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Rheumatoid arthritis (RA) is a systemic autoimmune disease caused by both genetic and 
environmental factors. Recently, investigators have focused on the gut microbiota, which 
is thought to be an environmental factor that affects the development of RA. Metabolites 
secreted by the gut microbiota maintain homeostasis in the gut through various mecha-
nisms [e.g., butyrate, which is one of the major metabolites of gut microbiota, exerts an 
anti-inflammatory effect by activating G-protein-coupled receptors and inhibiting histone 
deacetylases (HDACs)]. Here, we focused on the inhibition of the HDACs by butyrate in 
RA. To this end, we evaluated the therapeutic effects of butyrate in an animal model of 
autoimmune arthritis. The arthritis score and incidence were lower in the butyrate-treated 
group compared to the control group. Also, butyrate inhibited HDAC2 in osteoclasts and 
HDAC8 in T cells, leading to the acetylation of glucocorticoid receptors and estrogen- 
related receptors α, respectively. Additionally, control of the TH17/Treg cell balance and 
inhibition of osteoclastogenesis were confirmed by the changes in target gene expression. 
Interleukin-10 (IL-10) produced by butyrate-induced expanded Treg cells was critical, as 
treatment with butyrate did not affect inflammatory arthritis in IL-10-knockout mice. This 
immune-cell regulation of butyrate was also detected in humans. These findings suggest 
that butyrate is a candidate agent for the treatment of RA.

Keywords: sodium butyrate, rheumatoid arthritis, histone deacetylases, glucocorticoid receptor, errα

inTrODUcTiOn

Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology that involves joint destruc-
tion (1). An intestinal imbalance is involved in RA development, and gut bacteria have various 
effects on RA (2, 3). Because the gut microbiota plays an important role in maintaining homeostasis, 
any imbalance can lead to the development of various diseases and systemic effects. In addition to 
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protecting the intestinal surface from pathogens, it also partici-
pates in digestion and affects bone density and immune system 
development (4). Indeed, the gut microbiota is also involved 
in bone metabolism (5) and secreted metabolites modulate the 
TH17/Treg cell balance (6). For example, segmented filamentous 
bacteria secrete serum amyloid A, which induces differentiation 
of TH17 cells (7, 8). Several bacterial species secrete short-chain 
fatty acids (SCFAs) (9, 10) (e.g., acetate, butyrate, and propionate), 
which induce differentiation of Treg cells from naïve CD4+ T cells 
(9, 11). SCFAs have immunomodulatory activity. For instance, 
butyrate exerts an anti-inflammatory effect by downregulating 
IL-12 and upregulating IL-10 (12). Therefore, butyrate may have 
a therapeutic effect in immune-mediated inflammatory diseases. 
Indeed, butyrate reportedly has therapeutic efficacy in various 
animal models of inflammatory diseases [e.g., dextran sodium 
sulfate-induced colitis, obesity, and graft-versus-host disease 
(GvHD)] (13–16). Regarding GvHD, allogeneic bone marrow 
transplant-recipient mice (C57BL/6J  →  BALB/c) exhibited 
significantly reduced butyrate levels in intestinal tissue. Butyrate 
treatment strengthened the intestinal epithelial barrier, indicat-
ing that butyrate has immunomodulatory activity. Butyrate 
also inhibits histone deacetylase (HDAC). In inflammatory 
arthritis, although the abundance of Faecalibacterium prausnitzii,  
a butyrate-producing bacterium, is reduced in enthesitis-related 
arthritis (17), the direct therapeutic effect of butyrate on RA is 
unclear. Therefore, both the therapeutic effect of butyrate in RA 
and the mechanism underlying this effect should be investigated. 
Here, we assessed the therapeutic effect of butyrate in an animal 
model of RA. To identify the mechanism underlying its anti-
arthritic effect, we also examined the effect of butyrate on effector 
T-cell differentiation and osteoclastogenesis. Finally, we verified 
the mechanism of the effect of butyrate.

MaTerials anD MeThODs

animals
DBA/1J mice, C57BL/6 mice, and IL-10-knockout (KO) (Orient) 
mice were maintained in groups of five in polycarbonate cages in 
a specific-pathogen-free environment. They were provided with 
access to standard mouse chow (Ralston Purina, Gray Summit, 
MO, USA) and water ad  libitum. All experimental procedures 
were approved by the Animal Research Ethics Committee at the 
Catholic University of Korea (approval numbers, 2017-0070-02 
and 2018-0014-01).

induction of collagen-induced arthritis 
(cia) and Treatment With Butyrate
Collagen-induced arthritis was generated in male DBA/1J mice 
or IL-10-KO mice. Mice were immunized with 100 µg of chicken 
type II collagen (CII) (Chondrex Inc., Redmond, WA, USA) 
dissolved overnight in 0.1 N acetic acid (4 mg/mL) in complete 
Freund’s adjuvant (CFA). The immunizations were performed 
intradermally into the base of the tail. Two weeks after primary 
immunization, mice were boosted with 100 µg of CII in incom-
plete Freund’s adjuvant (Chondrex Inc.). CIA mice were treated 
with 100 mg/kg sodium butyrate in saline or with saline alone 

via intraperitoneal injections three times per week beginning on 
day 17 after primary immunization. Butyrate was administered 
during the entire study period.

clinical scoring of arthritis
Mice were considered to have arthritis when significant changes 
in redness and/or swelling were noted in the digits or in other 
parts of the paws. Knee-joint inflammation was scored visually 
after dissection on a scale from 0 to 4 (0, uninflamed; 1, minimal; 
2, mild; 3, moderate; and 4, severe inflammation). Scoring was 
performed by two independent observers.

histological analysis
Histological analysis was performed to determine the extent of 
joint damage. Mice joint tissues were fixed in 4% paraformalde-
hyde, decalcified in 10% ethylenediaminetetraacetic acid solution, 
embedded in paraffin, and sectioned. The sections were deparaffi-
nized using xylene and dehydrated through an alcohol gradient. 
Endogenous peroxidase activity was quenched with methanol–3% 
H2O2. Sections were staining using hematoxylin and eosin (H&E), 
safranin O, or tartrate-resistant acid phosphatase (TRAP).

confocal Microscopy
Naïve CD4+ T cells were placed in the appropriate well of a cyto-
spin chamber (Thermo Fisher Scientific, MI, USA) and centri-
fuged at 700 × g for 3 min. Tissue cryosections (7-µm thick) or 
naïve CD4+ T cells cultured under TH17 differentiation conditions 
were fixed with methanol–acetone and stained with fluorescein 
isothiocyanate (FITC)-, PE-, PerCP-Cy5.5-, or allophycocyanin 
(APC)-conjugated monoclonal antibodies against mouse CD4, 
CD25, IL-17, Foxp3, IL-10, DAPI, CPTIA, and NR1D1 (eBio-
science, San Diego, CA, USA). After an overnight incubation at 
4°C, the stained sections were visualized by confocal microscopy 
(LSM 510 Meta; Zeiss).

immunohistochemistry
Immunohistochemistry was performed using the Vectastain 
ABC kit (Vector Laboratories, Burlingame, CA, USA). Tissue 
sections were incubated overnight at 4°C with primary antibodies 
against IL-1β, IL-6, IL-17, TNF-α, CD68, and secretory leukocyte 
protease inhibitor (SLPI); probed with a biotinylated secondary 
antibody; and stained with a streptavidin-peroxidase complex for 
1 h. DAB chromogen (Dako, Carpinteria, CA, USA) was added 
as a substrate, and the samples were visualized by microscopy 
(Olympus, Center Valley, PA, USA).

Quantification of cii-specific antibodies
Blood was obtained from the orbital sinus of CIA mice, and 
the serum was stored at −20°C until used. The serum levels of 
antibodies to CII-specific mouse IgG, IgG1, IgG2a, and IgG3 
were measured using enzyme-linked immunosorbent assay kits 
(Bethyl Laboratories, Montgomery, TX, USA).

Mouse In Vitro Osteoclastogenesis
Bone marrow-derived monocyte/macrophages (BMMs) were 
isolated from the tibias and femurs of CIA mice by flushing 
the bone-marrow cavity with minimum essential medium-α 
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(Invitrogen, Carlsbad, CA, USA). The cells were incubated for 6 h 
to separate nonadherent and adherent cells. Non-adherent cells 
were seeded in 48-well plates at 2 × 105 cells/well and cultured in 
the presence of 10 ng/mL rh M-CSF (R&D Systems, Minneapolis, 
MN, USA) for 3 days to form macrophage-like osteoclast precur-
sor cells (preosteoclasts). Three days later, the nonadherent cells 
were washed out, and preosteoclasts were cultured in the pres-
ence of 10 ng/mL M-CSF, 50 ng/mL RANKL (Peprotech, London, 
UK), and various concentrations of sodium butyrate for 4 days 
to generate osteoclasts. On day 2, the medium was replaced with 
fresh medium containing M-CSF, RANKL, and sodium butyrate.

For osteoclast staining for SLPI, BMM of CIA-induced mice 
were separated into non-adherent and adherent cells, and the 
former were cultured with M-CSF on 8-well cell culture slides for 
3 days. After 3 days, preosteoclasts were removed and cultured 
in the presence of M-CSF and RANKL. After 1 day, medium was 
washed and incubated for 1 day in the presence of 100 µM and 
1 mM sodium butyrate.

Mouse Ex Vivo Osteoclastogenesis
Bone marrow-derived monocyte/macrophages were isolated 
from the tibias and femurs of IL-10-KO mice 11 weeks after CIA 
induction. These cells were seeded under the same conditions 
used for mouse in vitro osteoclastogenesis; after 3 days, they were 
stimulated with the same concentrations of M-CSF and RANKL. 
Preosteoclasts were cultured for 3 days to generate osteoclasts; on 
day 2, the medium was replaced with fresh medium containing 
M-CSF and RANKL.

human In Vitro Osteoclastogenesis
Peripheral blood mononuclear cells (PBMCs) obtained from 
normal healthy humans were separated from buffy coats using 
Ficoll-Hypaque (Pharmacia Biotech, Piscataway, NJ, USA). Red 
blood cells were removed, and the cells were seeded into 24-well 
plates at 5 × 105 cells/well and incubated at 37°C for 2 h to separate 
non-adherent and adherent cells. The adherent cells were washed 
with phosphate-buffered saline and cultured with 100  ng/mL 
M-CSF for 3  days. After 3  days, these preosteoclasts were cul-
tured in the presence of 25 ng/mL M-CSF, 30 ng/mL RANKL, 
and various concentrations of sodium butyrate for 6  days to 
generate osteoclasts. On day 3, the medium was replaced with 
fresh medium containing M-CSF, RANKL, and sodium butyrate. 
All human experimental procedures were approved by the Ethics 
Committee of Seoul St. Mary’s Hospital (Seoul, Republic of Korea, 
KC17TNSI0570) and written informed consent was obtained.

TraP staining
A commercial TRAP staining kit (Sigma-Aldrich, St. Louis, MO, 
USA) was used according to the manufacturer’s instructions. 
TRAP-positive multinucleated cells (MNCs) containing at least 
three nuclei were counted as osteoclasts.

real-Time Polymerase chain  
reaction (Pcr)
Messenger RNA (mRNA) was extracted using TRI Reagent 
(Molecular Research Center, Inc., Cincinnati, OH, USA) according 

to the manufacturer’s instructions. Complementary DNA was 
synthesized using a Super Script Reverse Transcription system 
(TaKaRa, Shiga, Japan). A Light-Cycler 2.0 instrument (software 
version 4.0; Roche Diagnostics) was used for PCR amplification. 
All reactions were performed using the LightCycler FastStart DNA 
Master SYBR Green I mix (TaKaRa) following the manufacturer’s 
instructions. The following primers were used: Carbonic anhy-
drase II, 5′-TGG-TTC-ACT-GGA-ACA-CCA-AA-3′ (sense) and  
5′-AGC-AAG-GGT-CGA-AGT-TAG-CA-3′ (antisense); TRAP,  
5′-TCC-TGG-CTC-AAA-AAG-CAG-TT-3′ (sense) and 5′-ACA- 
TAG-CCC-ACA-CCG-TTC-TC-3′ (antisense); integrin β3, 5′- 
CCA-CAC-GAG-GCG-TGA-ACT-3′ (sense) and 5′-CTT-CAG- 
GTT-ACA-TCG-GGG-TGA-3′ (antisense); DC-stamp, 5′-GCA-
CGC-AAT-CGC-GTC-AAC-T-3′ (sense) and 5′-AGG-CAT- 
TCC-GTC-TGC-TTT-GA-3′ (antisense); matrix metallopro-
teinase-9 (MMP-9), 5′-CTG-TCC-AGA-CCA-AGG-GTA-CAG- 
CCT-3′ (sense) and 5′-GAG-GTA-TAG-TGG-GAC-ACA-TAG- 
TGG-3′ (antisense); calcitonin receptor, 5′-CGG-ACT-TTG-
ACA-CAG-CAG-AA-3′ (sense) and 5′-AGC-AGC-AAT-CGA-
CAA-GGA-GT-3′ (antisense); HDAC1, 5′-CTA-TGC-TGT-GAA- 
CTA-CCC-ACT-G-3′ (sense) and 5′-GGA-ATC-TGA-GCC-
ACA-CTG-TAA-G-3′ (antisense); HDAC2, 5′-CAT-GGC-GTA- 
CAG-TCA-AGG-AG-3′ (sense) and 5′-AGC-AAG-TTA-TGA- 
GTC-ATC-CGG-3′ (antisense); HDAC3, 5′-TGT-CTC-AAT-
GTG-CCC-TTA-CG-3′ (sense) and 5′-CCT-AAT-CGA-TCA- 
CAG-CCC-AG-3′ (antisense); HDAC4, 5′-AGC-ACT-GAG- 
AAT-GGC-ATC-G-3′ (sense) and 5′-TGA-TGT-TGG-GTA- 
AGG-ATG-GTG-3′ (antisense); HDAC5, 5′-TTC-AAC-TCC- 
GTA-GCC-ATC-AC-3′ (sense) and 5′-GGA-TCG-TTG-TAG- 
AAT-GCT-TGC-3′ (antisense); HDAC6, 5′-TGC-CCA-CCT- 
AAC-CCA-TTT-G-3′ (sense) and 5′-AAG-CAC-TGA-TTC- 
CCT-TAG-CC-3′ (antisense); HDAC7, 5′-TCA-AAC-TGG-ATA- 
ACG-GGA-AGC-3′ (sense) and 5′-CCA-GAT-GGT-GTC-AGT- 
ATC-GAC-3′ (antisense); HDAC8, 5′-ACC-GAA-TCC-AGC- 
AAA-TCC-TC-3′ (sense) and 5′-CAG-TCA-CAA-ATT-CCA- 
CAA-ACC-G-3′ (antisense); HDAC9, 5′-AGG-ATG-ATG-ATG- 
CCT-GTG-GTG-GAT-3′ (sense) and 5′-GAG-TTG-TGC-TTG- 
ATG-CTG-CCT-TGT-3′ (antisense); HDAC10, 5′-CTG-TCA- 
ATT-TGC-CCT-GGA-AC-3′ (sense) and 5′-CCC-CGA-TAG- 
CAG-AGT-CAA-ATC-3′ (antisense); HDAC11, 5′-GCT-GGG- 
AAA-TGG-GGC-AAG-GTG-A-3′ (sense) and 5′-AGC-TCG- 
TTG-AGA-TAG-CGC-CTC-GT-3′ (antisense); TNF-α, 5′-AAG- 
CCT-GTA-GCC-CAC-GTC-GTA-3′ (sense) and 5′-GGC-ACC- 
ACT-AGT-TGG-TTG-TCT-TTG-3′ (antisense); Foxp3, 5′-GGC- 
CCT-TCT-CCA-GGA-CAG-A-3′ (sense) and 5′-GCT-GAT-CAT- 
GGC-TGG-GTT-GT-3′ (antisense); CTLA4, 5′-TGA-CCC-AAC- 
CTT-CAG-TGG-TG-3′ (sense) and 5′-TTT-GGT-CAT-TTG- 
TCT-GCC-GC-3′ (antisense); CPTIA, 5′-GAT-CTA-CAA-TTC- 
CCC-TCT-GCT-C-3′ (sense) and 5′-AGC-CAG-ACC-TTG- 
AAG-TAA-CG-3′ (antisense); NR1D1, 5′-GCC-ATG-TTT-GAC- 
TTC-AGC-G-3′ (sense) and 5′-AAT-TCT-CCA-TTC-CCG- 
AGC-G-3′ (antisense); SLPI, 5′-GGC-CTT-TTA-CCT-TTC- 
ACG-GTG-3′ (sense) and 5′-GGC-TCC-GAT-TTT-GAT-AGC- 
ATC-AT-3′ (antisense); IL-10, 5′-GGC-CCA-GAA-ATC-AAG- 
GAG-CA-3′ (sense) and 5′-AGA-AAT-CGA-TGA-CAG-CGC- 
CT-3′ (antisense); and β-actin, 5′-GAA-ATC-GTG-CGT-GAC- 
ATC-AAA-G-3′ (sense), and 5′-TGT-AGT-TTC-ATG-GAT- 
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GCC-ACA-G-3′ (antisense). All mRNA levels were normalized 
to that of β-actin.

Murine T-cell isolation and Differentiation
To purify splenic CD4+ T  cells, splenocytes were incubated 
with CD4-coated magnetic beads and isolated using magnetic-
activated cell sorting (MACS) separation columns (Miltenyi 
Biotec, Bergisch Gladbach, Germany). MACS-sorted CD4+ 
T  cells were sorted to obtain naïve CD4+ T  cells by selecting 
for CD4+CD62LhighCD44low. To establish TH17 cell-polarizing 
conditions, the cells were stimulated with anti-CD3 (0.5 µg/mL), 
anti-CD28 (1 µg/mL), anti-interferon-γ (anti-IFN-γ) (1 µg/mL), 
anti-IL-4 (2 µg/mL), IL-6 (40 ng/mL), and transforming growth 
factor-β (TGF-β) (2 ng/mL) for 3 days. Recombinant mouse IL-6 
and antibodies to IFN-γ and IL-4 were purchased from R&D 
Systems, and TGF-β was purchased from PeproTech.

human cD4+ T-cell isolation and 
Differentiation
CD4+ T cells were isolated from human PBMCs using a CD4+ 
T-cell isolation kit (Miltenyi Biotec) according to the manufac-
turer’s instructions. Th0 cells were stimulated with anti-CD3 
(0.5 µg/mL) and anti-CD28 (1 µg/mL) with no added cytokines. 
To establish TH17 cell-polarizing conditions, the CD4+ T  cells 
were stimulated with anti-CD3, anti-CD28, anti-IFN-γ (2 µg/mL),  
anti-IL-4 (2 µg/mL), IL-1β (20 ng/mL), and IL-6 (20 ng/mL) for 
3  days. Recombinant human IL-1β and IL-6 and antibodies to 
IFN-γ and IL-4 were purchased from R&D Systems, and TGF-β 
was purchased from Peprotech.

Flow cytometry
For intracellular staining, cells were restimulated with 25 ng/mL 
phorbol 12-myristate 13-acetate and 250 ng/mL ionomycin (both 
from Sigma-Aldrich) for 4  h in the presence of GolgiStop (BD 
Biosciences, Sparks, MD, USA). Murine splenocytes were stained 
with surface PerCP-conjugated anti-CD4 (eBioscience) and APC-
conjugated anti-CD25 (BioLegend, San Diego, CA, USA) anti-
bodies. After fixation and permeabilization, cells were stained with 
FITC-conjugated anti-IL-17, APC-conjugated anti-IFN-γ, phyco-
erythrin (PE)-conjugated anti-IL-4, or PE-conjugated anti-Foxp3 
antibodies (eBioscience). Human CD4+ T cells were stained with 
surface PE-Cy7-conjugated anti-CD4 and APC-conjugated anti-
CD25 antibodies (BioLegend). After fixation and permeabilization, 
cells were stained with PE-conjugated anti-IL-17 or PE-conjugated 
anti-Foxp3 antibodies (eBioscience). Events were collected and 
analyzed with FlowJo software (Tree Star, Ashland, OR, USA).

Western Blotting
The protein levels of p-STAT3 Y705, p-STAT3 S727, STAT3 
(Cell Signaling, Danvers, MA, USA), and GAPDH (Abcam, 
Cambridge, MA, USA) were measured using a western blot 
system (SNAP i.d. Protein Detection System, Merck Millipore, 
Danvers, MD, USA). Total splenocytes or CD4+ T  cells were 
preincubated in the presence or absence of sodium butyrate 
(100, 200, and 500 µM) for 2 h, cultured with IL-6 (10 ng/mL) for 
1 h, and cell lysates were prepared. Protein concentrations were 

determined using the Bradford method (Bio-Rad, Hercules, CA, 
USA), and samples were separated on a sodium dodecyl sulfate 
polyacrylamide gel and transferred to a nitrocellulose membrane 
(Amersham Pharmacia, Uppsala, Sweden). The primary antibod-
ies to p-STAT3 Y705, p–STAT3 S727, STAT3, and GAPDH were 
diluted in 0.1% skim milk in Tris-buffered saline and incubated 
for 20 min at room temperature. The membrane was washed and 
incubated with a horseradish peroxidase-conjugated secondary 
antibody for 20 min at room temperature.

immunoprecipitation
RAW 264.7 cells were seeded into 100-mm dishes at 1 × 106 cells/
dish and cultured overnight with M-CSF (10  ng/mL), RANKL 
(50 ng/mL), and sodium butyrate (500 µM). EL4 cells were seeded 
into 100-mm dishes at 1 × 106 cells and cultured for 2 days in the 
presence of anti-CD3 (0.5 µg/mL), IL-6 (10 ng/mL), and sodium 
butyrate (500 µM). Cells were harvested in lysis buffer (150 mM 
NaCl, 20  mM Tris, 0.1% NP-40, 5  mM MgCl2, 10% glycerol, 
300 nM TSA, 10 mM nicotinamide, 1× complete protease inhibi-
tors; pH 8). Immunoprecipitation was performed using antibod-
ies against glucocorticoid receptor (GR) and ERRα (Abcam) with 
rotation at 4°C for 1 h with Dynabeads® Protein G (Thermo Fisher 
Scientific). Cell lysate was added, the system was rotated at 4°C for 
2 h, and elution was performed. Immunoblotting was performed 
using anti-GR, -ERRα, and -acetyl lysine antibodies (Abcam).

statistical analysis
Experiments were independently replicated at least twice, and 
representative and/or summary data are shown. Variation in the 
distribution of results was examined using the Shapiro–Wilk test. 
Data are presented as means ± SD. Comparisons of the numerical 
data obtained from two groups were performed by Student’s t-test 
or the Mann–Whitney U-test. Differences in the mean values of 
various groups were subjected to analysis of variance and a post hoc 
test. p-Values less than 0.05 (two-tailed) were considered indicative 
of statistical significance. All statistical analyses were performed 
using SAS software (version 9.2; SAS Institute, Cary, NC, USA).

resUlTs

Butyrate reduced the severity of arthritis 
in the cia Mouse Model
We administered butyrate to CIA mice. The arthritis scores and 
the incidence of arthritis were dramatically reduced by butyrate 
compared to vehicle treatment (Figure 1A). Histological evalua-
tion of joint tissues showed that bone and cartilage damage was 
almost completely reversed by treatment with butyrate. The 
inflammation, bone damage, and cartilage damage scores were 
markedly reduced in the joints of butyrate-treated mice com-
pared to vehicle-treated mice (Figure  1B). Serum CII-specific 
IgG, IgG1, and IgG2a levels were also reduced by administration 
of butyrate (Figure 1C). These data suggest that butyrate amelio-
rates CIA. Moreover, the expression levels of IL-17, IL-1β, IL-6, 
and TNF-α in joint tissues were markedly reduced by treatment 
with butyrate compared to vehicle (Figure 1D). The joint tissues 
from vehicle-treated mice exhibited infiltrated lymphocytes, but 
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FigUre 1 | Butyrate mitigates disease exacerbations in collagen-induced arthritis (CIA) mice. (a) CII-induced DBA/1J mice were injected intraperitoneally with 
100 mg/kg butyrate three times per week after 3 days of secondary immunization. The clinical score (upper panel) and incidence (lower panel) of arthritis in treated 
mice are presented (n = 5). (B) Histological staining of joint tissue sections with hematoxylin and eosin (original magnification, 40×) and safranin O (original 
magnification, 200×). Histological inflammation scores are shown (n = 3). (c) Seven weeks after generation of CIA, the serum concentrations of CII-specific IgG, 
IgG1, and IgG2a were evaluated. (D) Representative histological features of the joints of vehicle- and butyrate-treated mice (n = 3). Immunohistochemical staining 
for IL-1β, IL-6, TNF-α, IL-17, and CD4 are shown (original magnification, 400×). Graphs show the numbers of cells expressing IL-1β, IL-6, TNF-α, IL-17, and CD4. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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butyrate treatment restored the level of fat in the joint. CD4+ T cell 
infiltration in synovial tissues was markedly reduced by butyrate 
treatment. Finally, butyrate markedly reduced the expression of 
inflammatory cytokines by various cell types, demonstrating its 
suppressive effect on CIA.

Butyrate inhibits Osteoclastogenesis
Bone destruction, which is mediated by osteoclasts, is directly 
related to the prognosis of RA patients. Therefore, we assessed the 
effect of butyrate on osteoclastogenesis. Inhibition of HDAC sup-
presses osteoclastogenesis by enhancing IFN-β production (18). 
In vivo treatment with butyrate markedly reduced expression of 
TRAP, a marker of osteoclasts, in synovial tissue from CIA mice 
(Figure  2A). Mouse bone-marrow cells were stimulated with 
M-CSF and RANKL to induce osteoclastogenesis with or without 

butyrate; butyrate inhibited the formation of osteoclasts in vitro 
(Figure 2B). The mRNA levels of the osteoclastogenic markers 
including carbonic anhydrase II, TRAP, integrin β3, DC-stamp, 
MMP-9, and calcitonin receptor were significantly decreased by 
butyrate treatment in a dose-dependent manner (Figure 2C). In 
particular, 1 mM butyrate treatment suppressed the expression of 
these markers almost completely.

Butyrate controls glucocorticoid 
receptors by inhibiting hDac2, resulting 
in induction of slPi and attenuation of 
Osteoclastogenesis
Histone deacetylases inhibitors suppress osteoclastogenesis and 
reduce bone destruction (18, 19) and butyrate inhibits HDACs. 
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FigUre 2 | Butyrate inhibits osteoclast formation. (a) Synovial tissue sections were stained with anti- tartrate-resistant acid phosphatase (TRAP) antibodies (original 
magnification, 200×); numbers of TRAP-stained cells are shown (n = 3). (B) Collagen-induced arthritis mouse bone marrow cells were isolated and cultured with 
10 ng/mL M-CSF and/or 50 ng/mL RANKL in the presence or absence of 100 µM and 1 mM butyrate to induce differentiation into osteoclasts, which were fixed 
and stained for TRAP. Representative photographs are shown (original magnification, 100×). (c) The messenger RNA levels of carbonic anhydrase II, TRAP, integrin 
β3, dendritic cell-specific transmembrane protein (DC-stamp), matrix metalloproteinase-9, and calcitonin receptor were determined by real-time polymerase chain 
reaction. *p < 0.05, **p < 0.01, ***p < 0.001.

6

Kim et al. Sodium Butyrate Ameliorate RA

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1525

We thus investigated the mRNA level of each HDAC subtype in 
osteoclastogenesis-induced bone-marrow cells from CIA mice. 
The mRNA level of HDCA2 was increased during osteoclas-
togenesis (Figure  3A). Deacetylation of GR by HDAC2 results 
in repression of GR-mediated gene expression (20). Interestingly, 
acetylation-dependent GR increases the transcription of SLPI, 
which suppresses inflammation and joint damage in arthritis 
by downregulating TNF-α (21). Thus, we evaluated the effect of 
butyrate on the expression of SLPI via GR. Acetylation of GR 
in RAW 264.7 mouse macrophages cultured under osteoclast 
differentiation conditions was increased by butyrate treatment 
(Figure 3B). In the joint tissues of CIA-induced mice, the per-
centage of cells co-staining for CD68 and SLPI was significantly 
higher in the butyrate-treated group compared to the vehicle 
group (Figure  3C). In vitro treatment with butyrate increased 
the SLPI mRNA (Figure  3D) and protein (Figure  3E) levels 
in osteoclasts differentiated from BMMs of CIA mice, and the 
addition of recombinant SLPI inhibited osteoclastogenesis 
(Figure 3F) and decreased the TNF-α mRNA level (Figure 3G). 
TNF-α directly induces osteoclastogenesis (22, 23); therefore, the 

butyrate-mediated increase in SLPI expression and decrease in 
TNF-α expression could lead to inhibition of osteoclastogenesis. 
Butyrate suppresses osteoclastogenesis by inhibiting HDAC2, 
which results in upregulation of the activity of GR and its substrate 
SLPI.

Butyrate controls the Th17/Treg Balance
The imbalance between TH17 and Treg cells is important in RA (24–26). 
To assess the effect of in vivo treatment with butyrate on the popula-
tion of TH17 or Treg cells, these cells were identified in the spleens 
of butyrate- or vehicle-treated CIA mice using confocal microscopy 
(Figure 4A). The number of IL-17-expressing CD4+ T cells, which 
are considered TH17 cells, was significantly reduced by butyrate 
treatment, but the number of Treg (CD4+CD25+Foxp3+) cells was 
increased (Figure 4A). As a result, the TH17/Treg ratio was decreased. 
The expression of IL-17 and Foxp3 by naïve CD4+ T cells cultured 
under TH17 differentiation conditions was reduced and increased, 
respectively, by in vitro treatment with butyrate (Figure 4B). Butyric 
acid did not show any cellular toxicity (Figure S2 in Supplementary 
Material). The TH17/Treg ratio was decreased by butyrate treatment 
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FigUre 3 | Butyrate inhibits osteoclastogenesis by inhibiting HDAC2. (a) Bone marrow cells were isolated from collagen-induced arthritis (CIA)-induced mice and 
differentiated into osteoclasts in the presence of M-CSF and RANKL. After 4 days, the messenger RNA (mRNA) level of each subtype of histone deacetylases was 
measured. Dotted line indicates the expression of M-CSF single stimulation condition. (B) RAW 264.7 cells were incubated with butyrate under OC differentiation 
conditions for 1 day, immunoprecipitated with an anti-glucocorticoid receptor (GR) antibody, and immunoblotted using anti-acetyl lysine and anti-GR antibodies.  
(c) Representative histological features of the joints of saline-treated CIA mice and butyrate-treated mice (n = 3). Immunohistochemical staining for CD68 and 
secretory leukocyte protease inhibitor (SLPI) is shown. The percentage of CD68 and SLPI co-stained cells among total cells is shown. CD68, red; SLPI, green; 
overlap, blue, or purple (original magnification, 400×). (D) Relative SLPI mRNA levels in butyrate-treated samples when osteoclasts were differentiated into BMs  
in CIA mice. (e) Immunohistochemical staining for SLPI in osteoclasts differentiated from bone-marrow cells of CIA mice. Dyed cells are colored brown (original 
magnification, 400×). Graph shows the numbers of cells expressing SLPI. ***p < 0.001 (right panel). (F) CIA mouse bone-marrow cells were isolated and cultured 
with 10 ng/mL M-CSF and/or 50 ng/mL RANKL in the presence or absence of 100 ng/mL SLPI to induce differentiation into osteoclasts, which were fixed and 
stained for tartrate-resistant acid phosphatase. Representative photographs are shown (original magnification, 100×). (g) TNF-α mRNA level as determined by 
real-time polymerase chain reaction. *p < 0.05, **p < 0.01, ***p < 0.001.
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in a dose-dependent manner (Figure 4B). The increased number 
of Treg cells was confirmed by the increased mRNA levels of CTLA4 
and Foxp3 (Figure 4C). Interestingly, the level of Tyr705- or Ser727-
phosphorylated STAT3, another TH17/Treg controller, was not 
changed (Figure S1 in Supplementary Material). Therefore, butyrate 
regulates the T-cell subtype balance irrespective of STAT3 phospho-
rylation; thus, it may have potential as a therapeutic agent for RA.

Butyrate inhibits hDac8 During Th17 
Development, induces cPTi, and 
suppresses nr1D1 by Transactivating 
estrogen-related receptor alpha
To elucidate the mechanism by which butyrate affects TH17 cells, 
we next attempted to identify a TH17 cell-specific HDAC subtype. 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 4 | Butyrate regulates TH17/Treg cells in mouse T cells. (a) Confocal microscopy of spleen cryosections, stained for CD4 and IL-17 (TH17 cells) or CD4, 
CD25, and Foxp3 (Treg cells) (original magnification, 400×). The numbers and ratios of positive cells are shown (n = 3). **p < 0.01. (B) CD4+CD62LhighCD44low-naïve 
CD4+ T cells were extracted from the spleens of C57BL/6 mice, cultured with butyrate under TH17-polarizing conditions for 72 h, and subjected to flow cytometry 
analysis of IL-17- or Foxp3-expressing cells. The representative results from three independent experiments are shown in the upper panel. Relative bar charts are 
shown in the lower panel. *p < 0.05, **p < 0.01. (c) Two days after inducing TH17 cells, the messenger RNA levels of Treg markers were measured. *p < 0.05, 
**p < 0.01.

8

Kim et al. Sodium Butyrate Ameliorate RA

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1525

HDAC8 was highly expressed during TH17 cell differentiation 
(Figure  5A). HDAC8 deacetylates estrogen-related receptor 
alpha (ERRα) and enhances its transcriptional activity (27). 
ERRα is induced upon T-cell activation and controls the growth 
and  proliferation of effector T  cells (28). Butyrate treatment 
increased the acetylated ERRα level in EL4 mouse lymphocytes 
cultured under TH17 differentiation conditions (Figure 5B). The 
decreased transcriptional activity of ERRα leads to an increase in 
the expression of carnitine palmitoyltransferase I (CPTI) (28) and 
a decrease in that of nuclear receptor subfamily 1, group D, mem-
ber 1 (NR1D1, also known as Rev-ErbA alpha) (29). Treatment of 
CD4+ T cells with etomoxir, a specific inhibitor of CPTI, reduces 
the Treg population (30). Naïve NR1D1−/− CD4+ T  cells have a 
decreased ability to differentiate into TH17 cells compared to WT 
T-cells (31). Likewise, CPTI and NR1D1 play an important role 
in Treg and TH17 cells, respectively. We focused on CPTIA (also 
known as CPTI-L, liver isoform), which is expressed in all cells 
except skeletal muscle cells and brown adipose cells (32, 33). After 
butyrate treatment, confocal microscopy revealed that the expres-
sion of CPTIA was increased and that of NR1D1 was decreased 

in TH17 cells differentiated from naïve CD4+T cells (Figure 5C). 
The CPTIA and NR1D1 mRNA levels were also increased and 
decreased, respectively (Figure 5D). Next, naïve CD4+T cells were 
cultured under TH17 differentiation conditions and treated with 
butyrate in the presence of etomoxir and SR8278 [inhibitors of 
CPTI and NR1D1, respectively (34)]. The number of Treg and TH17 
cells was increased and decreased by butyrate, respectively, and 
these effects were enhanced in the presence of the two inhibitors 
(Figure 5E). Therefore, butyrate regulates the TH17/Treg cell bal-
ance by inhibiting HDAC8 through its effects on ERRα.

Therapeutic effect of Butyrate is Mediated 
by il-10
Butyrate exerts an anti-inflammatory effect by downregulating 
IL-12 and upregulating IL-10 (12). Some butyrate-producing 
Clostridium species are involved in Treg development. IL-10-
producing Treg cells increase in number in mice colonized by a 
mixture of Clostridiales (35). Therefore, we assessed the role 
of IL-10 in the therapeutic effect of butyrate. The number of 
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FigUre 5 | Butyrate regulates T cells by inhibiting HDAC8. (a) Naïve CD4+ T cells were cultured under TH17-polarizing conditions for 1 day, and the 
messenger RNA (mRNA) level of each subtype of histone deacetylases was measured. Dotted line indicates the expression of conditions that did not  
stimulate anything. (B) EL4 cells were stimulated with butyrate, anti-CD3, and IL-6; immunoprecipitated with an anti-ERRα antibody; and immunoblotted  
using anti-acetyl lysine and anti-ERRα antibodies. (c) Naïve CD4+ T cells were cultured under TH17-polarizing conditions with 500 µM butyrate for 3 days,  
and CPTIA and NR1D1 expression was visualized by confocal microscopy. Relative bar charts are shown in the right panel. ***p < 0.001. (D) One day after 
induction of TH17 cells, the mRNA levels of CPTIA and NR1D1 were measured. (e) Naïve CD4+ T cells were isolated from splenocytes and cultured with 
butyrate, etomoxir, or SR8278 under TH17 differentiation conditions for 3 days, and the TH17 and Treg cell populations were analyzed by flow cytometry. 
*p < 0.05.
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IL-10-expressing cells (Figure  6A) and the IL-10 mRNA level 
(Figure 6B) were increased in the spleens of CIA mice treated with 
butyrate. However, butyrate treatment did not exert a significant 
therapeutic effect in CIA-induced IL-10-KO mice (Figure 6C). 
Butyrate also had little effect on the serum levels of CII-specific 
IgGs (Figure 6D). In the absence of IL-10, butyrate did not sig-
nificantly alter the effector CD4+ T-cell subtype populations in 
the peripheral blood or spleen (Figure 6E). IL-10 inhibits bone 
destruction by reducing NFATc1 expression (36, 37). Therefore, we 
also investigated the effect of butyrate on osteoclastogenesis using 
BMMs from IL-10-KO mice; in the absence of IL-10, butyrate did 
not suppress osteoclastogenesis and did not exert a significant 
effect on the number of TRAP-positive MNCs (Figure 6F). Taken 
together, our data demonstrate that the therapeutic activity of 
butyrate in CIA mice is dependent on IL-10.

effect of Butyrate on human Th17/Treg 
Balance and Osteoclastogenesis
We investigated the effect of butyrate on the human TH17/Treg bal-
ance and osteoclastogenesis in vitro. Normal human CD4+ T cells 
were isolated and cultured under TH17 cell-polarizing conditions 
with or without butyrate, and the T-cell subtype populations 
were analyzed by flow cytometry. The numbers of TH17 and Treg 
cells were dose-dependently reduced and increased, respectively, 
by butyrate. Also, the TH17/Treg ratio was decreased by butyrate 
in a dose-dependent manner, suggesting the regulation of the 
TH17/Treg balance by butyrate (Figure  7A). In agreement with 
the results using mouse cells, treatment of human PBMCs with 
butyrate inhibited M-CSF and RANKL-induced osteoclastogen-
esis (Figure  7B). Therefore, butyrate shows potential for the 
treatment of RA.
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FigUre 6 | The therapeutic effect of butyrate is mediated via IL-10. (a) Confocal microscopy of cryosections of the spleens of collagen-induced arthritis (CIA) mice 
stained for CD4 and IL-10 (original magnification, 400×). Numbers of positive cells are shown (n = 3). (B) IL-10 messenger RNA level in the spleens of CIA-induced 
DBA/1J mice as determined by real-time polymerase chain reaction. (c) CII-injected IL-10-KO mice were administered 100 mg/kg butyrate intraperitoneally three 
times per week 3 days after secondary immunization (n = 3). The clinical score (upper panel) and incidence (lower panel) of arthritis are shown. (D) Serum 
concentrations of the CII-specific total IgG, IgG1, IgG2a, and IgG3 levels of CIA-induced IL-10-KO mice. (e) Flow cytometry analysis of the TH1, TH2, TH17, and Treg 
cell populations in peripheral blood (upper panel) or splenocytes (lower panel) from CIA-induced IL-10-KO mice. (F) Bone marrow cells of CII-injected IL-10-KO mice 
were isolated and differentiated into osteoclasts (n = 3). After 5 days, the cells were stained for tartrate-resistant acid phosphatase (TRAP) expression; representative 
photographs are shown (original magnification, 100×). The number of multinucleated TRAP-positive cells was also determined. *p < 0.05, **p < 0.01.
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DiscUssiOn

Disturbed gene expression caused by epigenetic modification 
can directly or indirectly lead to the development of disease. 
Acetylation and deacetylation are epigenetic modifications that 
regulate gene transcription and protein functions and are medi-
ated by histone acetyltransferases and HDAC. For this reason, 
inhibitors of HDAC are used clinically to treat various conditions 
(38, 39). Epigenetic modification, including acetylation, of cel-
lular proteins is involved in the pathogenesis of RA (40); this 
operates by modulating the activity of signaling pathways or the 
transcription of key factors, such as T-bet, Gata3, RORγt, and 
Foxp3, which influence the fate of effector T cells. In other words, 
the orchestration of gene expression or protein modification in 

effector T cells may be associated with autoimmune diseases. Like 
butyrate, the pan-HDAC inhibitors SAHA and TSA exert thera-
peutic effects in RA (41, 42), but their targets and mechanisms 
are unclear.

Abnormal osteoclast differentiation is a major cause of RA. 
The gut microbiota influences bone metabolism through vari-
ous pathways (5). TH17 cells are involved in the development of 
various autoimmune diseases, including RA, and maintaining 
the TH17 and Treg balance is a challenge in the treatment of 
 autoimmune diseases (43, 44). Microbiota is now considered 
important factor in T-cell homeostasis and is implicated in inflam-
matory diseases (45). Butyrate ameliorates autoimmune diseases 
(e.g., experimental allergic encephalomyelitis, GvHD, and 
ulcerative colitis) and is the subject of clinical trials (13, 46–49).  
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FigUre 7 | Butyrate has potential as a therapeutic agent for rheumatoid arthritis. (a) CD4+ T cells were isolated from normal human peripheral blood mononuclear 
cells (PBMCs) and cultured with butyrate under TH17- or TH0-polarizing conditions for 72 h. TH17 cells (CD4+IL-17+) and Treg cells (CD4+CD25+Foxp3+) were 
subjected to flow cytometry analysis. Numbers and ratios of IL-17- or Foxp3-positive cells are shown. (B) Human PBMCs were differentiated into osteoclasts, fixed, 
and stained for tartrate-resistant acid phosphatase; representative photographs are shown (original magnification, 100×). **p < 0.01, ***p < 0.001.
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Also, in animal models, butyrate inhibits inflammation induced 
by butyrate-producing Clostridia, such as F. prausnitzii and 
Butyricicoccus pullicaecorum (50, 51). However, few studies 
have focused on the therapeutic effect of butyrate on RA. Here, 
we report that butyrate exerts a therapeutic effect in an animal 
model of RA and recovers the TH17/Treg imbalance and osteo-
clastogenesis. We also assessed the mechanism(s) underlying the 
anti-arthritic effect of butyrate.

In CIA mice, parameters related to joint destruction, inflam-
mation, expression of proinflammatory cytokines, and osteoclast 
formation were recovered by butyrate treatment (Figures 1 and 2).  
Moreover, we elucidated the mechanism by which butyrate 
modulates osteoclastogenesis and effector T-cell differentiation, 
which are critical in the pathogenesis of RA.

Deletion of HDAC7 and HDAC3 decreases and increases, 
respectively, bone destruction (52, 53). HDAC9 inhibits osteo-
clastogenesis via a different pathway than HDAC3 (54). In this 
study, the expression of HDAC2 was increased during osteo-
clastogenesis (Figure 3). HDAC2 upregulates RANKL-induced 
osteoclastogenesis by activating Akt, which results in FoxO1 
depletion and interference of HDAC2 abrogates TRAP-positive 
osteoclasts in vitro (55). Butyrate reduced TRAP expression and 
proposed pathway of HDAC2-related GR-SLPI axis affecting 

osteoclastogenesis. Akt negatively regulates GR expression (56); 
thus, inhibition of the HDAC2-related pathway may interrupt 
the Akt-related pathway, resulting in osteoclast differentiation. 
Butyrate inhibited expression of HDAC2, which inhibits tran-
scription of GR by deacetylation, leading to upregulation of SLPI 
expression. SLPI protects epithelial tissue from serine proteases 
(57–60), and reportedly reduces inflammation and joint damage 
in arthritis (21). This is the first report that inhibition of HDAC2 
by butyrate upregulates SLPI expression in osteoclasts.

HDAC8 is expressed specifically during TH17 development, 
and inhibition of HDAC8 induces apoptosis of T-cell lymphoma 
cells (61). Its target ERRα is related to immune responses involving 
effector T cells and macrophages. ERRα controls the development 
of effector T  cells, and suppression of its expression in T  cells 
 ameliorates experimental autoimmune encephalomyelitis (28). 
ERRα negatively regulates toll-like receptor-induced inflam-
mation, and ERRα-deficient mice are susceptible to endotoxin-
induced septic shock (62). Therefore, reduced deacetylation of 
ERRα by butyrate may ameliorate autoimmune diseases. In our 
study, butyrate decreased and increased the numbers of TH17 and 
Treg cells, respectively, and exerted a therapeutic effect in a mouse 
model of arthritis by modulating the TH17/Treg balance in  vivo 
and in vitro (Figure 4). Regulation of the TH17/Treg balance by 
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butyrate did not involve phosphorylation of STAT3, a regulator 
of the TH17/Treg balance (Figure S1 in Supplementary Material); 
thus, its effect was mediated by some other pathway. Inhibition 
of HDAC8 by butyrate induced ERRα acetylation, which reduced 
transcription of ERRα, leading to an increase in the expression 
of CPTI and a decrease in that of NR1D1. CPTI and NR1D1 
were involved in the regulation of T-cell populations by butyrate 
(Figure 5). Control of the TH17/Treg balance by butyrate may have 
influenced the expression level of IL-10, leading butyrate to lose 
its therapeutic effect in IL-10 KO mice (Figure 6). Additionally, 
butyrate modulated the T-cell populations in human PBMCs and 
inhibited osteoclastogenesis (Figure 7), thus showing potential 
for treatment of RA.

Collectively, these findings suggest that sodium butyrate, 
a  metabolite of the gut microbiota, ameliorates rheumatoid 
inflammation by targeting HDAC2 in osteoclasts and HDAC8 in 
T cells. Therefore, sodium butyrate shows promise for the treat-
ment of RA (Figure 8).
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FigUre 8 | Schematic illustration of targeting for osteoclastogenesis and TH17 cells by butyrate in rheumatoid arthritis.
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