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Antigen determinants (epitopes) are recognized by the combining sites (paratopes) of  
B and T cell antigen receptors (BCR/TCR), which again express clone-specific epitopes 
(idiotopes) that can be recognized by BCR/TCR not only of genetically different donors 
but also within the autologous immune system. While xenogeneic and allogeneic 
anti-idiotypic BCR/TCR are broadly cross-reactive, only autologous anti-idiotypes are  
truly specific and of functional regulatory relevance within a particular immune system. 
Autologous BCR/TCR idiotopes are (a) somatically created at the third comple-
mentarity-determining regions, (b) through mutations introduced into BCRs during 
adaptive immune responses, and (c) through the conformational impact of both. As 
these idiotypic characters have no genomic counterparts they have to be regarded as 
antigen receptor-intrinsic nonself-portions. Although foreign, however, they are per se 
non-immunogenic, but in conjunction with immunogenicity- and adjuvanticity-providing 
antigen-induced immune responses, they induce abating regulatory idiotypic chain reac-
tions. The dualistic nature of antigen receptors of seeing antigens (self and nonself alike) 
and being nonself at the same time has far reaching consequences for an understanding 
of the regulation of adaptive immune responses.

Keywords: B cell antigen receptor (BCR), T cell antigen receptor (TCR), adaptive immune response, regulation, 
idiotype, self–nonself, immunogenicity, transgenerational imprinting

THe CLONAL SeLeCTiON THeORY—KeYSTONe  
OF iMMUNOLOGY

The clonal selection theory put forward almost 60 years ago (1) has developed into the clonal selection 
law (CSL) (2) that is widely accepted as keystone and current paradigm of adaptive immunity and 
immunological thinking in general (3–5). The core features of CSL comprise that (i) membrane-
bound antigen receptors of B cells (BCR) and T cells (TCR) are generated in an antigen-independent 
genetic process, (ii) these preformed receptors are specific for particular antigens and thus mediate 
the specific clonal selection of the relevant cells encountering the corresponding antigen during 
microbial infections or experimental immunizations, and (iii) depending on antigen parameters 
like quantity, quality [various parameters determining its immunogenicity including size, structure, 
ability to induce cytokine responses after binding to non-clonal receptors on antigen-presenting 
cells, presentability of antigen fragments via major histocompatibility complex (MHC) molecules, 
etc.], route of entry, place of action in tissues, presence of natural microbial or admixed adjuvants, 
and the genetic constitution of the host (2, 6) such interactions may either lead to activation and 
proliferation of the respective B and T cells that execute the ensuing immune response (leading to 
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differentiation into end stage effector and memory cells) or to 
the induction of tolerance by a variety of mechanisms. It is of 
historic interest that in 1955, Jerne (7, 8) proposed that natural 
antibodies (nAbs) make the first encounter with antigen and thus 
support a theory of antibody-selection driven adaptive immune 
response (9).

ANTiGeN-SPeCiFiC iNiTiATiON AND 
NON-SPeCiFiC PROGReSSiON OF 
ADAPTive iMMUNe ReSPONSeS?

Thus, BCR and TCR mediate the initiation of adaptive immune 
responses. While cell-bound BCR directly react with native anti-
gens, the diverse subpopulations of naïve T cells like CD8+ cyto-
toxic cells and a multitude of helper and suppressor CD4+ T cells 
[TH1, TH2, TH17, follicular helper T  cells (TFH), and regulatory 
T cells (Tregs)] (10) can only participate in adaptive responses 
after antigen has been taken up and degraded by various antigen-
processing cells which then present antigen fragments on MHC 
molecules on the cell surface. Depending on the nature of the 
antigen, immune responses develop along different pathways. 
The initial encounter of BCR/TCR with thymus-dependent (TD)  
antigens, in particular hapten-coupled proteins as model anti-
gens, induce partial activation, proliferation, differentiation, 
and migration through secondary lymphoid organs and cellular 
interactions beginning at extrafollicular sites and continuing in 
B cell follicles with the establishment of germinal centers (GCs) 
[reviewed in Ref. (11–15)]. In the GCs, B cells undergo extensive 
TFH-dependent proliferation and somatic hypermutations (SHM) 
that are accompanied by class-switch recombination (CSR) and 
immune maturation through selection of higher affinity clones. 
The GC responses not only lead to differentiation of class-switched 
memory B cells that participate in secondary responses since they 
can be activated in the presence of humoral antibody (16) but also 
to long-lived plasma cells that secrete high amounts of antibody 
independently of antigen and to memory B cells (17). By contrast, 
immune responses to complex antigens like Salmonella typhimu-
rium can also develop independently of GC formation in follicles 
and extrafollicular sites and this response is also accompanied 
by CSR and SHM-mediated immune maturation (18). Even the 
heterogeneous populations of memory B cells may be generated 
in as well as outside GCs (19) and may retain IgM BCR on their 
cell surface (20). In addition, a special B cell memory can also be 
induced by thymus-independent type I (TI-1—mitogenic) and 
type II (TI-2—polymeric) antigens (21) and this type of memory 
is related to antigen-specific IgG antibodies (22, 23).

The complex events of cellular interactions, proliferation, differ-
entiation, and migration during progression of adaptive immune 
responses through the different specialized microenvironments 
of secondary lymphoid organs are studied by associating the 
involved cell lineages with the expression of transcription factors, 
activation and differentiation markers, cytokine and chemokine 
secretion, and expression of the respective membrane receptors 
[reviewed in Ref. (11–13, 19, 24)]. The main driving force dur-
ing GC differentiation is supposed to depend on the selection of 
higher affinity clones that are generated by SHM (25). However, 

in response to two complex antigens (Bacillus anthracis protec-
tive antigen and influenza hemagglutinin) half of the GC B-cells 
did not bind the antigen used for immunization despite showing 
signs of activation, namely biased usage of VH genes, exhibition 
of mutations, and clonal proliferation similar to antigen-binding 
B  cells (26). Also in the initial extrafollicular response to the 
complex antigen S. typhimurium, only a small fraction of B-cells 
showed specific binding to the antigen and underwent SHM-
driven immune maturation while the majority of cells did not bind 
antigen (18). Although these antigen non-specific responses are 
not understood, it currently appears to be generally accepted that, 
after antigen-dependent BCR/TCR-specific initiation of adaptive 
immune responses, all further steps of B and T cell differentiation 
that depend on the initial clonal selection are associated with and 
can be described by the expression of non-clonal and antigen- 
non-specific factors as mentioned above.

However, this view completely ignores investigations made 
some decades ago, which proclaimed that the antigen-specific 
initiation of the response is followed by a cascade-like chain 
reaction directed at clonotypic/idiotypic determinants in the 
variable regions of BCR and TCR. These investigations had led to 
the hypothesis of an idiotypic network that is functionally active 
before any encounter of environmental antigens and involved in 
regulation of immune responses as well (27). Publication rates for 
the term “idiotype” reveal this temporary interest that increased 
1978–1988 and decreased to a low level during the next decade 
while related keywords, as for instance, “B cell antigen receptor” 
and “T  cell antigen receptor” document a prolonged and more 
constant interest; however, for “regulatory T cell” a rather dramatic 
change in interest is visible (Figure 1). Investigations on idiotypic 
regulation have been viewed as “tidal wave” that “has receded leav-
ing behind an empty beach” (28). Accordingly, idiotypic research 
once regarded as the cutting edge of immunology is nowadays 
even eliminated from most textbooks that only denote the term 
“idiotype” without ascription of any functional relevance (4, 5). A 
detailed description of this “Rise and Fall of a Scientific Paradigm” 
has been composed by Eichmann (29) in which he wondered  
(p. 3): “How can such a thing happen? How is it possible that hundreds 
of scientists engage in work, over periods of more than a decade, that 
thereafter gets disposed as meaningless?” Ironically enough, despite 
this condemnation his work also contains statements from 11 
well-known former idiotype-researchers as key-witnesses of this 
time that “an immune network exists” (p. 157) and “idiotype-based 
regulations exists” (p. 161) and that it “was all solid work” (p. 166). 
This is an extremely disappointing situation calling for a solution; 
it certainly does not allow idiotypic research on regulation to be 
simply filed away as if it had never happened. A recent review of 
the current understanding of idiotypic research summarizes the 
expectation and return of studies on the idiotypic network (30).

PRiNCiPLe ReACTiONS iN iDiOTYPiC 
ReGULATiONS

In 1963, antigen-induced antibodies themselves were found to be 
immunogenic and can induce anti-antibodies (31, 32) that reacted 
with specific determinants of the inducing antibodies (idiotypes or 
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FiGURe 1 | Comparison of PubMed entry “idiotype” with related marks per year between 1960 and 2017. The figure shows the results of a PubMed search for the 
following keywords: idiotype—red filled rhombus; regulatory T cell—yellow open triangles; B cell antigen receptor—blue open squares; T cell antigen receptor—light 
green open circles.
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Ab1) and so were designated anti-idiotypes (Greek ιδιοσ, unique). 
Anti-idiotypic (Ab2) antibodies represent a heterogeneous group 
recognizing different types of idiotypic determinants (idiotopes) 
and are classified on the basis of their reactivity with Ab1 idiotopes 
in variable distances from the antigen combining site (paratope) 
[reviewed in Ref. (33)]. (a) Ab2α react with idiotopes located 
outside the paratope in vicinity to and in framework regions and 
their binding to Ab1 cannot be inhibited by antigen. (b) Although 
another set of Ab2 (Ab2γ) recognize paratope-associated idi-
otopes, their binding to Ab1 can also not be inhibited by antigen. 
(c) Anti-idiotypic antibodies of the Ab2β type react with idiotopes 
that overlap or even may supposedly coincide with the Ab1 para-
tope. The antigen-inhibitable reactivity of these Ab2β has been 
taken as indication that the paratopes of particular Ab2β resemble 
the antigenic epitope and thus may carry an internal images of 
it (34). Hence, this type of Ab2 can be employed as surrogate 
antigen (35, 36). However, structural analyses have shown that 
the mimicking of antigenic epitopes is functional and mediated 
by similar binding interactions, but does not depend on identical 
3D structures (37). This nonstructural but functional mimicry can 
even be observed with anti-idiotypic antibodies reacting with Ab1 
to nonprotein antigens. For instance, although Ab2 are certainly 
not able to mimic a polysaccharide structure they may induce a 
polysaccharide-specific response to the related antigen (38, 39). 
Hence, since true internal images of external epitopes seem-
ingly do not exist, it has been proposed to replace the “internal 
image” concept as well as the designations for the different Ab2 
subtypes by be term “network antigens” (40). (d) A fourth type 
of anti-idiotypes are Ab2ε antibodies or epibodies which not only 
display an Ab1-directed anti-idiotypic reactivity but also react 

with an epitope of the related antigen (41). Interestingly, Ab2 
antibodies that are similar to but distinct from Ab2ε have been 
described, which not only exhibit Ab1-binding anti-idiotypic but 
also antigen-binding as well as self-binding activities (42, 43).

Contrary to their nomination, idiotypes not only carry clone/
individually specific (IdI) but also cross-reactive idiotopes. On the 
one hand, such cross-reactive idiotopes (IdX or CRI) have been 
observed on antibodies exhibiting a particular antigen-specificity 
as shown in the antibody response of BALB/c mice to the random 
synthetic terpolymer of (Glu60Ala30Tyr10)n (GAT) that are char-
acterized by the cross-reactive or public idiotype pGAT, which 
is detected with a xenogeneic rabbit antiserum (44). Likewise, 
antibodies reacting with the hapten p-azobenzenearsonate 
(ABA) can exhibit different families of CRIs (45). On the other 
hand, idiotypic cross-reactivity is even exhibited by antibodies 
that are stimulated by different external antigens. Already in 1971 
it was observed that idiotypic specificities could be expressed by 
immunoglobulins with different binding specificities (46). For 
instance, murine 2,4-dinitrophenyl (DNP) antibodies carry the 
Id460-idiotype which is also expressed on antibodies reacting 
with the mouse pathogen Pasteurella pneumotropica (47). A par-
ticular idiotope (B5+) of anti-dextran antibodies in BALB/c mice 
is expressed on a subset of antibodies from A/J mice that react 
with the hapten NIP (48). An idiotope of a BALB/c levan-specific 
myeloma protein that is defined by a syngeneic monoclonal Ab2 
is expressed on monoclonal antibodies of different mouse strains 
that are encoded by V region genes other than the correspond-
ing myeloma and react with different nonself- and self-antigens 
(49). Moreover, common idiotopes have also been detected on 
anti-DNA auto-antibodies binding to different autoantigens (50).
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Anti-idiotypic responses can not only be induced to antigen-
reactive Ab1 but also to anti-idiotypic Ab2 antibodies. For 
instance, such anti-anti-idiotypic antibodies (Ab3) have been 
induced in rabbits that have been immunized with a polyclonal 
preparation of Ab2 which were induced with purified hyper-
immune Ab1 reacting with the carbohydrate of Micrococcus 
lysodeikticus bacteria (51). Although these Ab3 shared idiotypic 
specificities with the corresponding Ab1, they did not react 
with the antigen. However, when these Ab2-immunized Ab3-
producing rabbits were immunized with M. lysodeikticus, they 
produced anti-carbohydrate antibodies (Ab1′) that idiotypically 
resembled Ab1. Hence, the composition of the antigen-activated 
repertoire depends on the idiotypic history of an individual. This 
conclusion has been corroborated, among others, in a syngeneic 
experimental system in BALB/c mice, which were immunized 
with a levan-binding myeloma protein. These mice not only 
produced Ab2 but also Ab3 antibodies which could further 
be applied to induce anti-anti-anti-idiotypes (Ab4) (52). The 
members of this idiotypic cascade are idiotypically connected in 
that Ab3 and Ab1′ share a cross-reactive regulatory idiotope that 
reacts with both Ab2 and Ab4. In addition, the immune response 
to the related antigen levan could be variably influenced by the 
state of activation of Ab2, Ab3, and Ab4 of this idiotypic cascade 
(52). Such Ab2-reactive regulatory idiotopes on nonprotein 
antigens have also been observed in responses to steroid hor-
mones, ligands, or drugs and glycolipids [reviewed in Ref. (33)]. 
Regulatory idiotopes were supposed to allow a communication 
between immune responses to different antigens and thus are 
fundamental for functioning of the idiotypic network (27). 
Needless to say, the sequential steps of the idiotypic cascade have 
also been detected in humans, e.g., during treatment of cancer 
patients with therapeutic antibody (53).

The reactivities in the idiotypic cascade allow two important 
conclusions to be drawn. First, although antigen-induced Ab1 can 
give rise to an anti-idiotypic response (Ab2) an immunization with 
Ab2 never induces the set of Ab1. This rule also applies for the next 
steps in the cascade. Hence, the idiotypic cascade only proceeds in 
a forward direction and not backwards. This is important since it 
has been concluded by Jerne (7) and others that “recognizing” and 
“being recognized” cannot be distinguished and that it is, therefore, 
meaningless to distinguish between idiotopes and combining 
sites. If this were the case, it could be argued that immunization 
with Ab2 should activate the whole set of antigen-induced Ab1. 
This, however, is not the case. Instead, Ab2 induces Ab3 that only 
in rare cases may contain antigen-binding Ab1′, which in addition 
are genetically different from Ab1. Second, immune responses to 
antibodies (Ab1, Ab2, and further) can only be induced after cou-
pling to a carrier as, for instance, keyhole limpet hemocyanin that 
provides sufficient immunogenicity and with strong adjuvants 
and/or the help by different other means (54). Such efforts are 
absolutely inevitable for idiotypic/anti-idiotypic vaccinations of 
patients suffering from tumors or microbial infections (55, 56).

The extensive work on idiotypic regulation of adaptive immune 
responses allowed the statement “that the immune system of a 
single animal after producing specific antibodies to an antigen, con-
tinues to produce antibodies to the idiotopes of the antibodies that 
it has itself made” (7). This conclusion is based on the following 

principle idiotypic specificities and cellular interactions within a 
particular immune system [reviewed in Ref. (7, 57, 58)].

•	 The immune system contains anti-idiotypic B and T cell speci-
ficities for all antigen-specific BCR and TCR that have been 
investigated in this respect (29, 59).

•	 Idiotypic recognition occurs among B cells/antibodies (7, 27).
•	 TCR can be recognized by anti-idiotypic BCR/antibodies in an 

MHC-non-restricted fashion (60–63).
•	 BCR are recognized by anti-idiotypic TCR in an MHC-

restricted way (64–69).
•	 MHC-restricted idiotypic recognition occurs among T  cells 

(70, 71).

Despite these admittedly undeniable experimental evidences 
(72, 73) that were compiled in multiple experimental systems it was 
possible to state that “it is safe to say that we never learned anything 
from it” and that “the idiotype network theory of regulation lacked 
logic and rationale” (28) or to conclude that “everything you can 
imagine to happen in the idiotypic network, you can make happen; 
but the physiological impact of these reactions remained elusive”  
[K. Rajewsky in (29), p. 165]. Thus, a plethora of experimental 
results did not lead to a conceptual explanation as to why these 
interactions are induced. Were decisive experiments still missing? 
A solution to this key problem would have needed a clear 
comprehension about the principle nature of idiotopes as antigenic 
determinants that specifically characterize a particular idiotype.

CHARACTeRiZATiON OF iDiOTOPeS

A particular BCR/TCR idiotype is composed of a collection of 
different idiotopes. Initially, idiotypes were characterized with 
absorbed xenogeneic and then allogeneic antisera before it became 
possible to properly identify individual idiotopes with monoclonal 
anti-idiotypic antibodies. However, anti-idiotypes of xenogeneic 
and allogeneic origin are generally broadly cross-reactive and 
thus are actually not idiotype-specific (74). Since a hypothetical 
physiological idiotypic network is exclusively functioning within a 
particular immune system (and at best between mother and fetus), 
autologous anti-idiotypes are actually mandatory for its investiga-
tion. Autologous anti-idiotypes have the highest discriminatory 
power and are truly specific for a given idiotope and therefore for 
the whole idiotype. For practical reasons syngeneic anti-idiotypes 
represent a reasonable compromise [reviewed in Ref. (74)]. 
During the entire research on idiotypic regulation, it could not be 
clarified whether idiotopes are non-inheritable individually spe-
cific characters or whether they are useful genetic markers. Thus, 
a generally applicable view of the nature of idiotopes in the BCR/
TCR variable regions has not been presented. This is remarkable 
since the assembly of B and T cell antigen receptors from a set of 
gene segments in the primary lymphoid organs is well known. For 
a clear characterization of idiotopes, it seems advisable to briefly 
repeat the construction of BCR and TCR.

In contrast to the limited number of receptors and corre-
sponding ligands, which, after clonally selected initiation of the 
response, mediate the further clonal development (activation 
markers, cytokines, interleukins, etc.) BCR/TCR are destined 
for and indeed able to recognize a seemingly unlimited number 
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FiGURe 2 | VDJ gene segments coding for the antibody heavy chain variable 
region and modifications creating the third complementarity-determining 
region CDR-H3 of antibodies. CDR-H1 and CDR-H2 are fully encoded in  
the genomic VH gene segment. By contrast, CDR-H3 coding sequences  
are somatically created during recombination of V, D, and J gene segments. 
During this process, all three segments can be modified by deletion of 
nucleotides through exonuclease activity, addition of P nucleotides and 
insertion of N-nucleotides at the two junctions by terminal deoxynucleotidyl 
transferase. Hence, the D-region in the middle of CDR-H3 does not conform 
to genomic sequences and may be flanked by non-genetic N/P sequences 
that do not have an inheritable genomic counterpart.
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not only of environmental and autologous antigens but also 
of synthetic non-natural antigens. It is obvious that this task 
cannot be performed with a limited set of genomically encoded 
receptors. Thus, how can the immune system cope with this 
challenge? The generally accepted explanation is seen in the 
recombination of gene segments that together code for the 
variable domains of antigen receptors of BCR as well as both 
types of TCR exhibiting TCRαβ or TCRγδ receptors. All three are 
assembled from multiple V gene segments, diversity enhancing 
D gene segments, and J gene segments that join the variable 
portion with constant gene segments (75, 76). While variable 
regions of antibody light chains (VL), TCRα, and TCGγ chains 
are assembled from V and J gene segments, those of antibody 
heavy chains (VH), TCRβ, and TCRδ chains are composed of V, D, 
and J gene segments. This V(D)J recombination allows already 
for huge hypothetical combinatorial BCR and TCR repertoires 
both of which, in addition, are greatly enhanced by inaccuracies 
that are introduced during the recombination process. However, 
a functional regulatory relevance (see below) has not been 
ascribed to these imprecisions which are somatically generated 
in three different ways.

 (1) During V(D)J recombination, DNA hairpins are generated 
which may be opened asymmetrically. Thereby, a few nucleo-
tides of one strand plus their complementary nucleotides 
from the reverse strand form a single-stranded tail. Filling-in 
of the second strand generates a palindromic sequence. In 
this way, a few nucleotides (P nucleotides) of the reverse 
strand are transferred to the coding sequence where they 
alter the information of the respective segment (75, 77–80).

 (2) A quantitatively much more important modification at 
both recombination sites (V-D and D-J) of the BCR heavy 
chain (but only insignificantly at the light chain) as well as 
all four polypeptide chains of both types of TCR is created 
by the enzyme terminal deoxynucleotidyl transferase (TdT) 
that inserts non-templated nucleotides (N-nucleotides) at 
variable ratios (75, 81, 82). It has been estimated that TdT 
function is, for instance, at least responsible for 90% of the 
TCRαβ repertoire (83). In contrast to the BCR VL region, V-J-
encoded TCRα and TCRγ chains also contain high numbers 
of N-nucleotides (76).

 (3) Another equally important modification during BCR/TCR 
V(D)J recombination is introduced by exonuclease-mediated 
deletion of nucleotides from the 3′-end of V gene segments, 
both ends of the D gene segments and the 5′-end of the J gene 
segments (75, 76, 83).

Hence, while the first two complementarity-determining regions  
(CDR1 and CDR2) of all BCR and TCR chains are fully encoded 
in the genome, the coding sequences of all CDR3s are somatically 
created. This is exemplarily outlined in Figure  2 for the VDJ 
recombination coding for the VH domain of immunoglobulins. 
The genomic gene segments are modified by nucleotide deletions 
and additions of P and N-nucleotides to such an extent that the 
final products of CDR-H3 are specifically created for each B cell 
clone. Accordingly, CDR-H3 sequences are generally used as 
specific marker for the identification of particular B cell clones 

(26) and TCR CDR3 for T  cell clones (84). Remarkably, the 
specificity of T cells is basically determined by TCR CDR3 with 
their almost unlimited variability (85). A quantitative impression 
of antibody CDR-H3 imprecisions is depicted in Figure 3 showing 
nucleotide deletions and additions of monoclonal antibodies 
that were obtained from BALB/c mutant mice containing a 
single altered D gene segment after immunization with chicken 
serum albumin coupled with the hapten 2-phenyl-oxazolone 
(phOx), one of the “classical” model immune responses (86) [data 
taken from Ref. (87)]. Although a certain proportion of these 
monoclonal antibodies exhibited neither deletions nor additions 
of nucleotides at both recombination sites VH-D and D-JH, none 
of the antibodies used a full genomic combination of VDJ gene 
segments. At both sides of the D segment up to 16 of 26 nucleotides 
could be deleted (Figures 3C,D) and 15 nucleotides at 5′-end of 
JH (Figure 3F). What is even more remarkable, in 23 mAb (28%) 
the DH sequence was truncated to such an extent that it could not 
be detected (data not shown). Similar results were obtained in 
another D-altered mouse strain (87). As we also did not find fully 
genomically encoded antibodies in a large group of phOx-specific 
antibodies from immunized as well as non-immunized BALB/c 
wild-type mice (23, 88), does this imply that there is no genomic 
VDJ combination with specificity for the hapten phOx?

In addition, it has to be asked as to whether antibodies exist 
at all, which are encoded by complete genomic V, D, and J gene 
segments without recombination-introduced inaccuracies as the 
assumption of a combinatorial repertoire suggests? Antibodies 
as products of antigen-stimulated adaptive immune responses 
are produced by “conventional” or so-called B-2 cells (89). To the 
best of my knowledge, in repertoire analyses of B-2 cell antibodies 
of adult mice full genomic sequences have not been found as 
exemplarily shown in Ref. (90–92) as well as in a large collection 
of sequences of anti-phOx antibodies (23, 87, 88, 93). In contrast 
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FiGURe 3 | Modification of VDJ gene segments in anti-hapten antibodies. Homozygous mutant mice containing a single frameshifted DFL16.1 D gene segment 
(ΔD-DμFS mice derived from BALB/c mice) were immunized with the hapten 2-phenyl-oxazolone (phOx) coupled to chicken serum albumin (87). Monoclonal 
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coding sequence was truncated by exonuclease activity to such an extent that it could not be detected.
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to B-2 cell antibodies, nAbs are produced and secreted by B-1 cells 
without stimulation by external antigens. B-1 cells are basically 
subdivided into CD5-expressing B-1a and CD5-negative B-1b cells 
(89) and their products of nAbs constitute a heterogeneous group of 
antibodies (94). Due to the lack of TdT in early ontogeny, sequences 
of B-1 cell-derived nAb from fetal and neonatal mice do not or 
very rarely contain N-nucleotides (90). However, this proportion 
increases with age so that two-thirds of adult B-1a transcripts contain 
N-nucleotides and show a considerable CDR-H3 diversity (92). It 
has been argued that the fraction of N-nucleotide-negative nAbs 
are therefore completely germline encoded (95). This conclusion, 
however, is challenged by sequences of neonatal nAbs (as well as 
TCRγ/δ) that, although almost devoid of N-nucleotides, are not 
encoded by fully genomic VDJ combinations (90–92) since variable 
numbers of nucleotides are deleted from 3′-VH, both sides of DH or 
5′-JH sequences. Thus, as none of these nAbs and TCRγ/δ represents 
the full genomic information (90) it can be concluded that CDR3s 
of practically all BCR, TCRα/β, and TCRγ/δ are somatically created 
and not fully derived from pure genomic sequences. This is related 
to the problem of self–nonself-discrimination which is certainly 
not determined in the genome but depends on genomically 
encoded translated products. Hence, with all likelihood, CDR3s of 
all antigen receptors belong to the nonself (Figure 4).

This is of fundamental importance for two reasons [reviewed 
in Ref. (58)]:

 (1) Although generally ignored, there is multiple evidence that 
antigen-activated B and T  cells not only present antigen-
peptides on MHC molecules but also peptides of their own 
intrinsic antigen receptors which can be recognized by other 
anti-idiotypic T cell clones contained in the normal reper-
toire (66, 68, 69, 71, 98–100).

 (2) Various experimental investigations as well as clinical obser-
vations have clearly shown that CDR3-associated antigen 
receptor-intrinsic nonself-portions of non-mutated BCR 
and TCR represent the autologous clone-specific or idiotypic 
characters of antigen receptors. In BCR, in addition, new and 
thereby nonself-idiotopes are created and accumulate during 
TD immune responses by SHM (84, 101–109).

iMMUNOGeNiCiTY OF AUTOLOGOUS 
iDiOTOPeS

The question is now whether adaptive immune response-initiating 
BCR and TCR, because of their nonself-portions, are competent to 
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FiGURe 4 | Representation of B and T cells by top views of their antigen 
receptors. B cells are schematically represented by stylized top views of their 
BCR paratopes as hexagons [based on Ref. (96)] and T cells by hexagonal 
stars [based on Ref. (97)]. Numbers indicate the complementarity-
determining regions 1–3 of VH, VL, TCRα, and TCRβ. BCR/TCR background 
colors symbolize the specificity of a particular paratope just as the genomic 
coding of CDR1 and CDR2. The full nonself-quality of CDR3s is indicated by 
different colors, but the marginal nonself-character of CDR-L3 is not shown.
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induce anti-idiotypic responses by themselves as suggested in the 
idiotypic network theory (7, 57, 110). Herein, Jerne supposed that, 
before any engagement in immune responses to foreign antigens, 
the size and state of activity of B (and T) cell clones is regulated 
by reactivity of their inherent idiotopes with other anti-idiotypic 
B (and T) cells contained in the system (27). Thus, the immune 
system was viewed as primarily self-centered and would strive in 
its entirety to reach a dynamic equilibrium of mutually interacting 
B and T cell clones. Jerne concluded that the antigen-free (AgF) 
immune system displays an “eigen”-behavior that results from 
idiotope–paratope interaction within the system and that “the 
invasion into our body of foreign particles, proteins, viruses, or 
bacteria, (which) incidentally disturb the dynamic harmony of the 
system” (7). However, this view did not remain uncontested. As 
the antigen-independent differentiation in the primary organs 
results in a unique cell, and not a clone of cells that can be activated 
by antigen as the CSL implies, Paul and Bona (111) argued that 
concentrations of idiotope and its corresponding anti-idiotypic 
paratope and their chance to encounter each other are too low 
to induce a functional connection. Hence, they argued that an 
idiotypic network that is endowed with an eigen-behavior does 
not exist before stimulation by antigen. The same conclusion can 
also be drawn from the following investigations. Since idiotopes 
represent TD antigens it has to be expected that such responses 
would lead to isotype-switched IgG anti-idiotypes. An answer to 
the question as to whether idiotopes are per se immunogenic can 
be deduced from studies of experimental animals whose microbial 
load is stepwise diminished. Compared to conventional mice the 
serum concentrations of all immunoglobulin classes except IgM is 
significantly lower in specific pathogen-free mice (112) and further 
decreased in germ-free (GF) mice (113) and virtually absent in AgF 
mice [reviewed in Ref. (114)]. Strikingly, the reduction of humoral 
immunoglobulins correlates with a severe impairment of many 
parameters of the innate immune system as well as the whole T cell 
compartment (115, 116). Consequently, numbers of CD4+ T cell 
subpopulations, CD8+ memory T  cells, various innate lymphoid 
cells, blood cell gene expression patterns, resistance to infections, 
as well as humoral immunoglobulins have been found to increase to 
the state of conventional mice when such “clean” mice are re-infected 
with known collections or commensal microbes (117, 118). Thus, 

since sera of AgF mice are virtually devoid of IgG antibodies it can 
first be concluded that humoral IgG fully depends on stimulation by 
environmental antigens and second that antigen receptor-intrinsic 
nonself-portions are per se apparently non-immunogenic.

eviDeNCe FOR PHYSiOLOGiCAL iMPACT 
OF AUTOLOGOUS iDiOTOPeS

The idiotypic network theory does not include a clear distinction 
between the antibody’s antigen combining site, the paratope, and 
its contained idiotope(s), and certain experiments were taken as 
evidence for a potential complete overlap between the combining 
site and binding of anti-idiotypes (7, 27). This led to the assump-
tion that the shape of paratopes of particular anti-idiotypes repre-
sent internal images of the corresponding antigenic epitopes and 
that both BCR and TCR repertoires, therefore, contain internal 
images of all antigenic determinants of environmental antigens 
(see above) (7, 27). However, it is crucial to clearly discriminate 
between the dimension of BCR and TCR antigen combining sites 
that are formed by the six CDRs (96, 97) and the intrinsic nonself-
idiotopes as BCR/TCR parts that are recognized by other anti-
nonself B and T cells contained in both autologous repertoires, 
whereas reactivities of xenogeneic and allogeneic anti-idiotypes 
are misleading. Hence, the recognition that antigen receptor-
associated nonself-portions constitute the idiotypic characters of 
BCR and TCR reject the view of internal image antibodies. Instead, 
“internal image” activity depends on idiotypic cross-reactivity so 
that anti-idiotypes may recognize idiotypes of completely different 
antigen-specificity (see above). These considerations document 
a clear and, at least in principle, facile explanation for idiotypic 
cascade-like chain reactions that are induced during antigen-
induced immune responses, which contribute immunogenicity 
and adjuvanticity [reviewed in Ref. (58)]. This allows for a 
unifica tion of clonal selection and idiotypic network theories, 
which hitherto are believed to be incompatible (28, 29). Hence, 
the recognition of antigen receptor-intrinsic nonself-portions as 
idiotypic characters prove that idiotypic regulation represents a 
physiological necessity. This view contributes to explain a variety 
of hitherto incomprehensible experimental findings:

 (1) Contrary to the CSL, the immunization with many viruses, 
bacteria, and protein antigens not only leads to a specific 
response to these antigens but also simultaneously to a much 
higher increase of total immunoglobulins (18, 26, 119). This 
immunization-associated polyclonal B cell activation is not 
only brought about by a variety of non-specifically acting 
factors including mitogens and cytokines that are secreted 
by activated T cells [discussed in Ref. (119)]. There are also 
indications that this polyclonal immunoglobulin production 
(including IgG) is not totally antigen-non-specific since 
simultaneous immunization with two antigens demonstrated 
that each antigen induced its own specific and non-specific 
response, i.e., both effects were additive (120). This antigen-
related effect was supposed to be activated by a second BCR-
specific and thus idiotype-specific helper mechanism (121).

 (2) Although idiotypic nonself-portions of antigen receptors are 
per se non-immunogenic, as can be deduced from experiments  
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in AgF animals (see above), autoantibody-masking and 
suppressing anti-idiotypic antibodies are frequently induced 
in healthy individuals containing a normal commensal 
microbial flora (122, 123).

 (3) Although numerous FDA-approved therapeutic antibodies 
have successfully been used and seemingly never caused 
fatalities, but only mild infusion reactions that could easily 
be managed, it has also been reported that the clinical use of 
therapeutic antibodies of murine origin has been hampered 
because of occasionally severe side-effects that could be 
ascribed to their strong CDR-associated immunogenicity. 
Therefore, great efforts have been undertaken to reduce 
this immunogenicity by humanization and finally by use 
of human antibodies. However, in a certain percentage of 
patients, even fully human therapeutic antibodies may still 
produce pathological side effects through the induction of 
human anti-human antibodies (124, 125) that are directed at 
CDRs (126–128).

 (4) Besides its secondary effector functions, humoral immunity 
can actively stimulate regulatory inductor functions 
[reviewed in Ref. (58)]. This is of particular importance for 
the transfer of the immunological experience of the mother 
to the newborn that aids the initial development of the 
nascent immune system and induces long-term effects (129). 
In various experimental systems, it has been demonstrated 
that immune as well as maternally derived monoclonal 
antibodies induce an immunological imprinting that alters 
the immune responses to the respective antigens for life-time 
(130, 131). Therefore, F1 and even F2 offspring of immunized 
dams cannot be regarded as “normal” mice when maternal 
antibodies are not any longer detectable. Importantly, these 
maternal effects can be induced with maternal antigen-
reactive antibodies (idiotypes) just as their corresponding 
antigen-non-reactive anti-idiotypes as demonstrated, for 
instance, for protection against microbial infections with 
respiratory syncytial virus (132) or group B streptococci (39).

Moreover, maternal antibodies selectively suppress IgE  
isotype responsiveness to antigens experienced by the mother 
(133). In an experimental model of food allergy to ovalbumin 
(OVA), the transgenerational IgE suppression by maternal 
OVA-containing immune-complexes (OVA-IC) conferred 
long-lasting protection against food anaphylaxis that was 
assumed to be mediated by OVA-specific Foxp3+ Tregs 
(134). However, this conclusion is questionable for three 
reasons. (i) The supposed OVA-specificity exclusively rests 
on the observation that Foxp3+ Tregs from mesenteric lymph 
nodes of offspring of OVA-sensitized dams proliferated 
stronger upon stimulation with OVA in vitro as compared to 
Tregs from non-sensitized dams or stimulation with peanut 
extract as irrelevant antigen. This conclusion would be valid 
if antigen stimulation would lead to exclusive activation 
of antigen-specific clones, as proposed in the CSL. This, 
however, is not the case because of the polyclonal nature of 
the response that includes the idiotypic chain reaction (see 
above). (ii) In addition, antigen-non-reactive suppressor 
T  cells have been demonstrated in a similar experimental 
setting. Offspring of OVA-immunized female rats showed a 

transient suppression of IgG and IgM responses but a persistent 
OVA-specific IgE suppression, which was mediated by 
CD8+CD4− T suppressor cells although these cells did not react 
with OVA (135). (iii) In the work of Ohsaki and co-workers 
(134), only maternally derived OVA-IC are taken into account 
thus emphasizing a central role of the antigen in mediating the 
transgenerational IgE suppression while a major functional 
impact of OVA-specific IgG antibody is not considered. 
However, this is necessary since it has been shown that a trans-
generational suppression of IgE responsiveness to bee-venom-
phospholipase A2 (bvPLA2) allergen can also be achieved in a 
completely antigen-free experimental system with monoclonal 
antibodies (136). Maternally derived mAb not only suppress 
the parenteral IgE response to bvPLA2 but also IgE responses 
that are induced by airway-immunization with nebulized 
ovomucoid-containing OVA (137). This suppression lasts until 
an age of 4 months but is not any longer detectable at 6 months.  
However, when IgE-inducing immunizations were started 
before an age of 4 months and continued in monthly intervals 
IgE suppression persisted for more than a year (137). This 
experimental finding is in line with considerations that early 
encounter of allergens might have a protective effect on later 
development of allergies (134, 138) which even may override a 
genetic predisposition (137, 139). In addition, in full agreement 
with the idiotypic chain reaction, even the postnatal transfer 
via colostrum and milk of a monoclonal anti-idiotypic mAb 
reactive with an IgG-anti-PLA2 mAb induced long-lasting IgE 
suppression while leaving the IgG response unaltered (140).

 (5) An inductor function of antibodies has also been demonstrated 
in various experimental systems showing a mutually dependent 
development of both BCR and TCR repertoires. For instance, 
B  cell-deficient mice exhibit a drastically reduced T  cell 
repertoire the restoration of which could be achieved with 
immunoglobulin preparations or B cells in an Fc-independent 
manner (141, 142). Strikingly, this regeneration did not 
depend on the amount but on the diversity of the applied 
immunoglobulin and B cells. These observations acknowledge 
earlier studies, which had shown that the generation of B and 
T cell repertoires is mutually dependent (143–145).

 (6) Interclonal idiotypic regulations among B and T  cells are 
clearly visible during vaccination of autoimmune or malignant 
diseases with auto- or tumor-antigen-reactive T cells [T cell 
vaccination (TCV)] (146, 147). In accordance with the idi-
otypic chain reaction, however, a successful TCV depends on 
the use of activated T cells, which not only induce anti-idiotypic 
responses to TCR CDR3 idiotopes but also anti-ergotypic 
responses, which are directed at activation markers of the 
inducing effector T cells irrespective of their TCR specificity 
(84). In addition, TCV-induced immunity needs the participa-
tion of B cells (148, 149). Effective TCV has been demonstrated 
in a variety of experimental animal models and clinical trials 
have provided promising results for the treatment of multiple 
sclerosis and have shown some clinical improvement in mild 
form of systemic lupus erythematosus (150).

Hence, immune responses in general induce subsequent 
idiotypic interclonal connections. These findings require 
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reconsideration of the content of immunological memory, which 
is apparently not restricted to antigen-specific B and T cell clones 
but comprises a net of many idiotypically interconnected clones. 
Is it possible to correlate these idiotypic connections with current 
research into the regulation of adaptive immune responses?

POST-iNiTiATive iNvOLveMeNT OF 
iDiOTYPiC ReGULATiON OF iMMUNe 
ReSPONSeS

Selection of clones with higher affinity (immune maturation) 
has long been assumed to be the main driving force for clonal 
progression during the immune response. In the TFH cell-depend 
GC response, somatically mutated B cells with the highest affinity 
are expected to preferentially concentrate and present antigen and 
thereby attract more help from TFH cells for further differentiation 
and clonal selection during class-switching. However, this simple 

scheme had to be modified since the amount as well as the activity 
of TFH cells also depends on a specialized type of follicular Foxp3+ 
regulatory T cells (TFR) [reviewed in Ref. (24, 151)]. Although TFR 
cells phenotypically resemble TFH and extrafollicular Tregs they 
constitute an own subpopulation that originates from thymic 
Foxp3+ precursors and limit numbers of TFH cells and GC antigen-
specific as well as antigen-non-specific GC B cells (152). TFR cells 
inhibit GC reactions, affinity maturation just as plasma cell (PC) 
differentiation (153). Moreover, dampening of the GC reaction 
by Foxp3+ TFR cells reduces the amounts of secreted antigen-
specific IgM, IgG1, IgG2b, and IgA (154). It is of interest that after 
immunization with the TD antigen sheep red blood cells (SRBC) 
splenic TFH and TFR cells (ratio ~100:16) develop with different 
kinetics. Highest numbers of TFH are observed between days 7 and 
11 while TFR cell numbers subsequently peak during days 11–17 
(24). Since the SRBC-specific share of antibody-secreting cells in 
this response is only ~10% compared to ~90% of PCs secreting 
immunoglobulins of unknown specificities (121) it seems to be 

FiGURe 5 | The adaptive immune response—from clonal selection to nonself-directed idiotypic regulatory clonal connections. Antigen selects epitope-specific B cells 
and carrier-specific T cells from the respective repertoires. BCR/TCR background colors symbolize the specificity of a particular paratope (see legend to Figure 4), in 
this example, purple for the B cell epitope-specificity and blue for the carrier-specificity of T cells. After antigen-induced activation, CDR-H3 nonself-idiotopes (white) of 
antigen-specific idiotype (B1/Ab1—purple paratope) activates nonself-specific anti-idiotypic B cells (Ab2—white paratope) with the help of likewise nonself-specific 
anti-idiotypic T cells (T1—white paratope). In further reaction, nonself CDR-H3 portions of Ab2 (red) may be recognized and activate anti-anti-idiotypic B cells 
(Ab3—red paratope) with the help of Ab2-idiotype-specific T cells. This idiotypic cascade may proceed to anti-anti-anti-idiotypes (Ab4) and even further as shown  
for Ab6 (162). Thus, clonal selection and activation by antigen induces clonal connections of an idiotypic cascade that exerts a regulatory feedback on the ongoing 
antigen-induced response. During this response, in addition, somatic mutations create new nonself-idiotopes which may also induce an idiotypic feedback regulation. 
Abbreviations: APC, antigen-presenting cell; MHC, major histocompatibility complex; PC, plasma cell; LLPC, long-lived plasma cells; BM, B memory cell.
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conclusive that the involved TFH as well as TFR cells also represent 
heterogeneous populations with highly diverse repertoires. TFR 
cells may exert their regulatory function by direct cell–cell contacts 
with B and T cells (or indirectly via secreted cytokines) (24). A 
mechanism for this action, however, is not known and would 
probably rest on the determination of TFR specificities. As the 
idiotypic nonself-portions of all antigen receptors have hitherto not 
been taken into account it is tempting to speculate that components 
of the idiotypic cascade are at least part of the TFR repertoire.

Thus, are there direct indications that the GC response and in 
particular its regulation by TFR cells might depend on idiotypic 
interactions? Already during the heydays of research on idiotypic 
regulation, it was speculated that “a very dominant negative 
selection, perhaps against the idiotype of primary antibodies” might 
be involved in clonal progression during the immune response 
(155). Such an idiotype- resp. CDR-H3-directed regulation gained  
support by several later investigations demonstrating that other 
factors than affinity-selection must be involved [reviewed in Ref. 
(58)]. For instance, already 1 week after immunization the first 
GC memory cells, even when unmutated, express shorter idi-
otypic CDR3 in the VH region (CDR-H3) than antibody-secreting 
PCs and, by the end of the second week, most clones exhibiting 
affinity-enhancing mutations were also characterized by shorter 
CDR-H3 (156). A correlation between frequency of mutations 
and shorter lengths of CDR-H3 has also been observed in human 
antibodies (157, 158). In the murine model immune response to 
the hapten phOx the dominance of a particular idiotype (IdOx1) is 
T cell-dependent and first established during class-switch-recom-
bination; concomitantly, CDR-H3 diversity is drastically reduced 
and accompanied with shortening and approximation of CDR-H3 
lengths and with elimination of IgM-secreting clones despite their 
equal or even considerable higher affinities for the hapten than 
IdOx1 antibodies (88). Thus, contrary to previous understanding, 
the IdOx1 dominance does not seem to depend on its superior affin-
ity but appears to be idiotypically selected. An idiotypic selection 
of slightly shorter and more uniform CDR-H3 lengths during class 
switching is also indicated in the response of C57BL/6 mice to the 
hapten NP (88, 159). Hence, these findings suggest the involve-
ment of BCR-specific, namely idiotope-/CDR-H3-specific T cells 
during CSR and subsequent clonal selection in GCs.

Direct evidence for an idiotypic regulation has been provided 
in a murine adoptive transfer model showing that BCR peptide-
specific (thus idiotype-specific but antigen non-reactive) CD4+ 
T cells interrupt the GC reaction, inhibit the secondary response, 
and redirect the differentiation of B cells into extrafollicular plas-
mablasts (160). Furthermore, a TCR-idiotype-specific regulation 
of immune responses has also been demonstrated for CD8+ T cells 
that are restricted by the MHC class Ib molecule Qa-1 (HLA-E 
in humans), which is absent from naïve resting CD4+ T cells but 
transiently expressed after antigen activation (106). Blockade of 
this regulatory pathway in Qa-1-deficient mice leads to enhanced 
responses of CD4+ T cells to foreign as well as autoantigens (161).

CONCLUDiNG ReMARKS

As receptors generally exert exclusive specificity for their genuine 
ligands it is taken for granted that BCR/TCR, because of their name 

“antigen receptors,” exclusively bind antigens resp. MHC-presented  
antigenic peptides. It was almost regarded as a sacrilege that BCR/
TCR should perform meaningful reactions with other autologous 
anti-idiotypic antigen receptors. Thus, over time, the sole reactivity 
with antigens became a firmly established matter of course. The 
intrinsic reactivity with anti-idiotypic BCR/TCR did not make 
sense since it seemingly discredited the clear view that the immune 
system’s task is the fight against microbial infections. This view, 
however, is not any longer tenable since idiotypic characters that are 
distinguishable in the autologous immune system are recognized 
as BCR/TCR nonself-portions in association with all CDR3s (but 
only slightly with that of the immunoglobulin L-chain) and somatic 
mutations in the variable regions of BCR that are generated during 
the adaptive immune response. As the self–nonself-discrimination 
is the fundamental question of all immunological research, 
immunology as a discipline has even been viewed as the science 
of self–nonself-discrimination. Hence, it is incomprehensible 
why CDR3 sequences although not encoded in the genome but 
somatically created and used as clonotypic markers, have not been 
recognized as idiotopes that belong to the nonself. Although foreign, 
these nonself-portions are non-immunogenic by themselves as 
can be concluded from experiments with AgF animals. However, 
antigen activation is the initial spark for clonal selection and cellular 
proliferation that is accompanied with an increase of antigen 
receptors plus their nonself-portions and expression of activation 
markers. Thereby, idiotypic (as well as ergotypic) characters become 
immunogenic and initiate further anti-idiotypic (and ergotypic) 
clonal connections that form a waning idiotypic chain reaction 
as schematically depicted in Figure 5. Hence, as proposed in the 
idiotypic network theory (7), the activation of adaptive immune 
responses is followed by regulatory idiotypic chain reactions. 
However, just as the idiotypic network theory by its own could 
not give a complete and satisfactory understanding of the adaptive 
immune response this cannot be expected from sole observance 
of the function and sequential expression of non-specific markers 
(lineage and activation markers, transcription factors, cytokines 
and their receptors). This can only be achieved by investigating the 
interdependency of clonotypic activation and idiotypic regulation 
both of which represent initializing regulatory principles that 
subsequently lead to expression of non-specific cellular markers 
and cytokine/chemokine secretion driving the differentiation 
of lymphocytes during antigen/autoantigen-induced immune 
responses. In conclusion, the well-documented fact of the 
autologous recognition of antigen receptor-intrinsic nonself parts 
as targets for idiotypic regulation of adaptive immune responses 
needs to be incorporated in future investigations.
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