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Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, 
such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune system 
cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, 
which can convey cell-to-cell communication influencing the maintenance and spread 
of the malignant neoplasm, for example, promoting angiogenesis, tumor cell invasion, 
and immune escape. However, EVs can also suppress tumor progression, either by 
the direct influence of the protein and nucleic acid cargo of the EVs or via antigen 
presentation to immune cells as tumor-derived EVs carry on their surface some of the 
same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry major 
histocompatibility complex class I and class II/peptide complexes and are able to prime 
other immune system cell types and activate an antitumor immune response. Given the 
relative longevity of vesicles within the circulation and their ability to cross blood–brain 
barriers, modification of these unique organelles offers the potential to create new bio-
logical-tools for cancer therapy. This review examines how modification of the EV cargo 
has the potential to target specific tumor mechanisms responsible for tumor formation 
and progression to develop new therapeutic strategies and to increase the efficacy of 
antitumor therapies.

Keywords: extracellular vesicles, tumor microenvironment, tumor cells, immune cells, stromal cells, vaccination, 
cancer therapy

inTRODUCTiOn

Extracellular vesicles (EVs) are of particular interest due to their ability to mediate intercellular 
communication, influencing multiple cellular processes. EVs can be categorized based upon their 
biogenesis and divided into exosomes, microvesicles (MVs), and apoptotic bodies (ABs) (1, 2). 
Exosomes are small vesicles 40–100  nm in diameter, formed as part of the endocytic pathway. 
Exosomes carry the donor cell cargo, represented by various proteins and nucleic acids [DNA, 
mRNA, miRNA, and other non-coding RNAs (ncRNAs)] (Figure 1C) (3, 4). Exosomes are stable in 
biological fluids and small enough to pass through the blood–brain barrier (5). MVs have a diameter 
of 100–1,000 nm and are released by directly budding from the plasma membrane (6). MVs also 
carry cargos of proteins and nucleic acids, although their functional roles in cell-to-cell communica-
tion remains less well studied than the exosome population (7). In contrast to exosomes and MVs, 
which are formed continuously by cells, ABs are formed as part of the fragmentation process of cells 
undergoing apoptosis, the process of programmed cell death (1) (Figure 1A).
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FiGURe 1 | Extracellular vesicle (EV) properties and application in antitumor treatment. (A) EVs can be classified based upon their biogenesis and are divided into 
exosomes, microvesicles (MVs), and apoptotic bodies (ABs). Exosomes are formed as part of the endocytic pathway by inward budding of endosomal membranes, 
resulting in accumulation of early endosomes and formation of large multivesicular bodies (MVBs) which release their contents (exosomes) into the extracellular 
space. MVs are released by directly budding from the plasma membrane. ABs are formed as part of the fragmentation process of cells undergoing apoptosis.  
(B) EVs derived from native or primed/genetically modified cells can be used in antitumor treatment. (C) Different types of EVs contain various proteins, lipids, and 
nucleic acids and have specific membrane markers. Exosomes have tetraspanin (such as TSPAN29 or TSPAN30), endosomal sorting complex required for transport 
(ESCRT) components, milk fat globule-EGF factor 8 protein (MFGE8), programmed cell death 6 interacting protein (PDCD6IP), tumor susceptibility gene 101 protein 
(TSG101), and flotillin molecules on their surface. Exosome content include mRNAs, microRNAs, and other non-coding RNAs (ncRNAs), cytoplasmic and membrane 
proteins including receptors and major histocompatibility complex (MHC) molecules. MVs carry integrins, selectins, and CD40 ligand on their surface, and also 
contain mRNAs, microRNAs, ncRNAs, cytoplasmic and membrane proteins. ABs have extensive amounts of phosphatidylserine and contain various parts of the 
apoptotic cell such as proteins, lipids, nuclear fragments, and cell organelles. Cargo and biogenesis of EVs have been comprehensively discussed elsewhere (8, 9).
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The tumor microenvironment is often a very complex and 
dynamic niche containing not only neoplastic cells but also a 
multitude of non-malignant stromal cells such as endothelial 
cells, tumor-associated fibroblasts, pericytes, and immune 
cells (10). In addition to stromal cells, the extracellular matrix 
and surrounding tumor adipose tissue also make an important 
contribution to tumor progression as they contain adipocytes 
and progenitor cells [preadipocytes and mesenchymal stem cells 
(MSCs)] (10, 11), as well as a variety of soluble cytokines, growth 
factors, and metabolites produced the stromal cells within the 
tumor microenvironment (10, 12). As EVs are believed to medi-
ate cell-to-cell communication in the tumor microenvironment 

and induce phenotypic modification in recipient cells, there is 
a growing interest in the potential role of EVs as key mediators 
of tumor progression and the spread of malignant neoplasm 
(13–16). Since EV functions are related to the donor cell type and 
the imparted cargo of proteins and nucleic acids, EVs of different 
origins exhibit different features. However, as these have been 
comprehensively discussed elsewhere (17), this review focuses on 
the use and efficacy of EVs as antitumor therapies. For instance, 
as a result of the unique properties of MSCs, the EVs produced 
by stem cells retain the ability to migrate toward tumor niches 
(18), they also posses the same low immuno genicity of the donor 
MSCs (19). Therefore, the use of MSC-derived EVs as non-cell 
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structures, in place of MSCs themselves, allows the avoidance of 
the risk of unlimited cell growth, undesirable transformation, and 
potential tumor formation (20). The ability to act as multi-signal 
messengers makes EVs a prospective new class of therapeutic 
agents to modulate the processes occurring in the tumor micro-
environment (21) (Figure 1B).

TUMOR CeLL-DeRiveD evs

Intercellular EV-mediated signaling by tumor cells has been 
linked with maintain angiogenesis, invasion, immune escape (22) 
and to develop an aggressive phenotype and chemo- and radio-
therapy resistance (16, 23–25). The extent of the contribution of 
EVs in tumor maintenance has been demonstrated through the 
study of EV inhibition, following which malignancy is suppressed 
and cancer cells show enhanced sensitivity to proton-pump 
inhibitor (omeprazole) and cisplatin (26, 27). As EV traffic is 
regulated by an acidic microenvironment, a common feature of 
all solid tumors, altering intracellular pH is an effective means of 
modulating exosome release. Changes in intracellular pH alters 
the lipid composition of the cells membrane and subsequently 
modulates both exosome release and fusion/uptake (28). In addi-
tion, the lower extracellular pH can promote tumor resistance to 
cytotoxic drugs through neutralization of those antitumor drugs 
that are weak bases or isolating drugs in acidic vesicles and/or 
eliminating them through an exocytotic pathway (29).

Extracellular vesicles may also promote tumor progression 
through the transfer of their specific cargos, for example, dur-
ing the formation of a pre-metastatic niche (PMN), where the 
transfer of EV-cargos to stromal cells, induce molecular and 
cellular changes that promote PMN development (30, 31). For 
example, the tumor exosomal transport of miR-494 and miR-
542p to stromal cells and lung fibroblasts leads to cadherin-17 
downregulation and matrix metalloproteinase upregulation 
(30), while proangiogenic RNAs contained within MVs trigger 
angiogenesis to promote PMN formation (32).

The ability of tumor cell-derived EVs to fuse with recipient cells 
through endocytosis and release their cargo into the recipient cell 
cytoplasm makes EVs a promising biological vector for targeted 
delivery of various antitumor agents (33). This is exemplified by 
the use of EVs derived from LNCaP and PC-3 prostate cancer 
cell lines modified to transport paclitaxel (PTX) into recipient 
cells through the endocytic pathway, significantly increasing 
PTX cytotoxicity in  vitro (33). Furthermore, U-87 MG (brain 
neuronal glioblastoma–astrocytoma) derived EVs primed with 
doxorubicin (DOX) or PTX significantly decreased the viability of 
recipient U-87 MG cells by 70 and 50%, respectively, at the highest 
tested concentration of exosomes (200 µg/mL) in vitro (34).

Tumor-derived EVs can be used for therapeutic drug delivery 
to reduce systemic toxicity by targeting the tumor microenviron-
ment. It was shown that in vitro and in vivo, doxorubicin-loaded 
exosomes (exoDOX) derived from MDA-MB-231 (breast 
adenocarcinoma) and HCT-116 (colorectal carcinoma) cell lines 
did not reduce DOX efficacy. Simultaneously, exoDOX treated 
nude mice did not show the cardiotoxicity observed in their free-
DOX-treated counterparts. Mass spectrometry confirmed that 
DOX accumulation in the heart was reduced by approximately 

40% when DOX was delivered via exosomes (exoDOX) (35). The 
reduced cardiotoxicity achieved when delivering DOX via modi-
fied exosomes would allow for a higher concentration of exoDOX 
to be used, thus offering the potential to increase DOX efficacy. 
Similar findings have also been reported for in  vivo models of 
breast (MDA-MB-231) and ovarian (STOSE) cancer (36).

Tumor cell-derived EVs carry on their surface the same 
antigens as the cell that produced them (the donor cell), such 
as HER2/neu, melan-A, Silv, carcinoembryonic antigen (CEA), 
mesothelin, and others (37). Thus, they can act to prime immune 
cells by antigen presentation. The delivery of dendritic cells (DCs) 
in vitro primed with exosomes isolated from the mesothelioma 
cell line AB1 within a BALB/c mouse mesothelioma model, 
resulted in increased mean and overall survival times in vivo (38). 
Similarly, DCs primed with exosomes isolated from rat glioblas-
toma cells, induced a strong antitumor response and significantly 
increased median survival times in glioblastoma-bearing rats 
when used in combination with α-galactosylceramide (39).

The efficacy of priming immune cells can be improved by com-
bining their use with immune cell stimulating drugs. For instance, 
exosomes derived from the pancreatic cancer cell line UNKC6141 
were co-delivered with DCs (DCs/Exo) to UNKC16141 xenograft 
mice. Tumor onset was delayed in these animals and subsequently 
a significant increase in survival was observed. When the same 
assay was repeated, but with the inclusion of all-transretinoic 
acid (ATRA) alongside the delivery of DCs/Exo, increased lym-
phocyte proliferation within lymph nodes was reported which 
coincided with increased cytotoxic T-cell activity in comparison 
with untreated or DCs/Exo only treated animals. However, the 
inclusion of ATRA had no further effect on prolonging survival 
and only modest changes in metastasis to distant organs were 
observed. The combination of DCs/Exo with sunitinib in these 
animal models also led to an increase in cytotoxic activity which 
in these assays did lead to significantly prolonged survival times 
in DCs/Exo/sunitinib compared to animals treated only with 
free sunitinib therapy. Similar increases in survival time and a 
reduction in metastatic spread was also observed when DCs/Exo 
use was combined with gemcitabine treatment (40).

To increase the therapeutic potential and immunogenicity of 
EV-based tumor vaccines, tumor cells producing the EVs can be 
modified to express specific cytokine/chemokine genes that have 
an immunomodulating effect. Dai et  al. reported that exosomes 
derived from LS-174T cells genetically modified to express IL-18 
CEA (Exo/IL-18), had a more pronounced effect on specific 
antitumor immunity when compared with exosomes from native 
LS-174T  cells. Exo/IL-18 promoted proliferation of peripheral 
blood mononuclear cells and induced cytokine secretion by 
T-lymphocytes and DC in vitro, as well as inducing the phenotypic 
and functional maturation of DCs (41). Similar results were obtained 
by Yang et al. using in vivo experiments, whereby exosomes were 
derived from IL-2-modified ovalbumin (OVA)-expressing EL-4 
lymphoma cells (Exo/IL-2). Vaccination of C57BL/C mice with 
Exo/IL-2 more effectively inhibited tumor growth (42).

The modification of tumor cells through the aberrant expres-
sion of tumor suppressor genes, apoptosis inductors, and ncRNAs 
has also been shown to impart a potential therapeutic benefit to 
the resulting EVs. YUSAC 2 melanoma cells were engineered 
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to overexpress a dominant-negative mutant form of Survivin 
(Survivin-T34A). Exosomes derived from Survivin-T34A- 
modified YUSAC 2 cells, in combination with gemcitabine, sig-
nificantly increased apoptosis in pancreatic adenocarcinoma MIA 
PaCa-2 cells in comparison with gemcitabine alone (43). Rivoltini 
et  al. showed that exosomes derived from K562 leukemia cells 
modified with TNF-related apoptosis-inducing ligand (TRAIL) 
[TRAIL(+) exosomes], induced apoptosis in TRAIL-death recep-
tor (DR)5(+) SUDHL4 lymphoma and INT12 melanoma cells 
in vitro. In in vivo experiments of TRAIL(+) exosomes demon-
strated homing of the exosomes to the tumor sites and significant 
suppression of tumor growth by 58% in SUDHL4-B-cell lym-
phoma bearing mice (44). Li et al. investigated exosomes derived 
from glioblastoma multiforme (GBM) cells with overexpression 
of the tumor suppressor gene LRRC4 (Exo/LRRC4). Exo/LRRC4 
induced significant chemotaxis and expansion of CD4+CCR4+ 
T cells, inhibited the proportion of Ti-Treg cells, and promoted 
Ti-Teff cell expansion through cytokines release in vitro (45).

The Rab GTPases control many stages of membrane traffick-
ing, including the formation and release of vesicles. Ostrowski 
et al. identified Rab GTPases Rab2b, Rab9a, Rab5a, Rab27a, and  
Rab27b that promote exosome secretion in HeLa cells (46), 
indicating the possibility of manipulating the secretion of Rab 
proteins to control exosome production. Exosomes, derived 
from Rab27a-overexpressing A549 cells (exo/Rab27a), exhibited 
the ability to regulate major histocompatibility complex (MHC) 
class II molecules and co-stimulatory molecules CD80 and CD86 
on DCs. Furthermore, DCs primed with exosomes derived from 
Rab27-overexpressing A549 cells significantly increased CD4+ 
T  cell proliferation in  vitro. In vivo immunization with exo/
Rab27a inhibited tumor growth in a tumor mouse model (47).

At present ncRNAs are actively being studied as potential anti-
tumor agents. However, when developing miRNA-based therapies 
there are problems with specific targeting of tumor cells and target 
cells within the tumor microenvironment. Tumor-derived EVs can 
be used for delivering a variety of potentially therapeutic ncRNAs, 
for instance miR-134 (48), miR-29a, and miR-29c microRNAs 
(49), as well as short interfering RNAs (siRNAs) (50) (Table 1).

iMMUne CeLL-DeRiveD evs

Exosomes from immature dendritic cells (imDCs) can be used 
to deliver chemotherapeutic agents such as DOX. For instance, 
imDCs were modified to express lysosome-associated membrane 
protein 2 (Lamp2b) fused to the αv-integrin-specific iRGD pep-
tide. It was shown that modified imDC-derived exosomes (Exo/
iRGD) loaded with DOX, effectively targeted and delivered DOX 
to αv-integrin+ MDA-MB-231 breast cancer cells in vitro. Exo/
iRGD intravenous injection in BALB/c mice led to inhibition of 
breast tumor cell growth without any apparent toxic effects (52).

A new approach for cancer immunotherapy is the combina-
tion of exosomes and the invariant NKT immune cell ligand 
α-galactosylceramide (αGC) (53). Loaded with αGC and OVA-
model antigen exosomes induced potent NK and γδ T-cell innate 
immune responses in  vitro and in  vivo. In an OVA-expressing 
mouse model of melanoma treatment of tumor-bearing mice with 
αGC/OVA-loaded exosomes decreased tumor growth, increased 

antigen-specific CD8+ T-cell tumor infiltration, and increased 
median survival, relative to control mice immunized with solu-
ble αGC  +  OVA alone (53). Similarly, exosomes derived from 
α-fetoprotein (AFP)-expressing DCs (DEXAFP) intravenously 
injected into hepatocarcinoma-bearing C57BL6 mice prolonged 
survival to 57 days in 100% of DEXAFP-treated mice (55).

Without modification, DC-derived exosomes alone carry 
MHC class I and class II/peptide complexes capable of leading 
to the priming of CD8+ and CD4+ T cells, respectively, and sub-
sequent T cell-dependent tumor rejection (13, 54). DC-derived 
exosomes have also been reported to trigger NK cell proliferation 
and activation in vitro and in patients, by trans-presentation of 
IL-15 by IL-15Rα. This mechanism of action was shown to signifi-
cantly reduce the number of lung metastases in vivo. Combination 
of DC-derived exosomes with IL-15Rα and rhIL-15 molecules led 
to NK cell proliferation and activation and significantly enhanced 
IFNγ secretion by NK cells in vitro (54).

Phase I clinical trials have demonstrated the safety of using 
DC-derived exosomes in patients with metastatic melanoma (69) 
and lung cancer (70). Phase II trials in non-small cell carcinoma 
patients using modified IFN-γ expressing DCs to produce 
exosomes have reported an increase in NKp30-dependent NK cell 
functions, and 32% of participants experienced stabilization for 
more than 4 months (56).

In addition to DCs, macrophages have also been studied as 
a source of EVs of potential therapeutic benefit. Derived from 
RAW 264.7 macrophages, vesicles loaded with PTX (exoPTX) 
were reported to significantly increase drug cytotoxicity (more 
than 50 times) in multidrug resistance (MDR) MDCKMDR1, 
MDCKwt, and 3LL-M27 cells in vitro. Furthermore, when deliv-
ered into the airway of mice modeling Lewis lung carcinoma 
pulmonary metastases, exoPTX were found to have a potent 
anticancer effect (57). For PTX targeted delivery macrophages 
can be modified with aminoethylanisamide-polyethylene glycol 
(AA-PEG) a vector moiety to target the σ-receptor which is 
overexpressed by lung cancer cells (58). Jang et al. developed a 
bioinspired exosome-mimetic nanovesicles that can be modi-
fied to deliver DOX, gemcitabine, or carboplatin to the tumor 
tissue after systemic administration. Chemotherapeutic-loaded 
nanovesicles, derived from monocytes or macrophages, induced 
TNF-α-stimulated endothelial cell (HUVECs) death in a dose-
dependent manner in vitro. DOX-loaded nanovesicles increased 
apoptosis and reduced the number of proliferating cells in CT26 
colorectal cancer murine models (59) (Table 1).

MSC-DeRiveD evs

Extracellular vesicles released from MSCs have been reported to 
exhibit variable effects on tumor growth, indicating the influence 
of EVs is dependent on cargo and the donor cell type (71, 72). 
Delivered by MSC-derived exosomes molecules of different types 
of RNA can induce adipogenesis, angiogenesis, apoptosis, and 
proteolysis in recipient cells (15). Exosomes from gastric cancer-
derived MSCs were found to deliver miR-221 to HGC-27 gastric 
cancer cells, promoting their proliferation and migration in vitro 
(73). Other biomolecules carried by exosomes such as onco-
genic proteins, cytokines, adhesion molecules, and anti-apoptotic 
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TABLe 1 | The use of extracellular vesicles (EVs) with or without modified cargo for antitumor therapy.

vesicle source vesicle type Purification strategy Cargo Mechanism of action Model Reference

Cancer cells

Glioblastoma–
astrocytoma U-87 
MG cells

Exosomes Exosome isolation reagent 
(Invitrogen)

DOX or PTX Cell viability decrease In vitro U-87 MG cell culture (34)

LNCaP and PC-3 
prostate cancer 
cells

Exosomes 
and 
microvesicles

Differential centrifugation PTX PTX cytotoxic effect increase In vitro PC-3 and LNCaP cell culture (33)

MDA-MB-231 and 
HCT-116 cell lines

Exosomes ExoQuick-TC™ solution (System 
BioSciences)

DOX Cardio toxicity decrease, DOX efficacy increase MDA-MB-231 cell mice model in vivo (35)

MDA-MB-231 and 
STOSE cell lines

Exosomes AB cell culture-nanovesicles 
solution (AB ANALITICA)

DOX Breast MDA-MB-231 and ovarian 
STOSE mouse tumors in vivo

(36)

Oral cancer cells Exosomes Ultrafiltration and affinity 
chromatography

Tumor-associated antigens NK cell proliferation and NK cell cytotoxicity increase In vitro NK cell culture (51)

Mouse malignant 
mesothelioma 
(MM) AB1 cells

Exosomes Stepwise ultracentrifugation Tumor-associated antigens Exosome-loaded dendritic cell (DC) increased median 
and overall survival

AB1 tumor BALB/c mice model in vivo (38)

Rat glioblastoma Exosomes ExoRNeasy Serum/Plasma Maxi 
Kit (Qiagen)

Tumor-associated 
antigens + α-galactosylceramide

Exosomes pulsed DCs increased median survival time Glioblastoma-bearing rat model in vivo (39)

UNKC6141 
(pancreatic cancer) 
cells

Exosomes Sucrose gradients 
ultracentrifugation

Tumor-associated antigens Exosome-loaded DCs delayed tumor onset and 
increased survival time

UNKC6141-bearing mice (40)

DCs/Exo + all-transretinoic acid increased proliferation 
of lymph node cells and cytotoxic T cell activity

DCs/Exo and sunitinib prolonged survival time

DCs/Exo + gemcitabine prolonged survival time

Carcinoembryonic 
antigen (CEA)-
expressing 
LS-174T tumor 
cells

Exosomes Sucrose gradients 
ultracentrifugation

IL-18 Maturation of DCs and induction of CEA-specific  
CD8+ CTL

DCs and CTL cells in vitro (41)

OVA-expressing 
EL-4 lymphoma 
cells

Exosomes Sucrose gradients 
ultracentrifugation

IL-2 Immune response induction and tumor growth 
inhibition

C57BL/C mice model in vivo (42)

YUSAC 2 
melanoma cells

Exosomes Sucrose gradients 
ultracentrifugation

Survivin-T34A (Survivin blocking 
protein)

Caspase activation and apoptosis induction Pancreatic cancer cells in vitro (43)

K562 leukemia 
cells

Exosomes Differential centrifugation TNF-related apoptosis-inducing 
ligand (TRAIL)

TRAIL-related apoptosis induction SUDHL4 lymphoma and INT12 
melanoma cells in vitro

(44)

Tumor growth inhibition SUDHL4-bearing mice

A549 cells Exosomes Differential centrifugation Rab27a Maturation of major histocompatibility complex  
(MHC) class II molecules, CD80 and CD86.  
Inhibition of tumor growth

DCs in vitro, BALB/c mice model in vivo (47)

(Continued)
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vesicle source vesicle type Purification strategy Cargo Mechanism of action Model Reference

Glioblastoma 
multiforme (GBM) 
cells

Exosomes Differential centrifugation LRRC4 Chemotaxis and expansion of CD4+ CCR4+ T cells GBM cells in vitro (45)

Hs578T and 
Hs578Ts(i)8 cells

Exosomes Filtration and ultracentrifugation miR-134 Cellular migration and invasion reduction, drugs 
sensitivity enhancement

Hs578Ts(i)8 cells in vitro (48)

SGC7901 cells Microvesicles Differential centrifugation miR-29a and miR-29c Angiogenesis and tumor growth suppression Implanted with SGC7901 cells BALB/c 
mice in vivo

(49)

HeLa and HT1080 
cells

Exosomes Differential centrifugations and 
micro-filtration

Short interfering RNAs (siRNAs) 
against RAD51 and RAD52

Accumulation of the cells in S and G2/M phases  
of cell cycle and recipient cell death induction

HeLa cells in vitro (50)

immune cells

DCs Exosomes Sucrose gradients 
ultracentrifugation

Lamp2b + iRGD + DOX Tumor growth inhibition MDA-MB-231 injected BALB/c nude 
mice model in vivo

(52)

DCs Exosomes Differential centrifugation αGC + OVA NK and γδ T-cell immune responses induction Invariant NKT cells in vitro (53)

Tumor growth decrease B16/OVA melanoma tumor model 
in vivo

DCs Exosomes Ultrafiltration/diafiltration 
and sucrose gradients 
ultracentrifugation

MHC class I and class II NK cell proliferation and activation, IFNγ  
secretion enhancement

NK cells in vitro (54)

MHC class I and class II NK cell proliferation and activation by trans-
presentation of IL-15 by IL-15Rα, number of 
metastases reduction

Mouse model in vivo

DCs Exosomes Differential centrifugation AFP Survival rate prolongation Tumor-bearing C57BL6 mice model 
in vivo

(55)

DCs Exosomes Ultrafiltration/diafiltration 
and sucrose gradients 
ultracentrifugation

IFN-γ NKp30-dependent NK cell function  
enhancement

Advanced non-small cell lung cancer 
patients

(56)

RAW 264.7 
macrophages

Exosomes ExoQuick-TC™ solution (System 
BioSciences)

PTX Drug cytotoxicity increase, inhibition of  
metastases growth

Resistant multidrug resistance cell 
culture in vitro, Lewis lung carcinoma 
mouse model in vivo

(57)

AA-PEG + PTX Suppression of metastases growth and survival  
time increase

In vivo C57BL/6 mice lung cancer 
model

(58)

Monocytes or 
macrophages

Exosome-
mimetic 
nanovesicles

Iodixanol gradients 
ultracentrifugation

DOX Apoptosis increase and number of proliferating  
cells reduction

In vivo model of mouse CT26 colorectal 
cancer

(59)

Mesenchymal stem cells (MSCs)

MSCs Exosomes Differential centrifugation Anti-miR-9 Temozolomide sensitivity increase Temozolomide-resistant GBM cell 
culture in vitro

(60)

TABLe 1 | Continued

(Continued)
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proteins can also promote tumor progression (74–76), as well as 
increase tumor resistance to chemotherapy drugs (77).

Exosomes from bone marrow MSCs (BM-MSCs) can transfer 
miRNAs from the BM, particularly miR-23b, which promote dor-
mancy in bone marrow-metastatic human breast cancer through 
the suppression of a target gene, MARCKS in vivo (78). In support 
of this, Lee et al. showed that MSC-derived exosomes can sup-
press human breast cancer angiogenesis by downregulating the 
expression of VEGF in tumor cells in vitro and in vivo (79).

In addition to the endogenous effects of MSC-EVs, MSC-
derived MVs can be used as delivery vehicles for a variety of 
potential therapeutic agents, in particular ncRNAs. For example, 
injection of exosomes derived from miR-146-expressing MSCs 
into xenograft gliomas in primary brain tumor rat models cause 
a significant reduction in tumor growth (61). Treatment with 
MSC-derived exosomes containing miR-124a reduce the viability 
and clonogenicity of glioma stem cell lines in vitro and increase 
the survival rate in glioma mouse models up to 50% by silencing 
FOXA2 (62), while the loading of MSC exosomes with miR-143 
acts to significantly reduce the migration of 143B osteosarcoma 
cells (80). Transfection of bone marrow stromal cells with miR-
340 generates exosomes capable of inhibiting tumor angiogenesis 
via the HGF/c-MET signaling pathway in endothelial cells (63). 
MSC-derived EVs can also be used to alter the chemosensitivity 
of tumor cells. Delivery of anti-miR-9 to temozolomide-resistant 
GBM cells increases cell sensitivity to this drug (60). The sensitiv-
ity of hepatocellular carcinoma cells to chemotherapeutic agents 
(5-fluorouracil and sorafenib) can similarly be altered through 
the use of miR-122 loaded MSC exosomes in  vivo (65). MSC-
derived MVs can also be loaded with various siRNAs that target 
key genes driving tumorigenesis, for example, MSC exosomes 
carrying siRNAs against polo-like kinase 1 significantly reduce 
bladder cancer cell proliferation in vitro (64).

In addition to biomolecules, MSC-derived vesicles can be 
loaded with chemotherapeutic drugs. BM-MSC-derived MVs 
primed with high-dose PTX inhibited cell growth by 50% in 
human CFPAC-1 pancreatic adenocarcinoma cells in vitro (66). 
This finding was supported by the recent studies of Cocce et al., 
which showed antitumor activity of MSCs MVs loaded with PTX 
or gemcitabine (GCB) on pancreatic cancer cells in vitro (67).

Recent studies have also highlighted the potential to deliver 
TRAIL by MSC-EVs (MSCT). MSCT-EVs induced apoptosis 
in 11 cancer cell lines in a dose-dependent manner but showed 
no cytotoxicity in human bronchial epithelial cells in  vitro. 
Interestingly TRAIL-primed EVs that contain 3.88  ng TRAIL/
mL induced significantly more apoptosis in M231 breast cancer 
cells compared with 100 ng/mL of recombinant TRAIL. TRAIL 
delivery by MSC-EVs induced significant apoptosis in TRAIL 
resistant A549 lung adenocarcinoma cells in a dose-dependent 
manner in vitro (68) (Table 1).

COnCLUSiOn

Extracellular vesicles, which include groups of differing origins 
such as exosomes and MVs, are released by all cells within the 
tumor microenvironment during normal cellular activity. EVs 
carry variable cargos that reflect the composition of the donor 

https://www.frontiersin.org/Immunology/
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cells, these cargos can be transferred to neighboring cells and 
thus affect the processes occurring in those recipient cells and 
subsequently the tumor microenvironment as a whole. In addi-
tion to their endogenous ability to influence tumor progression, 
the ability to modify the EV content makes them a promising tool 
for cancer therapy. Surface antigens of tumor cell-derived vesicles 
can be used for immune cell priming. They can also be modified 
with various agents to directly affect tumor cells or modulate anti-
tumor immunity. Genetic modifications can also be performed 
on MSC-derived vesicles, the main advantage of which is targeted 
cargo delivery to the tumor microenvironment. From priming 
the immune response to delivering ncRNAs and antitumor  
drugs, EVs provide a unique biological means of targeting tumors 
and their microenvironments, minimizing cytotoxic effects, and 
increasing the efficacy of treatments at lower drug doses (Table 1). 
However, despite these many advantages, EVs can have variable 
effects on tumor progression and the tumor microenvironment 
dependent upon their protein and nucleic acid cargos. One of 
the limitations of EV usage is the heterogeneity of the isolated 
population, since the size of exosomes and MVs overlap, and as 
yet it is not clear which population carries the greatest potential to 
elicit functional changes. Furthermore, the inconsistency of the 

EV cargo adds an additional caveat to their study and therapeutic 
use (81). In the case of drug loading, disadvantages include a low 
transfection efficiency, and, in the case of cell manipulation, there 
is a high dependence on cell division (82). Therefore, progressing 
their use as therapeutic tools requires full characterization of 
such disadvantages and limitations before the promise of MVs in 
clinical practice is achieved.
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