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Autophagy is a complicated cellular mechanism that maintains cellular and tissue homeo
stasis and integrity via degradation of senescent, defective subcellular organelles, infec
tious agents, and misfolded proteins. Accumulating evidence has shown that autophagy 
is involved in numerous immune processes, such as removal of intracellular bacteria, 
cytokine production, autoantigen presentation, and survival of lymphocytes, indicating 
an apparent and important role in innate and adaptive immune responses. Indeed, in 
genomewide association studies, autophagyrelated gene polymorphisms have been 
suggested to be associated with the pathogenesis of several autoimmune and inflam
matory disorders, such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, 
inflammatory bowel disease, and multiple sclerosis. In addition, conditional knockdown 
of autophagyrelated genes in mice displayed therapeutic effects on several autoimmune 
disease models by reducing levels of inflammatory cytokines and autoreactive immune 
cells. However, the inhibition of autophagy accelerates the progress of some inflam
matory and autoimmune diseases via promotion of inflammatory cytokine production. 
Therefore, this review will summarize the current knowledge of autophagy in immune 
regulation and discuss the therapeutic and pathogenic role of autophagy in autoimmune 
diseases to broaden our understanding of the etiopathogenesis of autoimmune diseases 
and shed light on autophagymediated therapies.
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iNTRODUCTiON

Autophagy was discovered more than 40 years ago and has recently become a topic of increasing 
interest since the Japanese biologist Yoshinori Ohsumi won the Nobel Prize in 2016 for the discovery 
of this “self-eating” mechanism. Autophagy refers to a survival mechanism that cells use to degrade 
unwanted and useless organelles, proteins, and infectious agents to maintain homeostasis (1). 
There are three types of autophagy: macroautophagy, chaperone-mediated autophagy (CMA), and 
microautophagy. Among them, macroautophagy is the most intensively studied and is referred to as 
autophagy in general, and is the focus of this review. Macroautophagy occurs in all eukaryotic cells 
and initiates the recruitment of protein aggregates and misfolded proteins by phagophores. Then, 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01512&domain=pdf&date_stamp=2018-07-31
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01512
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:qianlu5860@csu.edu
mailto:qianlu5860@gmail.com
https://doi.org/10.3389/fimmu.2018.01512
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01512/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01512/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01512/full
https://loop.frontiersin.org/people/534920


FigURe 1 | Three types of autophagy and their steps. There are three types of autophagy: macroautophagy, chaperonemediated autophagy (CMA), and 
microautophagy. Macroautophagy initiates with the recruitment of protein aggregates and misfolded proteins by phagophores. Then, vesicles undergo elongation 
and form doublemembraned vesicles, called autophagosomes, and the cytoplasmic components are enclosed via cargo sequestration and fused with lysosomes 
for degradation and recycling. CMA is another type of autophagy, which is involved in the direct recognition, targeting, and degradation of substrates by lysosomes 
rather than autophagosome formation. Microautophagy is a process of lysosomal engulfment of cytoplasmic cargo with the formation of autophagic tubes and 
vesicles.

2

Yin et al. The Dual Role of Autophagy in Autoimmune Diseases

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1512

vesicles undergo elongation and form double-membraned vesicles, 
called autophagosomes, and then the cytoplasmic components 
are enclosed via cargo sequestration and fuse with lysosomes 
for degradation and recycling (2) (Figure 1). Macroautophagy is 
capable of constitutively delivering cytosolic proteins for MHC-II 
presentation. Autophagosomes are capable of fusing with multi-
vesicular bodies or enodosomes and MHC-II loading compart-
ments (3). CMA is another type of autophagy, which is involved 
with the direct recognition, targeting, and degradation of sub-
strates by lysosomes, rather than by autophagosome formation (4). 
As a substrate of CMA, a protein should contain the amino acid 
sequence of the polypeptide motif KRERQ (5). Target proteins 
are selectively recognized by cytosolic heat shock cognate 70/
co-chaperones and then delivered to the lysosomal membrane. 
Proteins then bind to the integral lysosomal membrane protein 
(LAMP-2A) and unfold and reach the lumen via a LAMP-2A-
enriched translocation complex. Then proteins undergo degra-
dation in the autolysosome (6). In addition, microautophagy is 
the process of lysosomal engulfment of cytoplasmic cargo with 
the formation of autophagic tubes and vesicles (7). Cytosolic 
and soluble proteins and particulate cellular constituents are 
directly internalized in single-membrane vesicles into lysosome 
by invaginating, protrusion, and or septation of the lysosomal 
limiting membrane (8). Microautophagy is a process of detect 
invagination and fusion of the vacuolar/lysosomal membrane 
under the limited nutrient status. Therefore, microautophagy is 
critical for cell survival, particularly for cells that are under stress 
such as nutrient starvation (9).

It is now widely accepted that macroautophagy (autophagy 
for short) is involved in several pathophysiological processes and 
complex diseases, such as autoimmune disorders, cancer, and 
metabolic disorders. Indeed, autophagy has been found to play 
four principal roles in immune responses: intracellular pathogen 
removal, lymphocyte development, pro-inflammatory signaling, 
and the secretory pathway (10–12). The combined data from 
genome-wide association studies (GWAS) and inhibition assays 
in mouse models have implicated autophagy in autoimmune dis-
eases, especially in systemic lupus erythematosus (SLE), psoriasis, 
rheumatoid arthritis (RA), inflammatory bowel disease (IBD), 
and multiple sclerosis (MS). Therefore, this review will sum-
marize the current understanding of the molecular regulation of 
autophagy and its roles in immunity and discuss the therapeutic 
and pathogenic role of autophagy in these autoimmune disorders, 
providing potential diagnostic targets and therapeutic strategies 
for autoimmune diseases. Although CMA and microautophagy 
has been found to be also related with immune responses (13), 
the regulations from these two pathways will not be discussed in 
this review.

MOLeCULAR RegULATiON  
OF AUTOPHAgY

It has been well established that autophagy is predominately 
regulated by the autophagy-related gene (Atg) family, which 
initiates the formation of autophagosomes (14). Energy depletion 
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FigURe 2 | Molecular regulation in autophagy. Autophagy is suppressed by insulin and other growth factor signaling, starvation, and nutrient signals but activated 
by energy depletion and AMBRAs, BIF1, and UVRAG. Energy depletion can activate AMPactivated protein kinase (AMPK) and further activate the mammalian 
target of rapamycin (mTOR) substrate complex, which consists of phosphorylated UNC51like kinase 1 (ULK1), ATG13, ATG101, and FIP200. In addition, this 
pathway positively regulates the formation of autophagosomes. Environmental signals, such as starvation, repress autophagy via inhibition of mTOR, which is 
located in the mTOR signaling complex 1, formed by the regulatoryassociated protein of mTOR (Raptor), G protein beta subunitlike protein (GβL), and prolinerich 
Akt/PKB substrate 40 kDa (PRAS40). Insulin and other growth factor signaling activates class I PI3K–Akt, which inhibits autophagy via activation of mTOR signaling 
complex 1 and inhibition of the Beclin 1 class III PI3K complex, which contains Beclin 1, class III phosphatidylinositol3kinase (PIK3C3), and ATG14L. 
Autophagosomal elongation requires two ubiquitinlike conjugation systems: the ATG5–ATG12 conjugation system and lightchain 3–ATG8 conjugation system.
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can activate AMP-activated protein kinase and further activate 
the mammalian target of rapamycin (mTOR) substrate complex, 
which consists of phosphorylated UNC-51-like kinase 1 (ULK1), 
ATG13, ATG101, and FIP200. In addition, this pathway positively 
regulates the formation of autophagosomes (15). Environmental 
signals, such as starvation, repress autophagy via inhibition 
of mTOR, which is located in the mTOR signaling complex 1, 
formed by the regulatory-associated protein of mTOR (Raptor), 
G protein beta subunit-like protein, and proline-rich Akt/PKB 
substrate 40 kDa (16). In addition, insulin and other growth factor 
signaling activates Class I PI3K–Akt, which inhibits autophagy 
via activation of the mTOR signaling complex 1 and inhibition of 
the Beclin 1 class III PI3K complex, which contains Beclin 1, class 
III phosphatidylinositol-3-kinase (PIK3C3), and ATG14L (17).  

It has been documented that autophagosomal elongation requires 
two ubiquitin-like conjugation systems: the ATG5–ATG12 conju-
gation system and light-chain 3 (LC3)–ATG8 conjugation system 
(16). When cells take up phagocytosed dead cells, LC3-associated 
phagocytosis (LAP) will take place to promote digestion (18). 
The molecular regulation of autophagy has been summarized in 
Figure 2.

AUTOPHAgY-MeDiATeD RegULATiON  
iN iMMUNiTY

It has been reported that autophagy is initiated by different 
families of pathogen-recognition receptors [such as toll-like 
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receptors (TLRs)], damage-associated molecular patterns (such 
as HMGB1 and misfolded proteins), pathogen receptors, 
IFN-gamma, DAP kinase, JNK, CD40, TNF-alpha, and NF-κB 
(19). And it is repressed by Th2 cytokines, Bcl-2, and canonical 
nutrient sensing insulin–AKT–TOR pathway. Therefore, it is no 
surprise that autophagy involves in innate and adaptive immune 
response.

Removal of Pathogens by Autophagy
Autophagy participates in innate immunity via removing 
intracellular microbial pathogens and protecting the cytosol. 
There are two major ways to remove intracellular pathogens 
by autophagy in dendritic cells (DCs), macrophages, and other 
phagocytes. One is called xenophagy, which eliminates pathogens 
by engulfing them in double-membrane autophagosomes. This 
process is activated during infection by TLRs (20). Many bacteria 
and parasites can be removed by xenophagy. The other way is 
mediated by microtubule-associated protein LC3 and named 
LAP, which encloses pathogens in single-membrane phagosomes 
and involves LC3 (18). LAP has been found to be activated by 
TLR agonists and immune complexes (21), which are abundant 
in SLE. LAP is triggered by bacteria via surface markers (TLRs, 
FcγR, NOD, and SLAM) expressed by host cells, or by cytosolic 
pathogen sensing signals via direct induction or binding to 
autophagy component proteins. LAP shows capacity in dead cell 
clearance, which requires PtdSer receptor TIM4 to induce the 
recruitment of LC3 to the phagosome (22).

However, several pathogens have been found to have some 
strategies to avoid autophagy process. Listeria monocytogenes and 
Shigella flexneri have been found to express several proteins which 
are modified to inhibit recognition by the autophagic machinery. 
Human immunodeficiency virus 1 (HIV-1) can express Nef 
protein to interact with Beclin-1, thereby blocking the fusion of 
autophagosomes with lysosomes (23). This is the reason why we 
can be infected with bacteria and viruses even though we have 
normal innate immune responses.

In physiological conditions, apoptotic cells, with ATG and 
Bclin-1expression, expresses phosphatidylserine on cell sur-
faces, which is referred to as “eat-me” signals. Then they release 
lysophosphatidylcoline, which is considered as “come-get-me” 
signals. Then, these apoptotic cells can be efficiently cleared by 
phagocytes. However, in ATG5 or Beclin-1-deficient cells, apop-
totic cells cannot express “eat-me” and “come-get-me” signals, 
which will lead to impaired clearance of apoptotic bodies, thereby 
contributing to autoimmune disorders (24).

Antigen Processing for MHC Presentation 
by Autophagy
Antigen-presenting cells (APCs), including DCs, macrophages, 
and B cells, are the bridges between innate and adaptive immu-
nity. MHC-I molecules present endogenous antigens to CD8+ 
T cells via processing them by proteasome and translocating them 
into ER. Whereas MHC-II presents extracellular antigens on 
lysosome-derived organelles to CD4+ T cells. Before presentation 
with MHC-II by APCs, extracellular pathogens need to be prop-
erly digested and processed by APCs via degradation pathways, 

which include the ubiquitin–proteasome system and autophagy. 
MHC-II molecules can also present intracellular antigens, such as 
cytosolic or nuclear antigens, via the fusion of autophagosomes 
with MHC-II rather than the lysosome (8). In addition, the 
process of MHC-I presentation can be enhanced by autophagy 
(25). This urgent MHC-I presentation which is promoted by 
autophagy seems to need more time and more antigens, which 
means that this alternative process in the “cellular emergency” 
situation occurs when the classical pathway is imparied.

Lymphocyte Development, Activation, and 
Polarization Regulated by Autophagy
It has been reported that autophagy plays a critical role for 
the thymic selection, T  cell development, survival, and prolif-
eration. Atg5−/− mice show reduced thymocyts and peripheral 
lymphocytes and increased cell death in CD8+ T  cells. And 
these Atg5−/− T  cells fail to proliferate under TCR stimulation 
(26). Atg7−/− T  cells show deficiency in cell survival, with the 
expanded ER content and mitochondria (27). The similar results 
have been observed in the Atg3−/− mice, which display impaired 
autophagy (28). On the other hand, some studies have claimed 
that autophagy promote the cell death during virus infection. 
For example, HIV Env-mediated autophagy induces apoptosis 
of CD4+ T cells via CXCR4 (29), and autophagy is involved in 
RIPK1-dependent necroptotic cell death when Fas-associated 
death domain activity and caspase-8 is insufficient (30). In addi-
tion, Beclin-1−/− CD4+ T cells, which are deficiency in autophagy, 
show preference in apoptosis under the TCR stimulation. 
Accumulation of pro-caspase-3, pro-caspase-3, and Bim might 
be one of the mechanisms (31). Therefore, the role of autophagy 
in T cell survival remains unclear. Future studies are needed to 
address this issue.

There are two subsets of conventional DCs (cDCs): CD8α 
(CD103+) cDCs and CD4+ (CD11b+) cDCs. CD8α cDCs effi-
ciently cross-present exogenous antigens on MHC-I to CD8+ 
T  cells, whereas CD4+ cDCs more efficiently polarize CD4+ 
T  cells into Th1, Th2, Th17, or regulatory T  cells (Tregs) by 
MHC-II-restricted presentation (32). Autophagy has been 
reported to be essential for the CD4+ T-cell response by DCs 
(33, 34). Indeed, a deficiency of autophagy in DCs results in a 
mild EAE phenotype in mice (35), which is a Th17-mediated 
mouse model. Furthermore, autophagy has also been linked 
with DC-derived cytokine production, such as IL-6 and 
IL-12p40 (36), which is critical for T-cell activation and 
polarization. This evidence indicates autophagy might involve 
in the Th cell differentiation. Besides, Tregs have been reported 
to be regulated by autophagy. For example, during chronic 
hepatitis B virus infection, HMGB-1-induced autophagy 
maintains Treg cell functions (37). And Agt16l1gene has been 
found to differentially regulate Treg and Th2 cell and further 
control intestinal inflammation (38). However, autophagy can 
be also regulated by Treg cells. For example, Foxp3+ Treg cells 
have been found to suppress immune response via inhibiting 
autophagic machinery in DCs depending on CTLA4. The 
binding of CTLA-4 promotes activation of PI3K/Akt/mTOR 
axis and FoxO1 nuclear exclusion in DCs, resulting in reduced 
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expression of autophagy component microtubule-associated 
protein 1 light chan 3 beta (39).

In addition, autophagy also regulates B  cell survival and 
development. ATG5 has been identified to be critical for B-cell 
survival and subset maintenance, such as pre-B and mature 
B1a B cells (40). Autophagy has been found to be required for 
immunoglobulin production by plasma cells (41). Indeed, the 
degradation of misfolded protein is particularly important for 
antibody-secreting cells, in which protein synthesis and degra-
dation must be balanced. It has been observed that increased 
autophagosome formation and degradation occur in activated 
mouse B cells during plasma cell differentiation (41), as well as 
in human B  cells activated by CpG (42). Genetic studies have 
identified several autophagy-related genes essential for antibody 
responses and plasma cell homeostasis (43), and dysregulated 
autophagy contributes to the plasma cell pathology in antibody-
mediated autoimmune diseases such as SLE (44, 45). In addition, 
autophagy has been found to contribute to IL-17-dependent 
plasma differentiation via regulating Blimp-1 expression and 
Beclin-1/p62-associated B cell apoptosis (46, 47). These findings 
show that autophagy in B cells might play a pathogenic role in 
antibody-mediated autoimmune disease, such as lupus.

Pro-inflammatory Signaling Regulated  
by Autophagy
Increasing evidence has demonstrated the interplay between 
autophagy and the NF-κB signaling pathway (48). The NF-κB 
family of transcription factors regulates transcription of a broad 
range of genes, which are engaged in cell proliferation, survival, 
differentiation, and development. These transcription factors are 
also essential in inflammation and immune responses (49). The 
mammalian NF-κB family contains five members: RelA, c-Rel, 
Rel-B, p50, and p52 (50), while inhibitors of the NF-κB protein 
family consist of IκBα, IκBβ, IκBε, and the IκB-like inhibitors 
p100 and p105 (51). It has been well documented that activation 
of the inhibitor of NF-κB (IκBα) kinase complex is required for 
the induction of autophagy. Conversely, in an Atg5- and Atg7-
deficient system, autophagy has been proven to be critical for 
the activation of NF-κB (52). In addition, the cross talk between 
NF-κB and autophagy has been observed in immune cells. The 
regulation of T-cell receptor-mediated NF-κB activation by B-cell 
lymphoma/leukemia 10 is associated with autophagy adaptor 
p62/SQSTM1 (53), which is also found to be a modulator of 
NLRP3-inflammasome activation and IL-1 beta production in 
macrophages (54). However, in tissue-specific macrophages, 
autophagy has been revealed to promote NF-κB activation to 
boost the antifungal immune response (55). This evidence indi-
cates a pathogenic or therapeutic role of autophagy depending on 
different microenvironments and signals.

interplay Between Cytokine Secretion  
and Autophagy
It is no surprise that autophagy-regulated cytokine secretion 
by the secretory pathway shares some common functions with 
phagocytosis, such as vesicle trafficking and membrane fusion, 
which facilitates the important role of autophagy in immune 

regulation. ATG5 deficiency, for example, results in elevated 
IL-1 alpha secretion by macrophages (56), while inhibition of 
autophagy leads to promotion of IL-1 beta via reducing degrada-
tion (57) by APCs and increases IL-23 secretion as a consequence 
(58), which can further promote Th17-mediated inflammatory 
responses. On the other hand, cytokines can also regulate 
autophagy. IL-10, which is an anti-inflammatory cytokine, has 
been found to inhibit autophagy in murine macrophages via 
activation of mTOR complex 1 (59). Another example is IL-6, 
which is a universal inflammatory cytokine involved in many 
autoimmune and inflammatory diseases. IL-6 has been illustrated 
to inhibit starvation-induced (60) and IFN-gamma-induced 
autophagy (61) by regulating Bcl-2 and Beclin1. However, IL-6 
has also been found to be required for autophagy by promoting 
autophagosomal maturation (62, 63). The functions of autophagy 
have been summarized in Figure 3. Further studies are necessary 
to validate the interplay between autophagy and cytokines.

THe THeRAPeUTiC AND PATHOgeNiC 
ROLe OF AUTOPHAgY iN AUTOiMMUNe 
DiSeASeS

Based on its functions in the immune system, autophagy might dis-
play a pathogenic and/or therapeutic role in autoimmune diseases, 
depending on the pathogenesis of the disease and the key players in 
disease development. The detailed findings for each autoimmune 
disease are elaborated upon in the following paragraphs.

Autophagy in SLe
Systemic lupus erythematosus is a typical autoimmune disease, 
which is characterized by abnormal APCs and T and B  cells, 
with abundant autoantibodies (64–66). Dysregulated production 
of IL-17 (67) and abnormally differentiated follicular helper T 
(Tfh) cells (68, 69), aberrant DCs, and plasma B cells (70) have 
been identified to play an essential role in the pathogenesis of 
SLE. Although autophagy negatively regulates IL-17 production, 
the inhibition of autophagy in a lupus mouse model reduced 
the disease phenotype by partially suppressing plasma cell dif-
ferentiation and antibody production (44). In addition, GWAS in 
lupus cohorts have identified that several SNPs in the Atg5 gene 
confer genetic susceptibility to lupus (71, 72). In addition, in a 
follow-up study, a SNP in the Atg5 gene, rs573775, was identified 
to be related to IL-10 production and higher risk of lupus (73). In 
APCs, LAP has been found to be required for the trafficking of 
immune complexes and TLR9 into the interferon signaling path-
way and to promote type 1 interferon production (21, 74), which 
is a key player in lupus pathogenesis. In addition, autophagy has 
been reported to deliver viral ligands to TLR7 in plasmacytoid 
DCs during vesicular stomatitis virus and Sendai virus infection 
and contribute to type 1 interferon production (75), which might 
be associated with lupus. However, defects in LAP, rather than 
canonical autophagy, can cause SLE-like phenotypes (76) with 
IL-10 production (77). Increased autophagy has been observed 
in T and B cells from a lupus mouse model, as well as in PBMCs 
from patients with SLE (44). In addition, autophagy-related genes, 
including mTOR, Beclin-1, LC3, and p62, have been found to be 
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FigURe 3 | The regulations of autophagy on immune system. Autophagy is triggered and inhibited by cytokines and molecules from immune system.  
And also, autophagy is involved in pathogen removal, cytokine secretion, lymphocyte survival and differentiation, MHC presentation, apoptotic cell  
clearance, and proinflammatory signaling.
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expressed differentially by lupus PBMCs (45). Blockade of mac-
rophage autophagy ameliorates activated lymphocyte-derived 
DNA-induced murine lupus possibly via inhibition of proinflam-
matory cytokine production, such as IL-6 and TNF-alpha (78). 
Recently, IL-21, which is a key cytokine produced by Tfh cells, 
has been found to induce mTOR activation and further eliminate 
autophagy and differentiation of Treg cells (79). To summarize, 
ATG5 deficiency and mTOR elevation in innate immunity 
leads to insufficient autophagy, which results in reduced dead 
cells clearance, enhanced levels of cytoplasmic nucleic acid and 
autoantigens. As a consequence, increased type 1 IFN by DCs 
can induce B cell hyper-differentiation and antibody production. 
In adaptive immunity, high LC3 and accumulation of autophagic 
vacuoles can increase autophagy and promote the survival of  
T and B cells (8).

In addition, environmental factors, such as UV light and 
Epstein–Barr virus (EBV) infection, which have been shown 
to contribute to the initiation of lupus, have been linked to 
autophagy. For example, UV-induced DNA damage has been 
found to result in decreased expression of AMBRA1 and ULK1, 
which are important mechanisms in autophagy (80). In addition, 
autophagy has been reported to be involved in MHC-II presenta-
tion of EB nuclear antigen 1 to T cells (81) and to participate in 
EBV infections (82). Furthermore, severe vitamin D deficiency 
affected the expression of ATGs in PBMCs and T-cell subsets in 
active SLE patients, indicating that vitamin D may affect T-cell 
subsets via regulating autophagy (83).

In SLE treatment, autophagy has been reported to be a thera-
peutic target. Rapamycin is a FDA approved immunosuppressive 
agent for organ transplantation. It excuses its inhibitory effects on 
T cells via blocking mTORC1 (84), which is also the key player of 

autophagy. Rapamycin has been shown to be efficient in treating 
lupus mice and patients, with the decreased levels of autoanti-
bodies, proteinuria, and prolonged survival in mice and patients  
(85, 86). In an off-label clinical study, refractory SLE patients were 
treated with rapamycin. Compared with standard treatment, the 
rapamycin-treated group showed decreased disease activity and 
prednisone requirement (87). And this suppressive effect might be 
conducted through inhibition on HRES 1/Rab4 and Rab5A and 
limiting the production of type I IFN by DCs (88). Besides, other 
treatments also have effects on autophagy. In a clinical observa-
tion, hydroxychloroquine, which is the most common treatment 
for SLE, has been found to inhibit autophagy, particularly LAP-
mediated autophagy (89). Glucocorticoids can induce autophagy 
via inhibiting IP3-mediated calcium signaling and mTOR (90). 
Anti-CD20 mAbs can trigger autophagy by caspase-independent 
cell death induction (91). And anti-TNF alpha mAbs can inhibit 
autophagy by limiting proautophagic cytokine production (92). 
In a recent study, inhibition of Treg cell differentiation and IL-21 
has been found to repress rapamycin axis via suppression of 
autophagy in lupus patients (79). Although different drugs have 
various effects on autophagy in lupus, and the role of autophagy 
in lupus can be friend or foe, the balance between innate immu-
nity and adaptive immune response should be considered when 
consider autophagy as therapeutic target.

Autophagy in Psoriasis/Psoriatic Arthritis
Psoriasis is an inflammatory autoimmune skin disease, which 
can also affect other organs. Approximately 6–42% of psoriasis 
patients will develop psoriatic arthritis (93). The pathogenesis of 
psoriasis is unclear. However, increased epithelial keratinocyte 
proliferation is an essential characteristic of psoriasis (94), and 
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TABLe 1 | The regulation of autophagy in autoimmune diseases.

Diseases Cell types Autophagy related genes and proteins effects Reference

Systemic lupus 
erythematosus (SLE)

White blood cells Atg5 Regulating IL10 production (71–73)

SLE Plasma cells Atg7 Regulating plasma cell differentiation (43)

SLE Antigenpresenting cells 
(APCs)

LAP Regulating interferon and IL6, TNFalpha, and IL10 
production

(21, 74–77)

SLE PBMCs Mammalian target of rapamycin (mTOR), 
Becline1, lightchain 3 and p62

Expressed differentially (45)

SLE APCs AMBRA1 and UNC51like kinase 1 
(ULK1)

UBV induced lower expression of AMBRA1 and ULK1 (80)

SLE APCs and T cells – Involving in the Epstein–Barr virus infections (81, 82)

SLE PBMCs and T cells – Vitamin D affects Tcell subsets via regulating autophagy (83)

Psoriasis Keratinocytes ATG16L1 SQSTM1 Regulating keratinocytes proliferation (95)

Psoriatic arthritis Dendritic cells ATG16L1 – (97)

Psoriasis T cells PI3K/AKT/mTOR Regulating IL17 production (98)

Multiple sclerosis (MS) T cells ATG5, immunerelated GTPase M 
(IRGM)1, ATG16L2

Expressed differentially (104, 105)

MS T cells Beclin1, ATG7, mTOR Knockdown or inhibition shows protective role in EAE (31, 35, 106)

Rheumatoid arthritis 
(RA)

RA synovial fibroblasts ALFY, p62 Regulating survival of RA synovial fibroblasts (111, 112)

RA RA synovial fibroblasts – Impairing apoptosis (113)

RA T cells ATG7, optineurin Regulating proinflammatory cytokine production (114, 115)

Inflammatory bowel 
disease (IBD)

– ATG16L1, IRGM SNPs, IL17a, and IL1beta production (116, 117)

IBD Macrophages ATG16L1, nucleotidebinding 
oligomerization domaincontaining protein 2

Regulating IL1beta production (118, 119)
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IL-17 and other inflammatory cytokines have been revealed to 
play an important role in the development of psoriasis. There 
is no direct evidence to show whether ATG16L1 contributes to 
psoriasis. However, defects in autophagy have been found to 
result in proinflammatory cytokine production and keratinocyte 
proliferation via increased p62 expression (95). Enhanced expres-
sion of the autophagy-related gene SQSTM1 has been observed in 
psoriatic skin lesions (95). In addition, mutation of the psoriasis 
risk gene AP1S3 has been found to result in impaired autophagy 
and increased skin inflammation (96), and increased expression 
of ATG16L1 has been observed in DCs from psoriatic arthritic 
patients (97). The inhibition of autophagy via activation of PI3K/
AKT/mTOR has been suggested as a therapeutic method for 
the treatment of IL-17a-mediated psoriasis (98). In addition, 
other studies have shown the therapeutic role of autophagy in 
psoriasis via inhibition of IL-17a production (58). In addition, the 
inhibition of autophagy by chloroquine may accelerate psoriasis 
via promoting IL-23 production (99). In addition, vitamin D,  
sirolimus, retinoids, and UVB therapy, which can promote 
psoriasis, can induce the activation of autophagy (100–103). 
Taken together, these findings indicate that autophagy shows a 
therapeutic role in this disease.

Autophagy in MS
Multiple sclerosis is an inflammatory disorder that is character-
ized by immune system reactivity against myelin in the central 

nervous system, resulting in varying degrees of either relapsing 
or progressive neurological degeneration. ATG5 (104) and 
immune-related GTPase M (IRGM) 1 are increased, while 
ATG16L2 is decreased, in autoreactive T cells in EAE and actively 
relapsing-remitting MS brains (105). Inhibition of autophagy by 
conditional knockout of Beclin-1 in CD4+ T  cells has shown 
a protective role in the EAE model (31). Similar effects have 
been observed in an ATG7 conditional knockout system (35). 
Administration of rapamycin reduces relapsing–remitting EAE 
via inhibition of autophagy (106), indicating a pathological role 
of autophagy in MS.

Autophagy in RA
Rheumatoid arthritis is a chronic and systemic inflammatory 
autoimmune condition that primarily affects the joints and is 
characterized by progressive destruction of the joints. The patho-
genesis of RA remains unclear. However, dysregulated immune 
cells, such as Th17  cells, Tfh cells, macrophages, B  cells, and 
fibroblast-like synoviocytes have been identified to contribute 
to this disorder (107). Fibroblasts are a key player, and their 
survival has been found to be regulated by autophagy induction 
and CHOP underexpression under endoplasmic reticulum stress 
(108). Increased levels of autophagy have been observed in the 
synovial tissues from patients with active RA and are correlated 
with disease activity (109). However, the effect of autophagy on 
the survival of RA synovial fibroblasts is controversial (110). In 
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another study, reduced expression of ALFY and the formation of 
p62-positive polyubiquitinated protein aggregates promote cell 
death in RA synovial fibroblasts under severe ER stress (111). 
Moreover, IL-17-mediated mitochondrial dysfunction has been 
found to impair apoptosis in RA synovial fibroblasts through 
activation of autophagy (112).

In immune cells, increased autophagy has been observed in 
RA CD4+ T cells, resulting in T-cell hyperactivation and resist-
ance to apoptosis (113). The inhibition of autophagy via an 
ATG7 knockdown system showed impaired bone destruction 
in TNF-mediated arthritis (114), partially resulting from the 
reduced production of IL-6 and IL-1 by inhibition of autophagy. 
The autophagy-related protein optineurin has also been found 
to negatively regulate osteoclastogenesis by modulating NF-κB 
and IFN-β signaling (115). Taken together, these findings indicate 
that autophagy shows a pathological role in RA by regulating 
inflammatory cytokines and bone destruction.

Autophagy in iBD
Inflammatory bowel disease refers to two different chronic 
conditions or diseases that may be related, Crohn’s disease and 
ulcerative colitis, which consist of inflammation of the wall of 
the bowel or intestines. GWAS have identified ATG16L1 and 
immunity-related IRGM in Crohn’s disease (116), indicating a 
role of autophagy in the pathogenesis of IBD. Altered expres-
sion of IRGM leads to Crohn’s disease with defective autophagy 
(117). In addition, IBD is an IL-17a- and IL-1 beta-mediated 
disease. The deletion of ATG16L1 also leads to increased IL-1 
beta production in macrophages (118), which might contribute 
to IBD. Moreover, ATG16L1 and nucleotide-binding oligomeri-
zation domain-containing protein 2 interact in an autophagy-
dependent antibacterial pathway implicated in Crohn’s disease 
pathogenesis (119).

CONCLUSiON

The interplay between autophagy and the immune system 
emphasizes an important role of autophagy in the pathogenesis 

of autoimmune diseases. Autophagy is involved in pathogen 
removal, cytokine secretion, lymphocyte survival and differen-
tiation, MHC presentation, apoptotic cell clearance, and pro-
inflammatory signaling. In both in  vivo and in  vitro systems, 
inhibition of autophagy ameliorates diseases including SLE, 
MS, and RA. However, in other cases, it seems to exacerbate 
diseases such as psoriasis, psoriatic arthritis, and IBD. Even in 
RA, autophagy shows a therapeutic and pathogenesis role in 
the survival of RAFLS (Table 1). In addition, the regulation of 
autophagy varies in different tissues and cells. This evidence 
means that extreme care should be exercised if autophagy is to 
be utilized as a therapeutic target. Individual differences, even in 
the same types of diseases, should be considered. For example, 
SLE is a heterogeneous disease, and lupus patients might be 
either predominated by IL-17a and/or IL-21 expression. The 
outcome might be totally different if autophagy inhibition is 
applied in these two different types of patients. Therefore, further 
investigation is needed to clarify the regulation of autophagy in 
each autoimmune disease, and personalized therapy is strongly 
recommended in the future.
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