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Sepsis is life-threatening organ dysfunction due to dysregulated response to infection. 
Patients with sepsis exhibit wide heterogeneity stemming from genetic, molecular, and 
clinical factors as well as differences in pathogens, creating challenges for the develop-
ment of effective treatments. Several gaps in knowledge also contribute: (i) biomarkers 
that identify patients likely to benefit from specific treatments are unknown; (ii) thera-
peutic dose and duration is often poorly understood; and (iii) short-term mortality, a 
common outcome measure, is frequently criticized for being insensitive. To date, the 
majority of sepsis trials use traditional design features, and have largely failed to identify 
new treatments with incremental benefit over standard of care. Traditional trials are also 
frequently conducted as part of a drug evaluation process that is segmented into several 
phases, each requiring separate trials, with a long time delay from inception through 
design and execution to incorporation of results into clinical practice. By contrast, 
adaptive clinical trial designs facilitate the evaluation of several candidate treatments 
simultaneously, learn from emergent discoveries during the course of the trial, and can 
be structured efficiently to lead to more timely conclusions compared to traditional trial 
designs. Adoption of new treatments in clinical practice can be accelerated if these trials 
are incorporated in electronic health records as part of a learning health system. In this 
review, we discuss challenges in the evaluation of treatments for sepsis, and explore 
potential benefits and weaknesses of recent advances in adaptive trial methodologies to 
address these challenges.
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inTRODUCTiOn

Sepsis is a leading cause of critical illness and mortality globally (1, 2). It is a clinical syndrome and 
defined as a dysregulated host response to infection resulting in organ failure (3). This definition 
implies that different combinations of host and pathogen characteristics and interactions among 
them may lead to the same clinical picture. This inherent heterogeneity presents a major challenge 
to develop treatments and may be an important reason for recent neutral clinical trials. In addition, 
the traditional sequence to develop new therapeutics by pharmaceutical companies has several 
limitations that may exacerbate these challenges, and lead to prolonged evaluation periods of up 
to a decade before results can be operationalized (4). In this review, we discuss challenges in the 
evaluation of treatments for sepsis, and explore potential benefits of recent advances in adaptive trial 
methodologies to address these challenges.
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CHALLenGeS in THe evALUATiOn OF 
POTenTiAL TReATMenTS

Sepsis is extremely Heterogeneous
Several preclinical models suggest that sepsis results from a dis-
proportionate pro-inflammatory response to infection. However, 
several clinical trials of anti-inflammatory agents in relatively 
broad patient populations were disappointing (5). Subsequent 
findings indicated that circulating levels of pro-inflammatory 
cytokines, such as IL-6 and TNF ranged from 8 to 1,550,000 pg/ml  
and 7 to 57,000 pg/ml, respectively, in patients with sepsis (6). 
Thus, the assumption that all patients would benefit equally from 
anti-inflammatory agents is unlikely. The host immune response 
during sepsis is complex and dynamic, involving excessive pro-
inflammation and immunosuppression, often concomitantly. The 
balance of pro- and anti-inflammatory responses also evolves 
over the course of illness, and may be prognostic (7, 8).

A sustained dysregulated immune response may lead to pro-
found alterations in the endothelium and surrounding tissues, 
including increased leukocyte adhesion, coagulation, and vaso-
dilation, and loss of barrier function, hypoperfusion, and tissue 
hypoxemia (9). These disruptions and others lead to multisystem 
organ dysfunction, including acute kidney injury, neurologic 
complications, acute respiratory distress syndrome (ARDS), 
hepatic failure, and shock. However, the specific organ systems 
affected varies between patients. This organ failure is commonly 
seen against a backdrop of multimorbidity, a condition where two 
or more comorbidities may exist in a patient. Multimorbidity is 
observed in more than 30% of ICU patients (10) and further 
increases clinical heterogeneity. Taken as a whole, such complex 
variability stemming from these and other sources (e.g., host 
genetics and microbiologic factors) poses significant challenges 
to the efficient design and conduct of clinical trials, particularly 
those testing interventions targeting a specific mechanism. Some 
subsets of patients may benefit from such an intervention, while 
others may result in no benefit or even harm. For example, 
in simulated trials of anti-TNF studied in  silico, benefit was 
observed after considering genetic and microbiological factors 
(11). However, most trials of anti-TNF in humans have ignored 
these factors.

Biomarkers That Predict Treatment 
Response Are Unknown Before  
initiating a Trial
As discussed above, sepsis pathobiology is complex and evolving. 
As opposed to other diseases in which the natural history and 
risk factors are better understood, there are critical gaps in our 
knowledge of the potential markers of prognosis after sepsis  
(i.e., prognostic markers) and markers that predict treatment 
response (i.e., predictive markers). This distinction between prog-
nostic and predictive markers is critical. For example, in a trial of 
anti-TNF, a group of patients with high levels of IL-6 had a higher 
mortality rate, but not a higher drug response, suggesting prog-
nostic but not predictive utility as a biomarker (6). In scenarios in 
which a treatment’s effect is meaningfully heterogeneous among 
the patient population, predictive markers are useful in explaining 

the sources of this heterogeneity of treatment effect (HTE). 
Without knowledge of the drivers of HTE, researchers and drug 
companies either ignore heterogeneity and enroll broadly or take 
a leap of faith and enroll narrowly based on suspected predictive 
biomarkers. If the biomarkers are not validated, the latter scenario 
could lead to exclusion of patients who would have benefited, or 
inclusion of patients who will not respond to the treatment.

While it is possible that single markers may be identified as 
sufficiently predictive by themselves, it is also possible that groups 
of genetic, metabolic, and/or clinical features may often occur 
together, forming groups or “phenotypes” of patients within 
the broad umbrella of sepsis that may have similar outcomes or 
treatment response rates. In sepsis and septic shock, phenotypes 
have recently been described that are associated with variable risk 
of mortality and would be considered “prognostic” (12, 13). In 
ARDS, phenotypes are described and found to respond variably 
to different fluid and ventilator management strategies (14). As 
sepsis phenotypes are further described, it will be important to 
allow for future trials to incorporate possible markers of HTE as 
efficiently as possible to avoid missing a true drug response by 
enrolling too broadly or too narrowly.

Optimal Therapeutic Dose and Duration  
is Often Poorly Understood
The selection of treatment dosing and duration is often based on 
limited animal studies and small pharmacokinetic and pharma-
codynamics studies in humans, with a focus on evaluating safety 
(15). Preclinical studies are commonly carried out in simple, 
often healthy and young, rodent models exposed to a specific 
endotoxin or using the cecal-ligation and puncture model. These 
models are criticized for bearing little relation to human sepsis, 
which occurs in older patients with significant comorbidities 
and who are often receiving adjuvant support. Furthermore, 
treat ment in the rodent models has typically coincided with the 
timing of the infectious challenge; in humans, time between treat-
ment and the initial infection is unknown and likely variable (5). 
The pitfalls of designing a phase 3 study based on an optimistic 
interpretation of preclinical and traditional early phase designs 
are suggested in the case of nitric oxide synthase inhibitor NG-
monomethyl-l-arginine (L-NMMA). Promoted by encouraging 
preclinical data, a phase 2 safety study was conducted and showed 
a promising trend toward increased survival in the treated group 
(16). However, a subsequent phase 3 trial using a similar dosing 
strategy found increased mortality in the treatment arm overall, 
but significant survival benefit in a group with a relatively low 
exposure to the drug (17). The investigators concluded that this 
was likely a result of a relatively high exposure to the drug overall. 
Other studies suggest that in some cases dosing and duration may 
interact with each other in complex ways (11). Thus, the impact 
of dosing and duration, and their interaction, on sepsis outcomes 
is often poorly understood prior to initiation of phase 3 studies.

Short-Term Mortality is insensitive as a 
Primary Outcome
Short-term, all-cause mortality is a commonly used primary 
endpoint in phase 2 and 3 trials (18). However, short-term 
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TABLe 1 | Comparison of traditional and adaptive design features in addressing challenges of sepsis to the evaluation of beneficial treatments (section A), and ways in 
which common features of each influence the total time spent evaluating treatments (section B).

Traditional trial designs Adaptive trial designs

Section A. Challenges of sepsis to the evaluation of beneficial treatments

High degree of disease heterogeneity as a 
result of variability among patients  
(e.g., biochemical and genetic), within  
patients (e.g., temporal dynamics of immune 
response), and infection characteristics  
(e.g., site and pathogen)

Usually test a single drug in a single 
predefined population; usually use 1:1 ratio 
of randomization to experimental and control 
arms

Response adaptive randomization (RAR) enables multiple drugs 
to be tested in potentially different subgroups based on projected 
mechanism of action, while preserving efficiency. Randomized, 
embedded, multifactorial adaptive platform enables recruitment from 
as broad a population base as possible, necessary for sample sizes  
to satisfy complex designs testing drugs in multiple subgroups

Specific biomarker profiles may predict 
treatment response, but the optimal sub-
populations are unknown

Usually restricted to a single, predefined 
population, and as a result, enrollment criteria 
are often too broad or too narrow

Enrichment designs enable identification of the sub-population in 
which treatment response is optimized over the course of the trial

Optimal therapeutic dose and duration is often 
poorly understood

Due to trial inefficiencies, dose selection is 
often under-studied, potentially including 
under- or overdosing or using a dose that is 
constant despite variable patient requirements

Dose-finding designs can use RAR to study optimal dosing while 
preserving efficiency; can open higher dose arms as evidence in lower 
doses accumulates in support of efficacy and safety

Short-term mortality is the accepted clinical 
endpoint, but has been criticized insensitive to 
possible drug-related changes in morbidity and 
long-term mortality

A single primary endpoint is usually fixed 
before the start of the trial

Platform designs can be leveraged to evaluate proxy endpoints over 
time and feed this information back into the trial by incorporating it 
into the RAR algorithm

Section B. Major contributors to total time spent evaluating drugs

Drug evaluation machinery New study sites, protocols, and designs are 
usually established anew for each drug

Platform designs can include perpetually active master protocols that 
facilitate continuous use of existing trial resources on selection of 
drugs that is periodically updated

Number of drug arms tested simultaneously Usually one. Traditional trials are most efficient 
when testing a single drug against placebo. 
Testing multiple drugs requires larger sample 
compared with adaptive designs

Multiple drugs can be compared to a single placebo arm while 
maintaining statistical efficiency using RAR, obviating the need for 
separate trials

Transitions between phases of the drug 
evaluation process

Phases are usually carried out one at a time, 
with sometimes long intervals in between for 
design and approval of the next phase

Seamless designs consolidate multiple phases into a single protocol 
that is designed, approved, and executed as a single trial. Sample 
sizes for component phases can be smaller if efficacy in the final 
phase is estimated using data from all phases

3

Talisa et al. Adaptive Trials for Sepsis

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1502

mortality is declining (19, 20), and those who do not die early 
often die in the ensuing months or incur considerable morbidity  
(21, 22). Moreover, pure mortality endpoints are criticized for 
being insensitive measures of biologic activity, and thus poor tools 
for use in early phase trials for selection of dosing and duration. 
Recognizing these shortcomings, there is interest in identifying 
and validating short-term endpoints that are both more sensitive 
to treatment effects and good proxies for longer-term patient 
centered outcomes; one proposed alternative is combination of 
mortality and organ support duration (23).

nOveL TRiAL MeTHODOLOGieS AnD 
THeiR UTiLiTY FOR evALUATiOn OF 
SePSiS TReATMenTS

Most sepsis trials use traditional design features, in which all 
trial parameters are fixed for the duration of the study, including 
randomization ratios, sample sizes, number of treatment arms, 
and inclusion/exclusion criteria, among others. These designs 
have the advantage of optimal statistical power and internal 
validity when there are only two treatment arms, but this comes 
at the expense of flexibility should the investigator be interested in  
testing more complex and potentially numerous hypotheses (24).

By contrast, adaptive designs facilitate the evaluation of 
several research questions simultaneously and embrace the 
possibility of emergent discoveries during the course of the trial. 
During an adaptive trial, updates are made to the design param-
eters following interim analysis, often conducted several times 
before the trial’s completion. The decision rules dictating which 
updates can be made are predetermined before initiation to avoid 
introducing bias (25–27). Below we discuss several features of 
adaptive designs that could theoretically be used to address key 
challenges in the evaluation of sepsis treatments (Table 1, section 
A). In addition, we discuss ways in which adaptive designs can 
potentially accelerate the drug evaluation process (summarized 
in the Table 1, section B).

Bayesian Response Adaptive 
Randomization (RAR)
Although it is optimal to conduct a two-arm trial using a tra-
ditional design, such approaches are inefficient when evaluating 
more than two treatments against control. Traditional designs 
typically use the frequentist statistical paradigm, where prior 
information about efficacy is utilized formally only in the design 
of a clinical trial (e.g., power calculations), but not during 
analyses. Alternatively, Bayesian statistical approaches provide a 
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formal mathematical mechanism for combining prior and cur-
rent information for use in the design, conduct, and final analysis 
stages of the trial (28). Adaptive trial designs have been developed 
under both frequentist and Bayesian paradigms (29).

The Bayesian paradigm provides a natural foundation for 
statistical tools utilized in many adaptive designs, which involve 
iteratively updating or “adapting” information gathered during 
the trial (25). One such tool, RAR, is used to increase efficiency 
when testing more than one treatment against control. Over the 
course of the trial, accumulating data are used to adjust the rand-
omization probabilities to preferentially assign future patients to 
better-performing treatment arms (26). Typically, the first block 
of patients are randomized to each arm in equal proportion and 
randomization probabilities for subsequent blocks are calculated 
based on information accumulated prior to starting the block. 
A common way of executing RAR is by calculating the Bayesian 
predictive probability that a given treatment arm will be superior 
to control in the final analysis. This calculation often requires 
sophisticated computer simulations, but effectively integrates 
not only uncertainty about the true drug benefit based on data 
accumulated so far but also uncertainty about future data that 
have not yet been observed (30). Unless the predictive probability 
is too low (i.e., the arm should be dropped), or sufficiently high 
(the arm may “graduate” to the next phase of testing), the updated 
randomization probability for the next block of patients is pro-
portional to the predictive probability of success for the treatment 
relative to control (27). Frequentist adaptive trial designs exist, 
but are not amenable to RAR.

Implementation of RAR could benefit sepsis trials in several 
ways. First, it would enable the study of multiple drugs simultane-
ously in a phase 2 trial, increasing the chances that at least one drug 
being tested will improve outcomes while reducing the time and 
costs needed to evaluate them individually by “learning” which 
ones are superior during the phase 2 trial and will have high likeli-
hood of success in future phase 3 trials. The use of RAR instead 
of fixed randomization ratios underscores a focus on identifying 
the best-performing arm, instead of expending resources to rank 
all arms from worst to best performance. Second, instead of using 
RAR to assign patients to different arms, phase 2 adaptive trials 
could test different dosing and/or duration strategies for a single 
drug to better inform the optimal treatment strategy for phase 
3 testing. This approach was implemented in SEPSIS-ACT, an 
adaptive trial of selepressin dosing strategies in adults with septic 
shock (31). In this trial, RAR was used to allocate patients to three 
dose levels until predefined checkpoints for safety and efficacy 
were triggered. If necessary, a fourth could be introduced based 
on response to the three doses.

Adaptive enrichment Designs
Often there is interest in a variety of drugs as well as identifying 
potential sub-populations within which the drugs are most effec-
tive. In a traditional enrichment design, randomization is simply 
limited to patients with a specific biomarker profile known to be 
predictive of treatment response. However, we may not know 
which patient groups may benefit the most from a treatment 
in sepsis. Using adaptive trial methodologies, it is possible to 
incorporate putative predictive biomarkers to “learn” the optimal 

biomarker profile in the case that a meaningful underlying HTE 
exists (32).

In one approach, the RAR algorithm is used in an adaptive 
platform trial (see below) of several drugs, where patients are 
categorized into several candidate predictive biomarker strata 
before randomization. In the BATTLE I trial, non-small cell lung 
cancer patients were classified into four candidate strata defined 
by genomic and expression markers before being randomized to 
one of four drug regimens. Separately for each stratum, the RAR 
weights were adjusted as data accumulated to favor assignment 
of drugs with higher within-stratum response rates (33). The 
results from BATTLE 1 both confirmed pre-specified hypotheses 
of treatment efficacy in the presence of individual markers related 
to the treatments’ mechanism of action, and also suggested new 
treatment–biomarker interactions (34).

An alternative enrichment approach allows for more flexibility 
in the scenario where candidate predictive biomarkers have not 
been identified. In this framework, the optimal target population 
for the experimental treatment is adaptively learned and estimated 
as a function of baseline covariates (35, 36). Such designs could 
be useful, for example, to identify the optimal threshold value of 
a predictive biomarker to use for splitting the patient population 
into responsive and non-responsive strata (35).

While underlying drug response strata may exist and may 
be delineated by putative biomarkers, demonstrating this may 
be difficult in scenarios where treatment effects are relatively 
homogeneous or when the overall treatment effect is small. Thus, 
adaptive enrichment strategies present a potential advantage by 
incorporating mechanisms to adapt to the presence of HTE if 
evidence for it mounts over the course of the trial.

Seamless Designs
The traditional drug evaluation pipeline is usually segmented into 
several phases, each involving a brand new trial. To streamline this 
process and reduce associated time and costs, a number of designs 
have been developed that combine multiple phases into a single 
trial, including several within the Bayesian adaptive framework 
(37). This approach was implemented into the SEPSIS-ACT trial, 
an adaptive phase 2b/3 trial (31). Part 1 of SEPSIS-ACT uses RAR 
to “learn” which dosing regimen leads to greatest efficacy, while 
part 2 is a confirmation stage randomizing 1,000 new patients 
equally between control and a single treatment arm featuring the 
dose selected in part 1. Early stopping of part 1 would occur if 
enough evidence had been obtained to select an optimal dose; 
otherwise enrollment would continue up to a predetermined 
maximum sample size. To further increase efficiency, all data 
from parts 1 and 2 are incorporated in the final analysis. Thus, 
adaptive seamless designs may lead to more timely conclusions, 
an advantage which is just as useful for patients and researchers in 
the case of a truly effective treatment as for a truly ineffective one.

Adaptive Platform Trials
There is significant effort required to launch a trial, including 
preparing trial documents, identifying sites, initiating the trial, 
and obtaining regulatory approval. As the name suggests, the 
adaptive platform trial is capable of being a platform for testing 
experimental treatments in a perpetual manner via a common 
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FiGURe 1 | Schematic representation of a hypothetical adaptive platform trial. An initial block of patients is stratified based on known or candidate predictive 
biomarkers, and then randomized to an experimental or control arm. Once a predefined number of patients is enrolled, outcomes are observed and the data are 
input to the Bayesian statistical model by arm and stratum, which is used to calculate the predictive probabilities (PP) that each experimental arm will be superior to 
control in the final analysis. These PP are checked against predefined decision boundaries established so that arms with poor probability of success are dropped, 
and arms with high probability of success “graduate” to the next phase of testing. Arms with PP that do not require dropping or graduation continue enrolling 
subjects; arms that are removed may be replaced by new experimental treatments, accrual permitting. Finally, the PP are used to update randomization probabilities 
used for the next block of patients to be enrolled, and the feedback loop begins anew.
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master protocol, by dropping treatments lacking efficiency and 
adding new treatments going into the future. They are able to 
incorporate several design features of adaptive trials, such as 
RAR, biomarker enrichment, and seamless transitioning, often all 
in the same design. Currently there are platform trials enrolling 
patients in oncology (38, 39), infectious diseases (40), neurology 
(41), and intensive care (42).

In a platform trial, the feedback loop involving collecting 
data, updating the Bayesian statistical model and updating RAR 
weights is modified to enable new arms to be added, and old arms 
to either be dropped or “graduate” to the next phase of testing.  
A schematic of the platform trial design is shown in the Figure 1. 
I-SPY 2 is a phase 2 platform trial in women with locally advanced 
breast cancer, and out of eight treatments entered into the trial 
loop so far, two are considered promising enough to “graduate” 
out of the trial (43, 44). GBM-AGILE, an inferentially seamless 
phase 2/3 platform trial in glioblastoma, was designed so that 
“graduating” treatments are seamlessly transitioned into phase 3 
confirmatory testing (39). Both I-SPY 2 and GBM-AGILE incor-
porate enrichment biomarkers hypothesized to be predictive of 
response for specific treatment arms.

There is considerable pressure to identify short-term endpoints 
that can be used to speed the evaluation of treatments by accu-
rately predicting treatment response in terms of a gold-standard 

endpoint, such as long-term mortality. I-SPY 2 and GBM-AGILE 
both leverage accumulating data in a continually updated Bayesian 
longitudinal model to generate predictions of the long-term 
endpoints for use in updating RAR weights (26, 30, 45). In I-SPY 
1, for example, it was found that MRI outcomes within the first 
few weeks following treatment predicted pathological complete 
response (pCR) at the time of surgery, about 5 months after treat-
ment (46). Thus, short-term MRI data are used to predict pCR in 
I-SPY 2 for the purposes of updating the RAR weights months 
before the actual pCR data are observed, increasing efficiency  
(38, 46). In GBM-AGILE, useful proxy endpoints are being learned 
and vetted within the trial, and potentially different endpoints are 
expected to capture the effects of different treatments (39, 45).

The incorporation of Bayesian models in adaptive sepsis trials 
could theoretically provide a means of evaluating how changes in 
short-term endpoints (e.g., 28-day organ failure free days) due to 
treatment correspond with changes in new long-term endpoints 
such as quality-adjusted life-years at 6 months.

embedded, Multifactorial Adaptive 
Platform Trials
Randomized, embedded, multifactorial adaptive platform 
(REMAP) trials utilize all of the features of a perpetual adaptive 
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platform trials like I-SPY 2 or GBM-AGILE, the key distinction 
being that a REMAP trial is executed directly within clinical 
practice through the electronic medical record [EMR (47)].  
A key advantage of embedding trials in clinical care is to create a 
“learning health system” by enrolling most eligible participants, 
which increases the speed with which new knowledge is gener-
ated and implemented in routine clinical care. In addition, it 
maximizes internal and external validity, and minimizes opera-
tional complexity at the bedside (there is no need to distinguish 
between trial and non-trial patients, because all patients are trial 
patients). While screening and recruitment for a REMAP can be 
conducted by research staff, it is not intended that recruitment 
should be dependent on research staff because they are typically 
present during office hours. Thus, REMAP trials may reduce 
costs.

Most REMAP trials determine the effectiveness of various 
treatments used in routine clinical care but in a randomized set-
ting. An example is the REMAP-CAP trial being conducted in 
patients with community-acquired pneumonia severe enough 
to be admitted to an intensive care unit (42). Upon submitting 
treatment orders through the EMR, the clinician can choose to 
instead be randomized the most promising treatment regimens 
(utilizing RAR weights). To capture the clinical complexity of 
treatment plans involving combinations of treatments, patients 
are randomized to multiple sets of treatments within differ-
ent domains. For instance, different antibiotic regimens and 
immunomodulatory drugs may be compared in patients with 
severe pneumonia. This complexity not only requires the use of 
complex statistical models incorporating interaction terms but 
also increases penetration of the trial through its embedment 
in the EMR. Like I-SPY 2 and GMB-AGILE, REMAP-CAP is 
designed to be perpetual, and as such include mechanisms to 
incorporate control arms that are updated to incorporate any 
newly discovered standards of care, e.g., resulting from the trial 
itself. Although not implemented yet in REMAP-CAP, there 
is also the capability to incorporate enrichment biomarkers as 
well. Investigators have recently been funded to launch REMAP 
initiatives in other conditions, including anti-microbial resist-
ance, cystic fibrosis, hepatitis C, and operative stress in the 
elderly.

inHeRenT CHALLenGeS OF ADAPTive 
DeSiGnS

Adaptive designs may have many promising features for future 
trials in sepsis, but they also come with their own challenges. 

Statistical models and the exploration of operating charac-
teristics are complex and simulation-intensive. Selection of 
potential trial trajectories is especially important during the 
simulation process, as an overly narrow set of scenarios may 
lead researchers to fail to understand the consequences of 
their design choices. A range of alternative trajectories should 
be explored by varying important simulation parameters, for 
example: choice of Bayesian prior (assuming a Bayesian model 
is used); choice of data model; underlying treatment effects 
for each arm; proportions of patients within subtypes; accrual 
rates; and others. For designs relying on simulation-based 
outcome metrics such as the predictive probability of success, 
failure to explore sensitivity to modeling assumptions may pose 
risk to future patients, e.g., if drugs are erroneously selected 
for graduation. In designs considering many subgroups or 
combinations of drugs, careful consideration must be taken 
to craft statistical models with only the necessary complexity 
to preserve statistical power. In addition, the benefits to trial 
efficiency of periodically updating RAR weights are somewhat 
dependent on patient accrual rates; if accrual of data occurs 
faster compared to ideal updating time, RAR updates may 
occur based on incomplete follow-up. The complexity of these 
designs also creates difficulties communicating their features 
to important stakeholders who may be unfamiliar with them, 
such as funding agencies, institutional review boards, patients, 
research journals, and clinicians.

COnCLUSiOn

Many studies employing Bayesian adaptive trial designs have 
already led to promising discoveries in several diseases, 
including the identification of two promising candidate drugs 
in breast cancer. These studies leverage several key features of 
adaptive designs, including RAR, enrichment methods, seam-
less transitioning between trial phases, perpetual platforms for 
ongoing evaluation of candidate treatments, integration within 
the EMR, and others. These features are well suited to address 
the many challenges presented by complex, heterogeneous dis-
eases, yet are rarely utilized in sepsis. Adoption of these designs 
may aid in the efficient identification of promising treatments 
for sepsis.
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