 
without external stimulation (42). The biological significance 
of the small amounts of histamine produced by these minor 
histamine-producing cells remains unclear. Cell type-specific 
deletion of the Hdc gene, which encodes HDC, an enzyme 
essential for histamine synthesis, would shed light on the role 
of histamine synthesis and secretion by the minor histamine-
producing cells.

HDC AnD HiSTAMine SYnTHeSiS  
in MAMMALS

After several groups purified mammalian HDC protein from fetal 
rat liver and mouse mastocytoma P-815 cells (43–45), a cDNA 
that encodes this protein was subsequently cloned (46, 47). The 
Hdc gene encodes HDC protein, which has a molecular mass of 
74 kDa and is a proenzyme with little or no enzyme activity. Once 
the proenzyme is cleaved at the site near its c-terminus, presum-
ably by Caspase-9, it yields a 53 kDa N-terminal and a 20 kDa 
C-terminal subunit. The 20 kDa C-terminal subunit is believed to 
possess inhibitory activity (48). The 53 kDa N-terminal subunit 
forms a homodimer that is an active decarboxylase (48, 49). HDC 
is the primary enzyme that catalyzes histamine synthesis. Mice 
deficient in the Hdc gene fail to synthesize histamine and have 
reduced or absent IgE-mediated anaphylactic responses (50–53). 
Several potent HDC inhibitors have been identified, including 
the histidine derivatives α-fluoromethyl histidine, histidine 
methyl ester, and pirodoxal histidine methyl ester (54–56). 
However, these HDC inhibitors have not been further developed 
for clinical use.

HDC gene eXPReSSiOn AnD HiSTAMine 
SYnTHeSiS in BASOPHiLS AnD  
MAST CeLLS

Hdc gene expression and histamine synthesis are regulated 
both positively and negatively by a range of factors. Notably, 
crosslinking of FcεRI by antigen binding to FcεRI-associated 
IgE increases mast cell Hdc mRNA expression and histamine 
synthesis (57, 58). These mast cell activation-induced increases 
in Hdc mRNA expression and histamine synthesis are also 
induced by phorbol 12-myristate 13-acetate (59). Hdc mRNA 
expression and histamine synthesis also increase as immature 
mast cells undergo maturation. Bone marrow-derived mast cells 
(BMMCs) appear immature because they contain relatively little 
histamine and express relatively low levels of FcεRI (60). These 
immature mast cells develop into mature mast cells with higher 
amounts of histamine in vivo if they are adoptively transferred 
into the peritoneal cavity (61). However, it is not clear if in vivo 
exposure to IgE promotes maturation and increases Hdc mRNA 
expression.
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FigURe 2 | Histamine-producing cells and stimuli that trigger histamine release.
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In this regard, we demonstrated that chlorotoxin, which 
induces mast cell maturation (62), strongly upregulates Hdc gene 
expression in BMMCs within few hours after the treatment (5).  
The mechanism by which chlorotoxin enhances Hdc gene tran-
scription remains to be determined. It is conceivable that chloro-
toxin activates mast cells by binding to an acidic glycosphingolipid, 
ganglioside G, that has been shown to be expressed on the mast 
cell surface (62). Chlorotoxin-triggered signals in mast cells then 
activate transcription factors that directly and rapidly promote 
Hdc gene transcription. It is unknown whether bacteria in the 
gut of allergic patients can promote Hdc mRNA and histamine 
synthesis by producing substances similar to chlorotoxin.

In line with the notion that factors promoting mast cell 
maturation also enhance histamine synthesis, cytokines that 
promote basophil and mast cell maturation, such as IL-3, IL-18, 
IL-33, GM-CSF, and SCF, have also been reported to increase 
HDC activity (28–30, 63). It is unclear whether these cytokines 
regulate Hdc gene transcription by increasing the expression of 
the genes that encode Hdc gene-activating transcription factors 
or by activating already expressed transcription factors to induce 
transcription of the Hdc gene. Other substances, including 
chemokines, neuropeptide substance P, and IL-1α have also been 
reported to induce Hdc mRNA and histamine synthesis (64, 65).

By contrast, mitochondrial uncoupling protein 2, a mitochon-
drial transporter protein that transfers anions from the inner to 
the outer mitochondrial membrane and protons from the outer 
to the inner mitochondrial membrane, inhibits Hdc mRNA 
expression and histamine synthesis, possibly by suppressing the 
production of reactive oxygen species (66). Substances found in 
fruits and vegetables, such as quercetin (67), and in green tea, 
such as epigallocatechin gallate, also potently inhibit HDC (68). 
More detailed examination of negative regulators of Hdc mRNA 
expression should promote development of agents that may 
be able to prevent and treat food allergy and other histamine-
mediated allergic inflammatory disorders.

The human HDC gene is located in the 15q21.2 region of chro-
mosome 15. It contains 12 exons (69) (Figure 3). Eight predicted 
isoforms can be generated by alternative splicing and two actual 
isoforms have been described (70). HDC mRNA is expressed 
broadly in many organs, with the highest expression levels found 
in the gallbladder, stomach, and lung (71). Because the RNA-seq 
data for normal tissues in the Human Protein Atlas were obtained 
from intact tissues, it is not clear whether the human HDC gene 
is expressed predominantly in known histamine-producing cells, 
such as mast cells and ECL in high HDC-expressing tissues, or 
predominantly in other cell types in those tissues. In contrast to 
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FigURe 3 | Genomic structures of the human and mouse histidine decarboxylase (HDC) gene. Red bars indicate the enhancers we described.
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the human Hdc gene, the mouse HDC gene is located in chro-
mosome 2 (72). It resembles the human gene in that it contains 
12 exons, is expressed broadly in many tissues with the highest 
expression levels in lung, ovary, and subcutaneous fat pads  
(72, 73), and is 86% homologous with the human gene (https://
www.ncbi.nlm.nih.gov/homologene/20490); however, there are 
only three predicted isoforms and no isoform, other than the 
classical one, have been found for murine Hdc (72).

There is still limited knowledge of how Hdc gene expression is 
regulated transcriptionally. Most previous work has concentrated  
on the promoter region of this gene. Deletion analysis of Hdc pro-
moter-driven luciferase reporter gene transcription demonstrated 
that the transcription factor SP1 binds to a GC box (GGGGCGGGG) 
found in both the human and mouse Hdc gene promoters (72, 74). 
Several promoter elements have been reported to negatively regulate 
Hdc gene transcription. For example, the transcription factors YY1 
and KLF4 have been shown to negatively regulate the Hdc gene by 
suppressing SP1 in a gastric cancer cell line (75, 76).

By contrast, Hdc gene expression is positively regulated by 
the transcription factor GATA binding protein 2 (GATA2), a 
member of the GATA family of transcription factors. GATA2 is 
critical for survival and proliferation of hematopoietic stem cells 
(77, 78), granulocyte-monocyte progenitor differentiation (79), 
and basophil and mast cell differentiation (80, 81) and is required 
for connective tissue mast cell development (5). By contrast, 
basophil development is not affected in connective tissue-specific 
Gata2-deficient mice (5). We have also found that mucosal and 
connective tissue-specific Gata2-deficient mice fail to develop 
both mucosal and connective tissue mast cells, indicating that 
GATA2 is required for both mucosal and connective tissue mast 
cell development (Li et al., unpublished data). To distinguish the 
role of GATA2 in regulating the Hdc gene from its role in mast cell 
development, we used an inducible gene deletion method to delete 
the Gata2 gene from mast cells after they had fully differentiated. 
In this inducible gene deletion model, the enzyme Cre is fused 
to the estrogen receptor (ER) and the ER-Cre fusion product is 
induced to enter the cell nucleus to cleave a floxed gene of interest 
by the ER ligand 4-hydroxytamoxifen (82). Using this method, we 
demonstrated that GATA2 plays a critical role in regulating Hdc 
gene expression in even fully differentiated mast cells. However, 
in contrast to its role in mast cell development, GATA2 is not 
needed for survival of fully differentiated mast cells (83).

More recently, our group has used active histone mark ChIP 
and reporter gene transcription assays to identify and characterize 
two Hdc enhancers in mast cells. Epigenomic studies demonstrate 
that monomethylation of lysine 4 on histone 3 (H3K4me1) marks 
genes that are poised to be transcribed, whereas acetylation of 

lysine 27 on histone 3 (H3K27ac) identifies genes that are actively 
being transcribed. The combined presence of H3K4me1 and 
H3K27ac modifications predicts enhancer activity (84–88). Our 
H3K4me1 and H3K27ac ChIP-seq analysis of BMMCs identified 
two putative Hdc enhancers located −8.8 kb upstream and +0.3 kb 
downstream from the transcription start site of the Hdc gene 
(Figure 3). We demonstrated that the −8.8 kb Hdc enhancer, but 
not the +0.3 kb Hdc enhancer, increases minimal Hdc promoter 
activity in a luciferase reporter gene transcription assay. The 
transcription factor MITF binds to the −8.8 Hdc enhancer and 
drives its enhancer activity. Indeed, MITF overexpression largely 
restores Hdc gene expression in Gata2-deficient mast cells. Our 
study also suggests that GATA2 induces MITF and that these two 
transcription factors together direct full Hdc gene transcription 
in mast cells in a feed-forward manner. However, it is not certain 
that the −8.8  kb Hdc enhancer is fully responsible for positive 
regulation of the Hdc gene, because in  vivo importance of the 
+0.3 kb Hdc enhancer in Hdc gene transcription cannot be ruled 
out by the luciferase reporter gene transcription assay alone (5).

Despite remarkable progress in genome-wide annotation of 
potential enhancers, functional validation of annotated enhanc-
ers remains an unmet challenge. Transgenic mice, reporter gene 
assay, and CRISPR/Cas9 genome editing have been used to vali-
date the biological functions of enhancers identified by histone 
marks. Each of these methods has its strengths and weaknesses 
(89, 90). The reporter gene assay has been widely used to assess 
enhancer activity. It is simple, rapid, and efficient at assessing pro-
moter and enhancer activity in transiently or stably transfected 
cell lines. The limitation of the transient reporter gene assay is 
that it does not measure promoter and enhancer activity in the 
context of chromatin. Despite this disadvantage, this reductionist 
approach is useful for assessing binding of transcription factors to 
cis regulatory elements in accessible regions. It has been reported 
that ~60% of annotated enhancers show enhancer activity by the 
luciferase reporter gene assay (86, 91–94). The in vivo function of 
the −8.8 Hdc enhancer requires further investigation.

HiSTAMine SYnTHeSiS in THe CenTRAL 
neRvOUS SYSTeM AnD THe STOMACH

In addition to its activity as a vasoactive mediation, histamine is 
a neurotransmitter and a regulator of gastric acid secretion. HDC 
mRNA is expressed in the brain exclusively in the basal ganglia 
(95). Specific ablation of histaminergic neurons leads to repetitive 
movements (96), that resemble the signs of Tourette syndrome 
(97). Consistent with this, a nonsense mutation at the human 
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HDC gene (W317X) has been identified in a family of patients 
with this syndrome (97, 98) and mice completely deficient in Hdc 
gene transcription develop a Tourette-like syndrome (97, 99). 
However, the mechanisms involved in Hdc gene regulation in the 
basal ganglia are currently unknown. In the stomach, histamine 
is synthesized in ECL and is released from these cells upon gas-
trin and acetylcholine stimulation. The released histamine then 
stimulates parietal cells to secrete stomach acid (25, 100). Mice 
deficient in the Hdc gene fail to fully acidify their gastric contents 
(100), which can lead to indigestion, diarrhea, constipation, or 
rectal itching (101). Clinically, histamine 2 (H2) receptor antago-
nists, such as ranitidine, are currently used to ameliorate stomach 
hyperacidity and peptic ulcer disease by blocking this receptor 
on the hydrochloric acid-producing parietal cells in the stomach 
(102). At present, it is not known how the Hdc gene is regulated in 
ECL. It is most likely that different transcription factors are used 
to regulate the Hdc gene in basal ganglia and ECL.

COnCLUDing ReMARKS

Histidine decarboxylase is the rate-limiting enzyme for histamine 
synthesis. Understanding transcriptional regulation of the Hdc 

gene will advance our knowledge about how this gene detects 
extracellular stimuli and increases its transcription, leading to 
histamine synthesis, replenishment, and accumulation that 
exacerbate allergic inflammation and anaphylaxis. Fine mapping 
of critical transcription factors and their authentic binding sites 
within the Hdc promoter and enhancers should promote identi-
fication of regulatory variants that influence allergy susceptibility 
and severity. Today, Bill Paul’s teaching and his large body of 
work on IL-4 continues to inspire our fascination with type 2 
immunity.
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