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Our aim was to analyze the relationship between plasma inflammatory biomarkers and 
CD4+ T-cells evolution in human immunodeficiency virus (HIV) elite controllers (HIV-
ECs) with a suppressed viremia. We carried out a retrospective study in 30 HIV-ECs 
classified into two groups: those showing no significant loss of CD4+ T-cells during the 
observation period (stable CD4+, n  =  19) and those showing a significant decrease 
of CD4+ T-cells (decline CD4+, n = 11). Baseline plasma biomarkers were measured 
using a multiplex immunoassay: sTNF-R1, TRAIL, sFas (APO), sFasL, TNF-α, TNF-β, 
IL-8, IL-18, IL-6, IL-10, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, SDF1α, GRO-α, and 
CCL11. Baseline levels of sTNF-R1 and CCL11 and sTNF-R1/TNF-α ratio correlated 
with the slope of CD4+ T-cells (cells/μl/year) during follow-up [r = −0.370 (p = 0.043), 
r = −0.314 (p = 0.091), and r = −0.381 (p = 0.038); respectively]. HIV-ECs with declining 
CD4+ T-cells had higher baseline plasma levels of sTNF-R1 [1,500.7 (555.7; 2,060.7) 
pg/ml vs. 450.8 (227.9; 1,263.9) pg/ml; p = 0.018] and CCL11 [29.8 (23.5; 54.9) vs. 
19.2 (17.8; 29.9) pg/ml; p = 0.041], and sTNF-R1/TNF-α ratio [84.7 (33.2; 124.2) vs. 
25.9 (16.3; 75.1); p = 0.012] than HIV-1 ECs with stable CD4+ T-cells. The area under 
the receiver operating characteristic (ROC) curve [area under ROC curve (AUROC)] were 
0.758 ± 0.093 (sTNF-R1), 0.727 ± 0.096 (CCL11), and 0.777 ± 0.087 (sTNF-R1/TNF-α).  
The cut-off of 75th percentile (high values) for these biomarkers had 71.4% positive 
predictive value and 73.9% negative predictive value for anticipating the evolution of 
CD4+ T-cells. In conclusion, the loss of CD4+ T-cells in HIV-ECs was associated with 
higher levels of two plasma inflammatory biomarkers (sTNF-R1 and CCL11), which were 
also reasonably accurate for the prediction of the CD4+ T-cells loss.

Keywords: human immunodeficiency virus, elite controllers, inflammation, plasma biomarkers, acquired 
immune deficiency syndrome, progression
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inTrODUcTiOn

CD4+ T-cells are the major target for human immunodefi-
ciency virus (HIV); therefore, a gradual CD4+ T-cells count 
decline and progression to acquired immune deficiency syn-
drome (AIDS) are normally observed during untreated HIV-
infection (1). In contrast, elite controllers [HIV elite controllers 
(HIV-ECs)] are a subgroup of antiretroviral treatment-naïve 
HIV-infected patients (<1%) that naturally suppress HIV 
viremia (generally <50 copies/ml) with relative CD4+ T-cells 
preservation and delayed AIDS progression, but a persistent 
low-level HIV replication is detectable by ultrasensitive assays 
(2). Moreover, there is substantial interindividual variability in 
the rate and extent of progression to AIDS in HIV-ECs (3). 
Thus, most patients have elevated CD4+ T-cells count, stable 
CD4+ T-cell trajectories, and more favorable clinical outcomes 
compared with viremic patients; but a subgroup of HIV-ECs 
may progress to AIDS with CD4+ T-cells decline and/or loss 
of virologic control (4). In this regard, HIV-ECs showed lower 
marker levels of inflammatory and immune activation than 
HIV viremic controllers (HIV-VCs) (5, 6).

There is evidence of ongoing inflammation, bacterial translo-
cation, T-cells activation, and CD4+ T-cells depletion on HIV-
ECs, suggesting that this natural long-term HIV control may have 
an immunologic and clinical cost (3, 7–10). Chronic immune 
activation associated with HIV infection may lead to fibrosis 
in the lymphoid tissues, where HIV replicates, for dramatically 
altering the structure and function, giving rise to a progressive 
loss of CD4+ T-cells, particularly in the naive T-cells subset  
(11, 12). In this regard, HIV-ECs also have significant lymphoid 
tissue fibrosis and CD4+ T-cells depletion at lymphoid tissue, 
similar to HIV non-controllers (13).

The role of immune activation in HIV-1 pathogenesis has 
been broadly analyzed, but immune activation in HIV disease 
progression is not well characterized in HIV-ECs. The aim of our 
study was to analyze the relationship between plasma inflamma-
tory biomarkers and CD4+ T-cells evolution in HIV-ECs with a 
suppressed viremia.

MaTerials anD MeThODs

Patients
We carried out a retrospective study with 30 HIV-ECs from 
the cohort of HIV controllers of the Spanish AIDS Research 
Network (ECRIS cohort), launched in 2013. ECRIS is a multi-
centre cohort of HIV controller patients whose data come from  
the long-term non-progressors cohort, the cohort of the Spanish 
AIDS Research Network (CoRIS) (3), and from different cli-
nical centers (see Appendix S1 in Supplementary Material). 
To be included in ECRIS cohort, EC patients were defined as 
asymptomatic individuals with at least three consecutive plasma 
HIV viral load (pVL) determinations below the detection 
limit (pVL  <  50  copies/ml) during a period of 12  months in 
the absence of any antiretroviral therapy. Characteristics of the 
ECRIS cohort have been described in detail elsewhere (3).

The study protocol was approved by the Institutional 
Review Boards of the participating hospitals. All patients gave 

written informed consent in accordance with the Declaration of  
Helsinki.

Starting from this cohort, we selected HIV-ECs that had long-
term control of HIV replication (minimum of 3 years), during 
which the evolution of their CD4+ T-cells levels was evaluated 
and with baseline plasma sample available for study. For each 
patient, a slope of CD4+ T-cells was calculated by linear regres-
sion models with all CD4+ T-cells count throughout the time 
of each patient’s follow-up. Based on this CD4+ T-cells slope, 
the study patients were classified into two groups: those who 
showed no significant (p ≥ 0.05) loss of CD4+ T-cells during the 
observation period (stable CD4+, n = 19) and those who had 
a significant decrease (p <  0.05) in the levels of CD4+ T-cells 
(decline CD4+, n = 11).

The clinical and epidemiological data were provided by 
ECRIS cohort. Furthermore, samples from patients were kindly 
provided by the Spanish HIV HGM BioBank integrated in the 
Spanish AIDS Research Network (RIS) (14). Samples were pro-
cessed following current procedures and were frozen at −80°C 
immediately after their reception (14). The first biological sample 
available after the inclusion of each patient in the cohort was used 
for laboratory assays.

Multiplex elisa
Multiplex kits (ProcartaPlex™ Multiplex Immunoassay; Affy-
metrix eBioscience, San Diego, CA, USA) were used to specifi-
cally evaluate plasma biomarkers according to the manu facturer’s 
specifications using the Luminex 100™ analyzer (Luminex 
Corporation, Austin, TX, USA). The kits used were Affymetrix 
Human Chemokine 9plex panel [Eotaxin (CCL11), GRO-α 
(KC/CXCL1), IL-8 (CXCL8), IP-10 (CXCL10), MCP-1 (CCL2), 
MIP-α (CCL3), MIP-β (CCL4), RANTES (CCL5), and SDF-1α 
(CXCL12)], ProcartaPlex Simplex [TNF-β, IL-18, sFas (APO), 
sTNF-RI, TRAIL, and sFasL], and ProcartaPlex High Sensitivity 
(IL-6, IL-10, and TNF-α).

statistical analysis
The statistical analysis was performed with the Statistical Package 
for the Social Sciences (SPSS) 21.0 (SPSS Inc., Chicago, IL, USA). 
Statistical significance was defined as p < 0.05. All p-values were 
two-tailed. Values were expressed as absolute number (percent-
age) and median (25th; 75th percentile).

Categorical data and proportions were analyzed using the 
chi-squared test or Fisher’s exact test (when expected values were 
below 5). Mann–Whitney U test was used to compare data among 
independent groups (stable CD4+ vs. decline CD4+). Correlation 
was analyzed using the Pearson correlation coefficient.

We used the logistic regression analysis to test the associa-
tion between levels of plasma inflammatory biomarkers and the 
two study groups according to the evolution of CD4+ T-cells 
slope (stable CD4+ vs. decline CD4+). When a significant 
association value was obtained, we saved the value of predicted 
probability for each patient and we evaluated the diagnostic 
performance of plasma biomarkers for predicting the evolution 
of CD4+ T-cells using the receiver operating characteristic 
(ROC) curve. We also calculated the sensitivity (Se), specificity 
(Sp), positive predictive value (PPV), and negative predictive 
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Table 1 | Characteristics of HIV-infected patients included in the study.

characteristic all patients stable cD4+ Decline cD4+ p-Value

No. 30 19 11
Age (years) 41 (36; 47) 40 (33; 46) 42 (38; 48) 0.324
Gender (males) 13 (43.3%) 5 (26.3%) 7 (63.6%) 0.104
Presence of HCV coinfection 13 (43.3%) 9 (57.9%) 4 (54.5%) 0.842
CD4+ T-cell count (cells/μl) at beginning of follow-up 959 (793; 1,147) 856 (675; 1,145) 1,053 (850; 1,153) 0.130
Follow-up (years) 12 (8.5; 12.3) 12 (11; 13) 11 (6; 12) 0.047
CD4+ T-cell slope (cells/μl/year) during follow-up −2.5 (−35; 13) 8 (−2; 54) −47 (−86; −30) <0.0001
CD4+ T-cell count (cells/μl) at the end of follow-up 816 (632; 1,110) 1,005 (725; 1,190) 633 (503; 978) 0.016
Number of HIV-RNA blips (pVL > 50 copies/ml) 1 (0; 2) 1 (0; 2) 1 (0; 2) 0.497

Values were expressed as median (percentile 25; percentile 75) for quantitative variables, and as absolute number (percentage) for qualitative variables.
HCV, hepatitis C virus; HIV, human immunodeficiency virus.

FigUre 1 | Relationship of sTNF-R1 and CCL11 plasma levels with CD4+ T-cells evolution in human immunodeficiency virus (HIV) elite controllers (HIV-ECs)  
with sustained virologic control. (a,b) Show dot-plot graphs of sTNF-R1 and CCL11 vs. CD4+ slope in the whole population of HIV-ECs; (c,D) show levels of 
sTNF-R1 and CCL11 in the two groups of HIV-ECs (stable CD4 and decline CD4); (e,F) show the receiver operating characteristic curves for sTNF-R1 (e) and 
CCL11 (F) as predictors of CD4+ decline in HIV-ECs.
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value (NPV) for analyzing the cut-off point of the highest values 
(75th percentile).

resUlTs

study Population
The characteristics of the 30 HIV-ECs with sustained viremia 
control (19 with stable CD4+ T cells count and 11 with decreasing 
CD4+ T cells count) are shown in Table 1. Overall, the median 
age was 41  years, 43.3% were males, and more than 40% were 
coinfected with hepatitis C virus (HCV). The CD4+ T-cells count 
at the beginning of the follow-up was 959 cells/μl and the time of 
follow-up was 12 years. Several characteristics were similar in the 
two groups of HIV-ECs, except for the slope of CD4+ T-cells, the 
CD4+ T-cell count at the end of follow-up, and a slight difference 
in time of follow-up.

relationship analysis
We found baseline plasma levels of sTNF-R1 (Figure  1A) and 
CCL11 (Figure  1B) correlated with the slope of CD4+ T-cells 
(cells/μl/year) during the follow-up [r = −0.370 (p = 0.043) and 
r = −0.314 (p = 0.091), respectively]. Besides, sTNF-R1/TNF-α 
ratio also showed a significant negative correlation with the 
slope of CD4+ T-cells [r = −0.381 (p = 0.038)]. An absence of 
correlation was found between sTNF-R1 and CCL11 [r = 0.327 
(p = 0.078)].

Diagnostic Performance
We analyzed the differences between groups and the diagnostic 
performance of plasma biomarkers on the evolution of CD4+ 
T cells count (full data in Table S1 in Supplementary Material).

We found that HIV-ECs with decline CD4+ T-cells had higher 
baseline plasma levels of sTNF-R1 [1,500.7 (555.7; 2,060.7) pg/ml  
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vs. 450.8 (227.9; 1,263.9) pg/ml; p  =  0.018] and CCL11 [29.8 
(23.5; 54.9) vs. 19.2 (17.8; 29.9) pg/ml; p = 0.041] than HIV-1 ECs 
with stable CD4+ T-cells (Figures 1C,D; respectively). Moreover, 
we found that the baseline ratio of sTNF-R1/TNF-α was higher in 
HIV-ECs with decline CD4+ T-cells [84.7 (33.2; 124.2) vs. 25.9 
(16.3; 75.1); p = 0.012] than HIV-1 ECs with stable CD4+ T-cells.

The area under receiver operating characteristic curve 
(AUROC) of sTNF-R1 was 0.758 ± 0.093 (p = 0.020) (Figure 1E) 
and of CCL11 was 0.727 ± 0.096 (p = 0.041) (Figure 1F) for 
predicting the CD4+ T-cells loss in HIV-ECs. The AUROC was 
0.789 ± 0.084 (p = 0.009) for the two molecules together (sTNF-
R1 and CCL11). That is, there was practically no improvement 
in the value of AUROC with respect to each biomarker sepa-
rately. Moreover, we found that the AUROC for baseline ratio 
of sTNF-R1/TNF-α was 0.777 ± 0.087 (p = 0.013).

Using the cut-off of 75th percentile for sTNF-R1 (1,589.28 pg/ml),  
CCL11 (36.31 pg/ml), and sTNF-R1/TNF-α (91.1), these three 
biomarkers showed similar values: the Se was 45.5%, the Sp was 
89.5%, the PPV was 71.4%, and the NPV was 73.9%.

DiscUssiOn

In this study, we found a relationship of two plasma inflamma-
tory biomarkers (sTNF-R1 and CCL11) with the CD4+ slopes 
during the long-term control of HIV replication in our cohort 
of HIV-ECs.

The immune activation is a hallmark of HIV-1 disease and 
the role of immune activation in HIV-1 pathogenesis and 
immune dysfunction is recognized (15). Previous reports have 
characterized immune activation during HIV-1 infection and 
attempted to determine the relationship with CD4+ T-cells 
loss and AIDS progression (16, 17). Additionally, HIV-ECs 
maintain control of plasma HIV viremia, but have evidence of 
an activated innate immune response (7). In a recent article, a 
subtle decline of % CD4+ T-cells was observed in HIV-VCs, 
but not in HIV-ECs, which was associated with higher plasma 
levels of proinflammatory cytokines (5). Moreover, Pernas et al. 
showed that RANTES, and to a lesser extent CCL24 (eotaxin-2), 
could be biomarkers of EC transition from natural virological 
control to the loss of virological control (18), since higher levels 
of chemokines could reflect higher low-level residual HIV 
replication (19). The mechanisms underlying CD4+ T-cells 
loss and AIDS progression in HIV-ECs are poorly understood 
and are likely to be multifactorial. The viral replication is not 
completely suppressed in HIV-ECs and persistent low-level of 
HIV replication in HIV-ECs may be responsible for the increase 
of T-cell activation and systemic inflammation (2, 20), which 
have been related to fall of CD4+ T-cells count and AIDS pro-
gression among HIV-infected patients (21, 22). HIV-ECs have 
also elevated markers of microbial translocation compared with 
either the HIV-suppressed or the uninfected groups, which may 
induce immune activation and systemic inflammation (10), and 
antiretroviral therapy diminished levels of residual viremia and 
T-cell activation (23).

In our study, higher values of plasma CCL11 were linked to 
CD4+ T-cells loss; while low values of CCL11 were associated 
with stable CD4+ T-cells count during the long-term follow-up. 

In previous studies, plasma levels of CCL11 have been related 
to a worse virological outcome during primary HIV-1 infec-
tion and post analytical treatment interruption (24). Moreover, 
CCL11 has also previously been associated with more rapid 
CD4 loss below 350 cells/μl during acute HIV-1 infection (25). 
It indicates that the influence of CCL11 on the risk of CD4 loss 
occurs also in other HIV-infected populations. However, it is 
important to note that other studies did not find any association 
between CCL11 and HIV disease progression (viral load and 
CD4 count) (26). CCL11 is a chemokine that selectively attracts 
lymphocytes through chemokine receptors (CCR3 and CCR5), 
which are also HIV co-receptors (27). Thus, CCL11 may have 
an anti-HIV effect through its binding capacity to one of HIV 
coreceptors (27–29), but also its chemotactic ability on CD4+ 
T-cells may also serve to recruit targets for HIV infection (30).  
In fact, elevated CCL11 levels in placental plasma were associ-
ated with in utero mother-to-child transmission (31).

TNF-α is an important mediator of immune activation driven 
by high levels of HIV replication, which is linked to CD4+ T-cells 
loss and HIV-1 disease progression (32). TNF-R1 mediates most 
of the cellular responses induced by TNF-α and may circulate in 
soluble form after its proteolytic cleavage (sTNF-R1), binding to 
the circulating TNF-α and inhibiting its activity (negative feed-
back) (33). In our study, higher plasma values of sTNF-R1 and 
sTNF-R1/TNF-α ratio were associated with falls of CD4+ T-cells 
in HIV-ECs; while values of TNF-α did not correlate with CD4+ 
T-cells slopes. This would indicate that the biomarker actually 
associated with the loss of CD4+ T-cells is sTNF-R1, perhaps 
because plasma TNF-α could be neutralized by sTNF-R1. In any 
case, higher values of sTNF-R1 would indicate higher levels of 
inflammation and immune activation, which impact both viral 
replication and viral persistence, and CD4+ T-cells loss (34). 
Besides, higher levels of sTNF-R1 have been related to a poor 
immune response to successful antiretroviral therapy (35) and 
poor response to hepatitis B virus vaccine (36) in HIV-infected 
patients. Additionally, similarly to CCL11, the association 
between higher TNF-R1 level and poor CD4+ T  cell recovery 
has been previously described, indicating that this finding could 
be also applicable to other HIV-infected populations (35).

Our data showed that plasma sTNF-R1 and CCL11 values 
were accurate for the prediction of the CD4+ T-cells loss, since 
the AUROC value was close to 0.75, which supports its acceptable 
ability to discriminate HIV-ECs in risk of losing CD4+ T-cells. 
Furthermore, the cut-offs evaluated in our study showed values 
of NPV and PPV higher than 70%, which could be acceptable for 
excluding a CD4+ T-cells loss or for predicting it; respectively. 
Thus, these inflammatory biomarkers could help manage HIV-
ECs in the clinical setting.

Finally, several aspects have to be taken into account for 
the correct interpretation of the results. First, the retrospective 
nature of design might introduce biases in the analysis and a lack 
of uniformity. Second, this is a preliminary study with a limited 
number of patients, which limits for achieving statistically sig-
nificant differences. It is remarkable that, among 18 biomarkers, 
only two were related to the loss of CD4+ T-cells in HIV-ECs. 
With a higher number of subjects included in this study, possibly 
more biomarkers would be identified. Third, the high number 
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of biomarkers analyzed, coupled to the low number of patients 
included, penalize for achieving significant differences when 
we adjusted the p-values by multiple comparisons (Bonferroni 
correction). Fourth, the different definitions of HIV-ECs could 
influence on the results obtained and the compatibility with other 
studies.

In conclusion, the loss of CD4+ T-cells in HIV-ECs was associ-
ated with higher levels of two plasma inflammatory biomarkers 
(sTNF-R1 and CCL11), which were also reasonably accurate for 
the prediction of the CD4+ T-cells loss. Further analysis involving 
large numbers of patients in independent cohorts are needed to 
corroborate these associations and to understand the mechanism 
leading to increased sTNF-R1 and CCL11 production, as well as to 
determine any long-term impact on immune dysfunction.
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