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Toxoplasmosis is a zoonotic disease caused by the intracellular protozoan Toxoplasma 
gondii; and a major source of infection in humans is via ingestion of T. gondii tissue cysts. 
Ultimately, the goal of anti-toxoplasmosis vaccines is to elicit a sustainable immune 
response, capable of preventing formation of the parasite tissue cysts—or, at least, to 
restrain its growth. In this study, we formulated a cocktail DNA vaccine and investigated 
its immunologic efficacy as a protection against the establishment of T. gondii cysts in 
the mouse brain. This multicomponent DNA vaccine, encoded the TgPF, TgROP16, 
TgROP18, TgMIC6, and TgCDPK3 genes, which play key roles in the pathogenesis of 
T. gondii infection. Results showed that mice immunized via intramuscular injection three 
times, at 2-week intervals with this multicomponent DNA vaccine, mounted a strong 
humoral and cellular immune response, indicated by significantly high levels of total IgG, 
CD4+ and CD8+ T  lymphocytes, and antigen-specific lymphocyte proliferation when 
compared with non-immunized mice. Immunization also induced a mixed Th1/Th2 response, 
with a slightly elevated IgG2a to IgG1 ratio. The increased production of proinflammatory 
cytokines gamma-interferon, interleukin-2, and interleukin-12 (p  <  0.0001) correlated 
with increased expression of p65/RelA and T-bet genes of the NF-κB pathway. However, 
no significant difference was detected in level of interleukin-4 (p > 0.05). The number 
of brain cysts in immunized mice was significantly less than those in non-immunized 
mice (643.33 ± 89.63 versus 3,244.33 ± 96.42, p < 0.0001), resulting in an 80.22% 
reduction in the parasite cyst burden. These findings indicate that a multicomponent 
DNA vaccine, encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, 
shows promise as an immunization strategy against chronic toxoplasmosis in mice, and 
calls for a further evaluation in food-producing animals.

Keywords: Toxoplasma gondii, chronic toxoplasmosis, cocktail Dna vaccine, multistage antigens, mixed Th1/Th2 
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inTrODUcTiOn

Toxoplasma gondii, the causative agent of toxoplasmosis, infects 
nearly all warm-blooded vertebrates, including birds and 
humans (1, 2). Toxoplasmosis in immunocompetent people 
usually manifests as a flu-like, self-limiting infection; however, 
in immunocompromised patients (cancer, AIDS, and organ 
transplant recipients), reactivation of chronic toxoplasmosis 
can cause fatal complications, such as toxoplasmic encephalitis  
(3, 4). The reactivation of tissue cysts is manifested by their rup-
ture, followed by the conversion of released bradyzoites to tachy-
zoites, and a proliferation of tachyzoites. Therefore, the removal 
of T. gondii tissue cysts from infected individuals would prevent 
such reactivation. Tissue cysts of T. gondii in animals also present 
a potential threat to human health if they are consumed in raw or 
undercooked meat (5, 6). Currently, there are no available drugs 
to eliminate T. gondii tissue cysts (7, 8). It is therefore imperative 
that new approaches are developed for immunotherapy against 
this infection.

Development of vaccines to prevent T. gondii tissue cyst 
formation can be an effective approach to ensure the safety of 
meat products, originating from food-producing animals under 
backyard and free-ranging conditions (9, 10). Over the last two 
decades, various anti-T. gondii vaccine approaches have been 
evaluated in animal models. Previous studies have shown that 
DNA vaccine can induce, through enhanced humoral and cel-
lular immune responses, immune protection against acute and 
chronic toxoplasmosis in animal models (11–15). Additional 
advantages of the DNA vaccination, when compared with using 
live-type vaccines, are their thermal stability, safety, and the low 
cost of production (12, 14). To date, no single DNA vaccine 
has provided full protection against T. gondii cyst formation 
(9, 16, 17).

Toxoplasma gondii-specific cytotoxic T  lymphocytes (CTLs) 
induced by immunization can improve the protective immunity 
against parasite infection (9, 14). Previous studies have shown 
that a multicomponent vaccine may offer better protection than 
a single antigen (16–19) due to the elevated numbers of T. gondii-
specific CTLs, and the subsequent increase in the production of 
antigen-specific cytokine gamma-interferon (IFN-γ) (19, 20). 
A combination of different antigens, in theory, contain more 
CTL epitopes and are considered superior to a single antigen for 
protecting the host against T. gondii infection (14, 21).

This study aimed to examine the protective efficacy of a DNA 
multicomponent vaccine against chronic T. gondii infection. 
Five well-characterized antigens play key roles in host–parasite 
interaction including host cell attachment (MIC6) (22), gliding 
motility and invasion (profilin) (23, 24), signal transduction 
and egress (calcium-dependent protein kinase 3; CDPK3) (25), 
intracellular proliferation (ROP18) (26), and modulation of host 
gene expression (ROP16) (27). These antigens were selected to 
formulate a cocktail DNA vaccine. We investigated the immu-
nologic efficacy of this vaccine, in protecting Kunming mice 
against chronic T. gondii infection. In addition, we conducted a 
longitudinal immune analysis and evaluated several immuniza-
tion strategies, in order to provide some guidance for optimal 
schedules of vaccine administration in future clinical trials. 

Utilization of the DNA vaccine with multi-antigens is a step 
forward in the development of commercial vaccine formula-
tions against chronic toxoplasmosis for use in humans and 
food-producing animals.

MaTerials anD MeThODs

ethics statement
Animal experiments were reviewed and approved by the Animal 
Administration and Ethics Committee of Lanzhou Veterinary 
Research Institute, Chinese Academy of Agricultural Sciences. 
The study was performed in strict compliance with the recom-
mendations set forth in the Animal Ethics Procedures and 
Guidelines of the People’s Republic of China. All efforts were 
made to minimize animal suffering and to reduce the numbers 
of animals used in the experiments.

Mice and Parasite strain
Specific pathogen-free female Kunming mice, aged 6–8  weeks, 
were purchased from the Center of Laboratory Animals, Lanzhou 
Institute of Biological Products, Lanzhou, China. They were 
housed, in pathogen-free conditions, at Lanzhou Veterinary 
Research Institute in controlled room under stable conditions 
(12-h/12-h dark/light cycle, 50–60% humidity, and ~22°C tem-
perature). Mice had access to sterilized food and water ad libitum 
and were acclimated for 1 week before use. The avirulent T. gondii 
type II Prugniuad (Pru) was propagated in our laboratory, by 
oral passage of infected brain homogenates in Kunming mice 
(28). Bradyzoites of T. gondii Pru strain were used to prepare the  
T. gondii lysate antigen (TLA) as described previously (29, 30).

Preparation of Multicomponent Dna 
Vaccine
The pVAX1 plasmids encoding T. gondii profilin (pVAX1-PF), 
rhoptry protein 16 (pVAX1-ROP16), rhoptry protein ROP18 
(pVAX1-ROP18), microneme protein 6 (pVAX1-MIC6), and 
calcium-dependent protein kinase 3 (pVAX1-CDPK3) were 
constructed as previously reported (31–35), with the fidelity of 
all plasmids confirmed by sequencing (Sangon, China). The five 
eukaryotic plasmids were each transformed into E. coli DH5α for 
propagation and were isolated by anion exchange chromatogra-
phy (EndoFree Plasmid Giga Kit, Qiagen Sciences, MD, USA) 
following the manufacturer’s instruction. Plasmid concentration 
and purity was determined by measuring the optical density ratio 
A260/A280. The purified plasmids were stored at −20°C until used 
in the mouse immunization protocols.

immunization and challenge
Mice (n = 120) were randomly allocated to six groups of 20 mice. 
Mice in groups G1, G2, and G3 were immunized using plasmids 
encoding either five genes, four genes, or one gene, respectively. 
Further details of the various vaccination regimens are listed 
in Table  1. Mice received intramuscular (i.m.) injections of 
100  µg of plasmids in 100  µl phosphate-buffered saline (PBS), 
into the tibialis anterior muscles using a 1-ml insulin syringe 
with a 28-G needle. Three vaccinations at 2-week intervals were 
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TaBle 1 | Vaccination regimens used in this study.

group immunization protocol content Volume administration

G1 pVAX1 plasmids expressing ROP16 + ROP18 + MIC6 + CDPK3 + PF 20 μg/plasmid 100 µl Intramuscular
G2 pVAX1 plasmids expressing ROP16 + ROP18 + MIC6 + CDPK3 25 μg/plasmid 100 µl Intramuscular
G3 pVAX1-PF 100 µg 100 µl Intramuscular
G4 pVAX1 100 µg 100 µl Intramuscular
G5 Phosphate-buffered saline – 100 µl Intramuscular
G6 Healthy control – – –
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performed. Mice in G4 and G5 received empty pVAX1 vector 
and PBS, respectively. Mice in G6 were healthy untreated con-
trols (non-immunized and uninfected). Following the primary 
immunization, mice in G1–G5 were provided with two booster 
immunizations at weeks 2 and 4. For the challenge, 2 weeks after 
the final immunization (6  weeks post initial immunization), 6 
mice from each group were inoculated orally with 200 µl of PBS 
containing 10 tissue cysts of the avirulent T. gondii Pru strain. 
Control mice received 200 µl of PBS without cysts. Six weeks post 
challenge, the mouse brains were removed, homogenized in 1 ml 
of PBS and cysts were morphologically identified and counted 
under a microscope (40× objective) on three aliquots of 20 µl, 
without staining.

Multicomponent Dna Vaccine induced a 
systemic humoral immune response
The blood samples from three mice in each group were collected 
from the tail vein pre-immunization, and 2 weeks after each of 
the three sequential immunizations (i.e., at 2, 4, and 6  weeks 
post immunization). The sera were separated by centrifugation 
of blood samples at 3,000 × g for 10 min. Levels of anti-T. gondii,  
total IgG, and IgG isotypes (IgG2a and IgG1 antibodies, as 
markers for Th1 and Th2 responses) were examined in mice in 
each group using the SBA Clonotyping System-HRP Kit accord-
ing to the manufacture’s instruction (Southern Biotech Co., Ltd., 
Birmingham, AL, USA). Wells of 96-well microtiter plates were 
coated with 100 µl (10 µg/ml) TLA diluted in PBS at 4°C over-
night, and then washed with PBST (PBS with 0.05% Tween-20). 
Plates were then treated with PBS-T plus 1% low fat milk for 
1 h at ambient temperature, in order to block non-specific bind-
ing sites. After washing the wells three times with PBS, mouse 
serum samples (1:10 diluted with PBS) were added to the wells, 
and incubated at 37°C for 1 h followed by washing three times 
with PBST. The serum from non-immunized mice was used as 
a negative control. Horse radish peroxidase (HRP) conjugated 
anti-mouse IgG (1:500 diluted with PBS) and anti-mouse IgG1 
or IgG2a (1:1,000 diluted with PBS) were added to the wells and 
incubated for 1  h at 37°C. Wells were then washed five times 
with PBST, and streptavidin–horseradish peroxidase was added 
for 1  h at ambient temperature. TMB (3,3′,5,5′-tetramethyl 
benzidine) in 200 µl citrate-phosphate buffer (0.05 M Na2HPO4, 
0.025  M citric acid, pH 4.0) and 2  mM H2O2 were added to 
monitor the peroxidase activity. The reaction was stopped after 
30 min by adding 2 M H2SO4. Analysis of antibody responses 
was based on absorbance, measured at 450 nm using an ELISA 
plate reader (iMark microplate absorbance reader; Bio-Rad, 

Hercules, CA, USA). All measurements were performed in 
triplicate.

lymphocyte Proliferation assay
Spleens from five mice in each group were aseptically col-
lected, 2 weeks after the final/third booster immunization and 
were pushed through a fine nylon mesh. After removal of red 
blood cells, using erythrocyte lysis buffer (Sangon, China), the 
purified splenocytes were re-suspended in RPMI medium, sup-
plemented with 10% fetal calf serum and 100 U/ml penicillin/
streptomycin. The number of purified splenic lymphocytes was 
determined, and cells were cultured at a concentration of 2 × 105 
cells/well in 96-well flat-bottom microwell plates, in complete 
RPMI medium. Cell cultures were stimulated with TLA  
(10 or 5 µg/ml) in three wells. RPMI media only (no antigen) and 
Concanavalin A (ConA; 5 µg/ml; Sigma, St. Louis, MO, USA) 
were used as nonstimulated and positive controls, respectively. 
After 4  days at 37°C in a humidified 5% CO2 incubator, the 
level of in  vitro proliferative response was determined using 
the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay 
(Promega, USA). The OD values were measured using a 
microplate reader (iMark microplate absorbance reader; Bio-
Rad, Hercules, CA, USA) at 490  nm. Data were expressed as 
stimulation index (SI), which was calculated as the ratio of mean 
OD590 values in immunized and control groups.

antigen-specific T-cell Proliferation
The percentages of CD4+ and CD8+ T lymphocytes in the purified 
splenocytes were determined by flow cytometry. The specific anti-
gen epitope of each T subclass was stained with phycoerythrin-
labeled anti-mouse CD3 (eBioscience), allophycocyanin-labeled 
anti-mouse CD4 (eBioscience), and fluorescein isothiocyanate-
labeled anti-mouse CD8 (eBioscience) antibodies. The cell 
suspension was then fixed with FACScan buffer (PBS containing 
1% BSA and 0.1% sodium azide) and 2% paraformaldehyde. 
All samples were analyzed for their fluorescence profiles on 
a FACScan flow cytometer (BD Biosciences) using System II 
software (Coulter).

cytokines
Splenocytes at a density of 2 × 105 cells/well were co-cultured with 
TLA and medium only (negative control). Culture supernatants 
were harvested at 24 h for quantification of interleukin-2 (IL-2) 
and IL-4 and at 96 h for IFN-γ and interleukin-12 (IL-12). The 
level of each cytokine was determined using commercial ELISA 
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TaBle 2 | Sequences of primers used for amplification of p65/RelA, T-bet, and 
β-actin genes.

Primer name sequence

T-bet-F 5′-GCCAGGGAACCGCTTATATG-3′
T-bet-R 5′-TGGAGAGACTGCAGGACGAT-3′
RelA-F 5′-GAACCAGGGTGTGTCCATGT-3′
RelA-R 5′-TCCGCAATGGAGGAGAAGTC-3′
β-Actin-F 5′-GCTTCTAGGCGGACTGTTAC-3′
β-Actin-R 5′-CCATGCCAATGTTGTCTCTT-3′
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kits, according to the manufacturer’s instructions (BioLegend, 
USA). The supernatants from each cell culture were pipetted 
into microplate wells followed by assay buffer A. Then, 100 µl of 
the detection solution was added into each well. After washing 
the plate four times, avidin-HRP A solution and the substrate 
solution E were added sequentially. The reaction was stopped 
by adding 100 µl of stop solution. The sensitivity limits for the 
assays were 4 pg/ml for IL-12 (p70), 20 pg/ml for IFN-γ, 10 pg/ml  
for IL-4, and 50 pg/ml for IL-2. Optical absorbance was read at 
450 nm. This experiment was performed in triplicate.

We studied the expression of the two transcription factors, 
p65/RelA and T-bet of the NF-κB pathway, in an effort to estab-
lish their roles in mediating the increased production of T cell 
cytokine (e.g., IFN-γ and IL-12). Total RNA from 107 purified 
splenocytes of mice from G1 to G6 were extracted using Trizol 
reagent (Invitrogen, USA), as per the manufacturer’s instructions. 
RNAs were dissolved in RNase-free ddH2O (TaKaRa, China) and 
reverse transcribed first-strand cDNAs were used as templates 
for real-time (RT)-PCR. The primers for amplification of RelA/
p65 and T-bet genes are listed in Table 2. β-Actin was used as a 
housekeeping reference gene. The SYBR Green qPCR SuperMix 
was purchased from Invitrogen (USA). RT-PCR was performed 
on ABI PRISM® 7500 Sequence Detection System (Applied 
Biosystems). The amplification reactions were performed under 
the following conditions: 50°C 2 min, 95°C 2 min, 40 cycles of 
95°C for 15 s, and 60°C for 32 s. Melting curve analysis was car-
ried out under the following conditions: 1 min at 95°C, 65°C for 
2 min, and progressive increase from 65 to 95°C to ensure that a 
single product was amplified in each reaction. All measurements 
were run in triplicate.

statistical analysis
Two-way ANOVA with matched data at different weeks was used 
to compare the total IgG antibody responses between the mouse 
groups. Tukey’s multiple comparisons test was then employed 
to test the differences between each of the three vaccination 
groups, and each of the three control groups at each week. One-
way ANOVA and Tukey’s multiple comparisons test were used 
for comparison in regards to the levels of IgG1 and IgG2a, and 
IgG2a/IgG1 ratio, proliferation of splenocytes, the numbers of 
CD3+ CD4+ CD8+ and CD3+ CD8+ CD4+ T cells, cytokine pro-
duction, and the numbers of brain cysts. Welch’s t test was used 
to compare the qPCR in the three genes (p65/RelA, T-bet, and 
β-actin) between the blank control group and mice in group 1.  
Data are presented as mean  ±  SD. All analyses and graphs were 
performed using GraphPad Prism version 7.04 (San Diego, 

CA, USA). The level of significance was defined as *p ≤ 0.05, ** 
p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001.

resUlTs

identification of Plasmids
Five purified plasmids pVAX1-PF, pVAX1-ROP16, pVAX1-
ROP18, pVAX1-MIC6, and pVAX1-CDPK3 were confirmed 
by sequencing prior to use in the immunization experiment. 
Sequence alignment analysis showed that no base deletion 
or change was detected after alignment with the correspond-
ing sequences in GenBank: accession numbers AY937257.1, 
DQ116422, AM075204, EF102772, and AJ488146.2.

Kinetics of humoral immune responses
We characterized temporal changes in the humoral immune 
responses following immunization. Sera were available pretreat-
ment, and at weeks 2, 4, and 6 post sequential immunizations from 
mice in all groups. Levels of total IgG and its subclasses (IgG2a 
and IgG1) from these time points were determined using ELISA. 
As shown in Figure 1, the IgG responses tended to increase with 
the increased number of immunizations, and with the increased 
number of plasmids used in immunization. Levels of IgG in mice 
in G1, G2, and G3 increased proportionally with time following 
immunization, and peaked at 2 weeks after the third/final booster 
immunization. Statistical analyses of the results (for weeks 0, 2, 4,  
and 6 post immunization) were performed using a two-way 
ANOVA for matched data. Both time and group variables had 
significant effects (p < 0.0001 for time and p = 0.0140 for group). 
Tukey’s multiple comparisons test showed no significant differ-
ences in all groups at week 0, 2, and 4 after immunization. At week 
6 post immunization, the levels of IgG production in mice from 
G1 were significantly higher than those in the control groups G4, 
G5, and G6 (p < 0.0001, p < 0.0001, and p < 0.0001, respectively). 
The levels of IgG in G2 mice were significantly elevated compared 
with the control groups G4, G5, and G6 (p = 0.0004, p = 0.0004, 
and p = 0.0003, respectively). The levels of IgG in G3 mice were 
significantly high compared with the control groups G4, G5, and 
G6 (p = 0.6142, p = 0.5803, and p = 0.5576, respectively). The levels 
of IgG antibodies in mice from control groups (G4, G5, and G6)  
were not significantly different when compared with each other. 
Within G1, G2, and G3 groups, levels of IgG antibodies were not 
significantly different in G1 versus G2 (p  =  0.8977), but were 
significantly different in G1 versus G3 (p =  0.0023) and in G2 
versus G3 (p = 0.0447).

The levels of IgG1 and IgG2a were determined 2 weeks after the 
final immunization. One-way ANOVA and Tukey’s multiple com-
parisons test were used for statistical analysis of IgG1 and IgG2a 
data. The results of IgG1 analysis showed that G1 versus G4, G5, 
and G6 were all significantly different; G2 versus G4 (p = 0.0626), 
G2 versus G5 (p = 0.0504), G2 versus G6 (p = 0.0335), whereas 
G3 versus G4, G5, and G6 were not significant (Figure 2). The 
levels of IgG2a showed that G1 versus G4, G5, and G6 were all 
significant; G2 versus G4, G5, and G6 were all significant; and 
G3 versus G4 (p = 0.0765), G3 versus G5 (p = 0.0053), and G3 
versus G6 (p = 0.0049). These results suggest that both IgG1 and 
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FigUre 2 | Levels of IgG subclasses (IgG1 and IgG2a) in the sera of mice 
2 weeks after the final booster immunization. The patterns of IgG2a to IgG1 
post immunization using various immunization regimens suggest the 
induction of a mixed Th1/Th2 immune response. Experimental groups 
include G1: mice received pVAX1 plasmids containing five antigens (ROP16, 
ROP18, MIC6, CDPK3, and PF); G2: mice received pVAX1 plasmids 
containing four antigens (ROP16, ROP18, MIC6, and CDPK3); G3: mice 
received pVAX1-PF; G4: mice received an empty pVAX1; G5: mice received 
phosphate-buffered saline alone; G6: healthy control mice. Each bar 
represents the group OD450 ± SDs for three wells (representative of three 
experiments). *p < 0.05, **p < 0.01, and ****p < 0.0001, compared with the 
control groups.

FigUre 1 | Antigen-specific antibody response in immunized mice. Total IgG antibodies were determined in the sera of mice pre-immunization (0 week) and at 2, 4, 
and 6 weeks post three consecutive booster immunizations. Experimental groups include G1 mice received pVAX1 plasmids containing five antigens (ROP16, 
ROP18, MIC6, CDPK3, and PF); G2 mice received pVAX1 plasmids containing four antigens (ROP16, ROP18, MIC6, and CDPK3); G3 mice received pVAX1-PF; G4 
mice received an empty pVAX1; G5 mice received phosphate-buffered saline alone; G6 healthy control mice. Data are mean ± SDs for three wells (representative of 
three independent experiments). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with the control groups.
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IgG2a antibodies were higher in mice in G1, G2, and G3 than 
those in control groups at 2 weeks after the third immunization, 
suggesting a mixed Th1/Th2 immune response. To provide 
information on the dominant cellular immune type (Th1 or Th2) 
induced by immunization, ELISA was used to determine the ratio 
of IgG2a to IgG1 in the sera of all mouse groups. Results showed 

that immunized mouse groups, in particular, mice immunized 
with pVAX1-PF, had a slightly Th1-biased immune response as 
indicated by the higher IgG2a/IgG1 ratio (G1: 1.29; G2: 1.38; 
G3: 1.75) when compared with that of the control mouse groups  
(G4: 0.88; G5: 0.87; G6: 0.94; p = 0.0877).

cellular immune responses
The MTS assay was used to assess the T lymphocyte’s proliferative 
response following stimulation with TLA or ConA. As expected, 
there was no difference for the SIs between the immunized groups 
(G1, G2, and G3). However, in  vitro lymphocyte proliferation 
assay revealed that splenic lymphocytes from immunized mice 
had a significantly higher SI than their counterparts from non-
immunized controls, either in the presence of ConA or TLA 
extract. Exposure to 10 µg/ml TLA increased T-cell proliferation 
in G1, G2, and G3 compared with that obtained from control mice 
(Figure 3): G1 versus G6 (p = 0.0010), G2 versus G6 (p = 0.0012), 
and G3 versus G6 (p = 0.0001). Similar results for T lymphocyte 
proliferation were obtained from splenocytes sensitized with 
5 µg/ml TLA in mice from G1, G2, and G3 (Figure 3). The results 
of this ex vivo splenic lymphocyte proliferation assay suggested 
that immunization has induced antigen-specific lymphocyte 
proliferation.

We further characterized the cellular immune response, using 
flow cytometry analysis, and found that the numbers of CD3+ 
CD4+ CD8− T cells in spleens of mice from G1, G2, and G3 were 
significantly higher than those from the controls (Figure  4). 
One-way ANOVA and Tukey’s multiple comparisons test of the 
absolute numbers of CD3+ CD4+ CD8− T cells in spleens, showed 
that G1 versus G4 (p = 0.0010), G1 versus G5 (p = 0.0003), G1 
versus G6 (p = 0.0005); G2 versus G4 (p = 0.0359), G2 versus G5 
(p = 0.0130), G2 versus G6 (p = 0.0187); G3 versus G4 (p = 0.0752), 
G3 versus G5 (p = 0.0287), G3 versus G6 (p = 0.0407). After the 
third vaccination, mice immunized with various vaccines pro-
duced significantly higher CD3+ CD8+ CD4− T cells in splenic 
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FigUre 3 | In vitro lymphocyte proliferation induced by immunization. Splenocyte proliferation was assessed in mice 2 weeks after the final booster immunization. 
Exposure of splenocytes to 10 or 5 µg/ml T. gondii lysate antigen (TLA) significantly increased T cell proliferation in splenocytes obtained from mice in G1, G2, and 
G3, compared with proliferation in the control using antigen alone suggesting the induction of antigen-specific T-cell immune response after DNA immunization. 
Experimental groups include G1: mice received pVAX1 plasmids containing five antigens (ROP16, ROP18, MIC6, CDPK3, and PF); G2: mice received pVAX1 
plasmids containing four antigens (ROP16, ROP18, MIC6, and CDPK3); G3: mice received pVAX1-PF; G4: mice received an empty pVAX1; G5: mice received 
phosphate-buffered saline alone; G6: healthy control mice. Each sample was assayed at least in triplicate. Data represent the mean ± SD (error bars) from the five 
mice. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with the control groups.
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lymphocytes as did the controls. The numbers of CD3+ CD8+ 
CD4− T  cells in mice from G1, G2, and G3 were significantly 
increased compared with those from control mice (Figure  4). 
One-way ANOVA and Tukey’s multiple comparisons test of the 
absolute numbers of CD3+ CD8+ CD4− showed that G1 versus G4 
(p = 0.0026), G1 versus G5 (p = 0.0038), G1 versus G6 (p = 0.0007); 
G2 versus G4 (p = 0.0381), G2 versus G5 (p = 0.0527), G2 ver-
sus G6 (p = 0.0111); G3 versus G4 (p = 0.0590), G3 versus G5 
(p = 0.0804), G3 versus G6 (p = 0.0178). These findings suggest 
that the frequency of CD4+ CD8+ T cells were augmented after 
DNA immunization.

cytokine Production by spleen cells
Following stimulation with TLA, significantly high levels of  
IFN-γ, IL-2, and IL-12 were observed in splenocyte cultures from 
mice in G1, G2, and G3 when compared with those from control 
mouse groups (Table 3). In regard to IL-2, G1, G2, and G3 were 
all significantly higher than G4, G5, and G6 (all p < 0.0001). For 
IL-12, G1, G2, and G3 were all significantly higher than G4, G5, 
and G6 (all p < 0.0001), and for IFN-γ, G1, G2, and G3 are all 
significantly higher than G4, G5, and G6 (all p < 0.001). Levels 
of IL-4 in mice immunized with various DNA vaccines were not 
significantly different than those in mice from control groups 
(p = 0.5028). We analyzed the expression level of the transcrip-
tion factors p65/RelA and T-bet using RT-PCR. We examined 
the difference between the expression of these two genes between 
control mice and mice in G1. Results showed that the expression 
of both p65/RelA and T-bet genes was significantly higher in 
G1 mice than in the control group (p < 0.0001 and p = 0.0010) 
(Figure  5). This result indicates that p65/RelA and T-bet are 
induced by immunization and are likely to increase the produc-
tion of IFN-γ and IL-12 cytokines.

assessment of Protective activity
We evaluated which immunization regimen generated an 
immune response that was strong enough to protect against the 
formation of T. gondii brain cysts. Six mice from each group 
were challenged with 10 cysts of T. gondii Pru strain; and brain 
cyst loads were determined 6 weeks later. As shown in Figure 6, 
mice from G1, G2, and G3 had significantly lower numbers 
of brain cysts than those from control groups G4, G5, and G6  
(all p < 0.0001). The lowest number of brain cysts was detected in 
immunized mice from G1 (643.33 ± 89.63), which represented a 
significant reduction (80.22%, p < 0.0001) when compared with 
the number of cysts found in control non-immunized  +  chal-
lenged mice (3,244.33 ± 96.42). The number of brain cysts in G1 
mice was significantly lower than in G2 or G3 mice (p < 0.0001).

DiscUssiOn

Despite significant research to develop and evaluate anti-T. gondii 
vaccines, there is little consensus on the “best” antigens to target 
and the optimal means of targeting them. The development of 
vaccines to prevent cerebral toxoplasmosis disease in high risk 
populations could reduce the enormous tragedy associated with 
brain infection with cystogenic (brain cyst-forming) strains 
of T. gondii. A substantially reduced parasite cyst load in the 
brains of immunized mice in our study, together with enhanced 
humoral and cell-mediated immune responses—compared with 
non-immunized infected mice demonstrate that immunization 
with a DNA cocktail vaccine of five antigens, provides consider-
able protection in mice against a primary oral challenge with 
the avirulent cystogenic T. gondii Pru strain. These elements 
are believed to be important in developing an effective thera-
peutic vaccine. Our results showed that immunization using 
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FigUre 4 | DNA immunization augmented the frequency of antigen-specific 
T cells. Percentages of CD4+ and CD8+ T cells subsets were determined in 
the spleen of mice 2 weeks after the final immunization by flow cytometry 
analysis. (a) Representative dot plots showing the percentages of CD3+ 
CD4+ CD8− and CD3+ CD8+ CD4− T lymphocytes. (B) Total numbers of CD3+ 
CD4+ CD8− T lymphocytes per spleen. (c) Total numbers of CD3+ CD8+ 
CD4− T lymphocytes per spleen. Experimental groups include G1: mice 
received pVAX1 plasmids containing five antigens (ROP16, ROP18, MIC6, 
CDPK3, and PF); G2: mice received pVAX1 plasmids containing four antigens 
(ROP16, ROP18, MIC6, and CDPK3); G3: mice received pVAX1-PF; G4: 
mice received an empty pVAX1; G5: mice received phosphate-buffered saline 
alone; G6: healthy control mice. Data are mean ± SDs (representative of 
three experiments). *p < 0.05, **p < 0.01, and ***p < 0.001, compared with 
the control groups.
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the cocktail DNA vaccine is a promising approach to control 
chronic toxoplasmosis, when compared with vaccination based 
on single antigens (31–35). In this study, cocktail DNA vaccine 
achieved an 80.22% reduction in the parasite cyst burden, 

compared with 50% obtained by DNA vaccine expressing T. 
gondii CDPK3 (34) and 39.08% by DNA vaccine (pVAX1-PF) 
encoding TgPF gene (35). Reduction in the brain cysts’ load 
achieved in our study, was also greater than the 57.8% reduc-
tion achieved by vaccination using multiple antigenic peptides 
encapsulated by chitosan microspheres (36).

The cytokine Th1 immune response is crucial for the control 
of infection with this obligate intracellular pathogen (14, 37). 
In our study, immunized mice developed a high level of anti-
T. gondii IgG antibodies, particularly after the third booster 
immunization. It is arguable that a high level of antibodies 
plays an important role in protection against subsequent infec-
tion with T. gondii tachyzoites, and in controlling T. gondii 
during chronic infection, by preventing cysts’ reactivation.  
A requirement for B cells, in addition to cell-mediated immu-
nity, has been reported for mice challenged with virulent  
T. gondii parasites after vaccination with attenuated tachyzoites— 
suggesting that antibody-mediated immunity is also critical 
for T. gondii-induced protection (38). Our previous studies 
have demonstrated that the individual protective immunity 
offered by pVAX1-PF, pVAX1-ROP16, pVAX1-ROP18, 
pVAX1-MIC6, or pVAX1-CDPK3 against T. gondii infection, 
elicited a mixed Th1/Th2 or Th1-biased immunity via the 
induction of lymphocyte proliferation, activation of CD8+ 
T cells and increased IFN-γ production (31–35). In this study, 
a mixed Th1/Th2 immune response, with a slight bias toward 
the Th1-type response, was detected in mice in groups G1, G2, 
and G3, as indicated by a slightly increased lgG2a/IgG1 ratio 
(i.e., a higher level of IgG2a than IgG1). Vaccination using five 
antigens evoked an increase in CD8+ T lymphocytes and IFN-γ 
production along with low levels of IL-4 in G1 mice compared 
with controls; all are characteristic features of a Th1-type cel-
lular immune response. These findings indicate that a mixed 
Th1/Th2 protective immune response was elicited following 
immunization with the cocktail vaccine—consistent with the 
results of previous studies (14, 39).

A cellular immune response, including high levels of IFN-γ, 
CD4+, and CD8+ T  lymphocytes, is required for protection 
against chronic T. gondii infection (39–43). Both cell types act 
synergistically to control T. gondii infection, and effective con-
trol of T. gondii infection requires CD4+ for the generation of 
proficient CD8+-mediated immunity (44). CD8+ T cells possess 
anti-cyst activity, mediated by a perforin-dependent mechanism 
(45, 46) and high levels of CD8+ T lymphocytes can contribute to 
a decrease of brain cyst loads (39, 43, 47–50). In our study, the sig-
nificantly increased numbers of CD8+ T cells in mice immunized 
with our cocktail vaccine may have contributed toward reducing 
the brain cyst burden.

Gamma-interferon, a crucial mediator of immune resistance 
to T. gondii infection, was detected in elevated levels in mice from 
G1, G2, and G3. IFN-γ can activate macrophages and the CTL 
response during infection (51). Significantly higher expression of 
the transcription factor T-bet (p = 0.0010) was observed in mice 
in G1, compared with mice from the control group. This finding 
indicates that increased IFN-γ production may have resulted 
from T-bet-mediated activation of CD4+ T  cells and natural 
killer (NK) cells (36). In marked contrast with IFN-γ, the level 
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FigUre 6 | Protection against chronic toxoplasmosis in immunized mice 
2 weeks after the final booster immunization. Six mice per group were 
challenged orally with a dose of 10 cysts of the Pru strain (type II). Cyst 
load was counted from whole brain homogenates of mice 6 weeks after 
challenge. Experimental groups include G1: mice received pVAX1 plasmids 
containing five antigens (ROP16, ROP18, MIC6, CDPK3, and PF); G2: 
mice received pVAX1 plasmids containing four antigens (ROP16, ROP18, 
MIC6, and CDPK3); G3: mice received pVAX1-PF; G4: mice received an 
empty pVAX1; G5: mice received phosphate-buffered saline alone; G6: 
healthy control mice. Data are mean ± SDs (representative of three 
experiments). ***p < 0.001 and ****p < 0.0001, compared with the control 
groups.

FigUre 5 | Real-time-PCR expression analysis of the transcription factors 
p65/RelA and T-bet. β-Actin was used as a housekeeping reference gene. 
Experimental groups include G1: mice received pVAX1 plasmids 
containing five antigens (ROP16, ROP18, MIC6, CDPK3, and PF); G6: 
healthy control mice. Each sample was analyzed in triplicate. Data are 
mean ± SDs (error bars) from the two mice. ***p < 0.001 and 
****p < 0.0001.

TaBle 3 | Cytokine production by splenocytes of immunized Kunming mice after stimulation by T. gondii lysate antigen.

groupb cytokine production (pg/ml)a

gamma-interferon interleukin-2 (il-2) il-4 interleukin-12 (il-12)

G1 1,003.66 ± 311.02 294.24 ± 11.1 <10 411.96 ± 57.94
G2 644.94 ± 190 269.35 ± 19.17 11.1 ± 17.4 184.75 ± 39.95
G3 1,930.26 ± 5.46 277.14 ± 2.24 <10 400.14 ± 54.43
G4 169.29 ± 1.66 <50 <10 15.42 ± 2.01
G5 182.94 ± 33.64 <50 <10 <10
G6 177.75 ± 22.32 <50 <10 <10

aNo significant difference (p > 0.05) in the level of the four cytokines was observed between the immunized groups (G1, G2, and G3) nor between the control groups (G4, G5, 
and G6). Differences between immunized groups and control groups were significant for INF-γ (p < 0.001), and for IL-2 and IL-12 (p < 0.0001). Levels of IL-4 did not show any 
significant differences between the different mouse groups (p > 0.05).
bExperimental groups included G1: mice received pVAX1 plasmids containing five antigens (ROP16, ROP18, MIC6, CDPK3, and PF); G2: mice received pVAX1 plasmids containing 
four antigens (ROP16, ROP18, MIC6, and CDPK3); G3: mice received pVAX1-PF; G4: mice received an empty pVAX1; G5: mice received phosphate-buffered saline alone; G6: 
healthy control mice. Data are mean ± SDs for three wells (representative of three independent experiments).
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of IL-4 was not statistically different between any mouse groups. 
IL-4 is a Th2-type cytokine, produced in response to receptor 
activation by Th2-type CD4+ T cells, basophils, and mast cells, 
and possesses B-cell stimulatory and Th2-promoting properties 
(52). IL-4 functions are generally antagonistic to those of IFN-γ, 
in line with the increased IFN-γ and decreased IL-4 levels seen 
in our study. Elevated IFN-γ production, together with a low 
level of IL-4, was also detected in mice immunized with DNA 
vaccines encoding TgROP1 (15), TgROM5 (39), TgCDPK2 (53), 
TgSAG1 (54), or multi-antigens (17, 19). IL-4 also promotes 
isotype-switching in murine B cells to IgG1 and IgE, but inhibits 
switching to IgG2a, IgG2b, and IgG3. This is in agreement with 
the reduced IL-4 and a high IgG2a to IgG1 ratio, observed in our 
study—providing more evidence of a biased Th1 type immune 
response.

Previous studies have shown that high levels of CD4+ and IL-2 
production, increased mouse resistance to chronic toxoplasmosis 
(30, 41, 42, 55). We also found an increased production of CD4+, 

IL-2, and IL-12, along with a reduction in the brain cyst load 
in mice vaccinated with various DNA vaccines. A major role 
of NF-κB in resistance to T. gondii is the induction of IL-12 
secretion (56). IL-12, putatively via STAT4, is important for the 
optimal production of INF-γ, which in turn induces differentia-
tion of Th1 T lymphocytes, and possibly CD8+ and NK cells, to 
control T. gondii infection. Significantly increased expression of 
the transcription factor p65/RelA (a transcription factor of the 
NF-κB pathway) was observed in mice in G1, when compared 
with mice in the control group (p  <  0.0001). This result, in 
addition to the increased level of IFN-γ, presents activation 
of NF-κB pathway as an additional mechanism for increased  
IFN-γ production to limit T. gondii infection. Suppressed 
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expression of IL-12 resulted in 100% mortality in mice infected 
with T. gondii (57). High levels of IL-12 contributed to brain cyst 
reduction in mice (54, 58). Toll-like receptor 11 (TLR11) signal-
ing is an important pathway involved in the production of IL-12  
(23, 59). T. gondii profilin (TgPF) can act as a ligand for TLR11 
to mediate cytokine production (60–62) and has been exploited 
as a TLR-based vaccine adjuvant to enhance immune responses 
generated by vaccination (62–65). TgPF also plays an essential 
role in T. gondii gliding motility, invasion and egress from host 
cells (23, 24) and is an immunodominant antigen (35, 66). These 
key characteristics of TgPF prompted us to separately evaluate 
the protective efficacy of immunization with this gene against 
chronic toxoplasmosis. The specific finding that DNA vaccine 
encoding TgPF alone induced the production of high level of 
IL-12 is consistent with previous data (60) and, together with a 
higher IgG2a/IgG1 ratio and reduced brain cyst numbers may 
be of particular relevance. The enhanced protective immunity 
seen in mice from G1, compared with mice from group G2, 
suggests that TgPF may be necessary to augment the immune 
response induced by the multicomponent T. gondii DNA vac-
cine used in our study.

cOnclUsiOn

We have demonstrated that a strong humoral and cellular immune 
response, conferring significant protection against chronic T. gon-
dii infection in mice—after immunization three times at 2-week 
intervals with a DNA vaccine encoding multiple antigens (TgPF, 
TgROP16, TgROP18, TgMIC6, and TgCDPK3). Several DNA 
immunizations were necessary to elicit the specific IgG antibody 
response. Immunization with several plasmids expressing more 
antigens produced a greater antibody response when compared 
with immunization using fewer plasmids expressing less number 
of antigens. These data support a call for further evaluation of mul-
tivalent synthetic plasmids as potential therapeutic T. gondii vac-
cines. Our findings are significant as they open up the possibility 

that chronic toxoplasmosis can be controlled by the combined 
action of multiple parasite-derived antigens. Although further 
studies and clinical evaluations are required, this study puts into 
place a “proof of concept” that tests the efficacy of the combination 
of a range of T. gondii antigens in preventing a chronic brain infec-
tion that is incurable with current therapeutics.
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