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Tertiary lymphoid structures (TLSs) associate with better prognosis in certain cancer 
types, but their underlying formation and immunological benefit remain to be deter-
mined. We established a mouse model of TLSs to study their contribution to antitumor 
immunity. Because the stroma in lymph nodes (sLN) participates in architectural sup-
port, lymphogenesis, and lymphocyte recruitment, we hypothesized that TLSs can be 
created by sLN. We selected a sLN line with fibroblast morphology that expressed sLN 
surface markers and lymphoid chemokines. The subcutaneous injection of the sLN 
line successfully induced TLSs that attracted infiltration of host immune cell subsets. 
Injection of MC38 tumor lysate-pulsed dendritic cells activated TLS-residing lympho-
cytes to demonstrate specific cytotoxicity. The presence of TLSs suppressed MC38 
tumor growth in vivo by improving antitumor activity of tumor-infiltrating lymphocytes 
with downregulated immune checkpoint proteins (PD-1 and Tim-3). Future engineering 
of sLN lines may allow for further enhancements of TLS functions and immune cell 
compositions.

Keywords: tertiary lymphoid structures, stromal cells, lymphogenesis, tumor-infiltrating lymphocytes, immune 
checkpoint proteins

inTrODUcTiOn

Secondary lymphoid organs (SLOs), which are initiated in a genetically programmed process 
prenatally or postnatally, provide a specialized microenvironment for naïve T  cell priming by 
antigen-presenting cells (APCs) draining from peripheral tissues (1, 2). In addition, to mediate 
the adaptive immune response, SLOs also participate in immune self-tolerance by maintaining 
recirculating Foxp3+ regulatory CD4+ T cells (Tregs) (3). To fulfill these essential immune-fate 
deciding functions, SLOs such as lymph nodes (LNs) require a well-organized and highly complex 
structure. LNs are composed of segregated T  cell zones and B  cell follicles, dendritic cell (DC) 
clusters, high endothelial venules (HEVs), and a supportive stromal reticular network (4, 5). 
Accumulating evidence suggests that specific immune reactions may also occur outside SLOs in 
organs identified as tertiary lymphoid structures (TLSs) (6, 7). TLSs, also termed ectopic lymph 
node-like structures, are present in sites of chronic microbial infection, chronic allograft rejection, 
autoimmune inflammation, and tumors in both the mouse and human (6, 8, 9).
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Since the nature of TLS neogenesis is to respond to chronic 
inflammation, there is no specific anatomic location or deve-
lopmental window for TLS induction (2, 10). In the conditions 
of autoimmune disease, chronic inflammation, and infection in 
humans, TLSs have been observed in synovial tissue, salivary 
glands, nervous system, thyroid gland, liver, aorta, gut, and lung 
(8). In human cancers, TLSs have been also detected in thyroid 
carcinoma, hepatocellular carcinoma, colorectal carcinoma,  
lung cancer, breast carcinoma, melanoma, prostate cancer, ovar-
ian cancer, and pancreas ductal carcinoma (2, 11). Although 
previous studies demonstrate that TLSs may be an entry site 
for naïve lymphocytes and a component of humoral- and cell-
mediated immunity to local inflammation, the specific func-
tions of TLSs remain elusive, especially in cancer (1, 7, 12, 13). 
The existence of TLSs has been reported to be associated with 
favo rable prognosis in certain human cancers; however, no asso-
ciation or a detrimental prognosis value has also been described 
(2). The conflict in correlations arising from these studies could 
be attributed to cancer types, different patient pools, various 
stages of disease, and diverse compositions/organizations and 
tumor-related locations of TLSs, which highlight a critical ques-
tion in the tumor-associated TLS field: do the TLSs act like an 
antitumor immune-activator, a protumor immune-suppressor,  
or a responder to a unique tumor-inducing persistent inflamma-
tion? Therefore, mouse models of immunologically functional 
TLSs are desirable to further understand the function of TLSs in 
cancer and to potentially manipulate them to enhance immune-
based therapies.

It is well recognized that neogenesis of TLSs and LNs share 
a similar set of molecules, i.e., lymphoid chemokines: CCL19, 
CCL21, and CXCL13; lymphoid factors: lymphotoxin (LT) α, 
LTαβ, and tumor necrosis factor superfamily (14–16). Indeed, 
earlier mouse models utilized numerous methods to induce 
TLSs in various anatomic sites, such as combining over-
expression of lymphoid chemokines/factors with conditional 
transgenic mice (10, 16, 17), adenovirus delivery (18), or bio-
materials in tissue engineering (19). The development of TLSs 
may also use similar cellular initiators as LNs; for example, 
LTβ receptor (LTβR) and podoplanin double-positive stromal 
lymphoid tissue organizer (LTo) cells, which can express not 
only lymphoid chemokines to attract hematopoietic cells but 
also adhesion molecules to retain these cells upon LT signaling 
(2, 20). Consistently, primary cells isolated from embryonic 
mesenteric LNs and a LTα-expressing stromal cell line estab-
lished from thymus also achieved some success in the creation 
of TLSs in the mouse (21, 22). The potential roles of stromal 
cells in TLSs formation have been discussed (9, 23). LN stromal 
cells play a major role in mediating the interaction between 
APCs and lymphocytes to initiate adaptive immune responses 
and forming structural architecture for the homeostasis and 
differentiation of lymphocytes. Collectively, these findings 
in mouse models shed light on the molecular and cellular 
mechanisms that regulate TLSs formation, but direct evidence 
showing the potential antitumor effects of these structures 
remains to be elucidated.

Accumulating studies have shown that tumor-infiltrating 
lymphocytes (TILs) are promising prognostic markers for 

patient survival and response to therapy in diverse types of 
cancer (24, 25). Adoptive cell therapy of autologous TILs 
has been demonstrated to achieve objective response rate of 
40–50% in the treatment of metastatic melanoma (26–30). 
Furthermore, blockage of immune checkpoint molecules, such 
as PD-1/PD-L1 and Tim-3, increased T  cell infiltration and 
enhanced antitumor efficacy of TILs in tumor mouse models 
(27, 31, 32). These are consistent with findings that PD-1 and 
Tim-3 expression have been often detected on CD8+ TILs and 
identified as indicators of T cell exhaustion and dysfunction 
(31, 33). TLSs are considered to be an important source of 
TILs and closely associated with TILs in breast and ovarian 
cancer in human, as evidenced by that patients with both 
high levels of TILs and TLSs density had better disease-free 
survival than those with only high levels of TILs (34–36). 
Thus, induction of TLSs in the tumor microenvironment has 
the potential to increase infiltration of TILs to tumor sites and 
improve TILs response once there. In this study, we focused 
on establishing a TLS mouse model and utilizing this model to 
understand how TLSs can be used to manipulate the antitumor 
immune response and potentially enhance immunotherapy 
applications.

resUlTs

establishment of a ln-Derived stromal 
Monoclonal cell line
Among eight LN-derived stromal (sLN) monoclonal cell lines 
that were generated, one (denoted #2 sLN) was selected and 
used for all experiments. #2 sLN displayed a more uniform 
morphology of fibroblasts compared with bulk primary sLN 
cells (Figure 1A; data not shown). Our previous studies showed 
that a chemokine gene expression signature could accurately 
identify the presence of tumor-localized TLSs in primary colo-
rectal cancer (37) and metastatic melanoma (38). Therefore, 
expression of these chemokine genes was examined and 
compared between bulk primary stromal cells and #2 sLN. The 
#2 sLN monoclonal cell line exhibited similar to higher gene 
expression levels of ccl19, ccl2, ccl21, ccl3, ccl4, ccl5, ccl8, cxcl10, 
cxcl11, cxcl13, and cxcl9 than primary stromal cells (Figure 1B; 
Figure S1 in Supplementary Material). Flow cytometry analysis 
demonstrated that #2 sLN cell line did not express CD45 or 
CD3, which are known lymphocyte markers (Figure 1C). The 
majority of the #2 sLN cells were fibroblastic reticular cells 
(FRCs), as evidenced by positive podoplanin and negative 
CD31 expression (Figure  1C). LTβR, which is a cell surface 
receptor for LT ligands, and vascular cell adhesion molecule 1 
(VCAM-1), another adhesion marker for FRCs (4), were both 
expressed in the #2 cell line (Figure 1C).

induction of Tlss
Tertiary lymphoid structures were induced by injecting the 
#2 sLN cells subcutaneously in mice. Palpable structures were 
observed on the back of mice starting by 1.5 months (Figure 2A). 
The infiltration of different populations of immune cells was 
examined using a flow cytometry panel (Figure 2C; Figure S2A 
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FigUre 1 | Establishing a lymph node (LN)-derived stromal cell line. (a) A photomicrograph of a LN-derived monoclonal stromal cell line (#2) in culture. Monoclonal 
cell lines were generated by limiting dilution. Scale bar denotes 0.2 mm. (B) Total RNA was extracted from the stromal cell line (#2) at 3 different passages and 
mRNA level of indicated 11 chemokines were analyzed by mouse genome arrays. Log2 transformed data were presented and red bars denote the mean.  
(c) The stromal cell line was stained for CD3, CD45, CD31, podoplanin, LTβ receptor (LTβR), and vascular cell adhesion molecule 1 (VCAM-1), and analyzed  
by flow cytometry. The majority of the cells are fibroblastic reticular cells with expression of VCAM-1 and LTβR.
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in Supplementary Material). TLSs contained 14% B, CD4+ T, and 
CD8+ T cells at 1.5 months, which further increased to approxi-
mately 30% at 2.5 and 3–4 months (Figure 2B). The percentages of 
lymphocytes in TLSs at different time points were lower, whereas 
the number of lymphocytes in the 3- to 4-month structures was 
higher than that in LNs (Figure 2B). The 2.5- to 4-month TLSs 
also consisted of 30% stromal cells (majority being FRCs) and 
40% other cells, which included NK cells, macrophages, DCs, and 
unidentified cells (Figures 2B,C; Figure S2B in Supplementary 
Material). Furthermore, we found that there is higher percent-
age of activated (CD69+) and PD-1+ T cells among CD4+ and 
CD8+ T cells in the TLSs than that in naïve LN (Figure S2C in 
Supplementary Material). In addition, we observed a shift to 
effector memory CD4+ and CD8+ T cells (CD44+ CD62L−) in 
TLSs compared with naïve LNs.

activation of lymphocytes in Tlss by 
Mc38 Tumor lysate-Pulsed Dc (T-Dc) 
immunization
In addition to confirming successful accumulations of B and 
T  lymphocytes in the induced TLSs, we investigated whether 
these structures had the capacity to “educate” T  cells. Bone 
marrow-derived DCs were pulsed with MC38 tumor lysate. 
The resulting T-DCs were injected into mice subcutaneously. 

T  cells were subsequently isolated from TLSs of naïve versus 
T-DCs immunized mice and compared for antitumor activity 
by IFNγ release. T cells from TLSs of T-DC immunized mice 
exhibited largely enhanced baseline level of IFNγ release, 
which was further boosted when incubating with MC38 cells 
(Figure  3A). ELISPOT assay showed that the frequency of 
IFNγ-producing cells was significant higher in TLSs of T-DC 
immunized mice compared with naïve mice (Figure  3B). In 
addition, by chromium-51 release assay, T cells residing in TLSs 
of T-DC immunized mice displayed increased cytotoxicity 
against MC38 cells but not #2 stromal cells (Figure 3C; Figure 
S3 in Supplementary Material). Collectively, these findings 
revealed successful in  vivo antitumor T  cell priming activity 
within induced TLSs.

suppression of Mc38 Tumor growth in the 
Presence of Tlss
To investigate the potential antitumor function of TLSs, MC38 
tumor cells were injected subcutaneously adjacent to the TLSs 
in C57BL/6 mice. We observed a significant (p < 0.05) suppres-
sion of tumor growth in TLS-bearing compared with control 
mice (Figure 4A). TILs were isolated and tested for IFNγ release 
against MC38 target cells in vitro. TILs from TLS-bearing mice 
demonstrated significantly higher IFNγ release than that in 
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FigUre 2 | Induction of tertiary lymphoid structures (TLSs). (a) Representative photographs of 1.5- and 3.5-month TLSs (red arrows and blue circles) and adjacent 
brachial lymph nodes (LNs) (black arrows and circles). Scale bar denotes 5 mm. (B) Percentages and cell numbers of different cell populations in LN stroma-induced 
TLSs at indicated time points (n = 5 for 1.5 months, n = 3 for 2.5 months, n = 13–27 for 3–4 months) and LNs (control, n = 13–16) were analyzed by flow 
cytometry. Other: NK cells, macrophages, DCs, and other undefined cells. Stroma: fibroblastic reticular cells (FRCs), lymphatic endothelial cells (LECs), and blood 
endothelial cells (BECs). (c) Flow cytometry analysis of 2.5-month LN stroma-induced TLSs. Data are presented as mean ± SE.
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control mice (p < 0.05), suggesting the presence of TLSs could 
improve the antitumor activity of TILs in adjacent MC38 tumors 
(Figure 4B). We also studied TIL trafficking and composition in 
MC38 tumors utilizing a flow cytometry panel (39). While the 
infiltration of TILs was not improved in TLS-bearing mice as 
evidenced by similar percentage of CD3+ CD45.2+ cells, PD-1 
and Tim-3 were both downregulated on CD8+ T cells in MC38 
TILs in TLS-bearing mice (Figure 4C).

DiscUssiOn

We created a mouse model of TLSs by implanting LN-derived 
stromal cells that express markers of FRCs. TLSs were formed 
by expansion of stromal cells and gradual infiltration of 
B  cells, CD4+ and CD8+ T  cells. Lymphocytes in the TLSs 
could be educated by T-DC immunization, and the presence 
of TLSs could suppress MC38 tumor growth accompanied by 
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FigUre 4 | The presence of tertiary lymphoid structures (TLSs) suppresses MC38 tumor growth. (a) MC38 tumor growth in control and TLS-bearing mice 
(n = 3–15 for control group, n = 3–21 for TLS group at different time points). 1e6 MC38 tumor cells were injected subcutaneously to control and TLS-bearing mice, 
and tumor size was measured up to 17 days after injection. (B) Tumor-infiltrating lymphocytes (TILs) were isolated from MC38 tumors using CD90.2 microbeads 
from control and TLS-bearing mice, and incubated with irradiated MC38 cells for 24 and 48 h. Supernatant was collected and tested for IFNγ levels. IFNγ levels 
were normalized to the TLS group (n = 8 for control group, n = 18 for TLS group). (c) MC38 tumors from indicated control and TLS-bearing mice were digested 
and analyzed by flow cytometry. Percentage of CD3+ CD45.2+ cells (TILs) among total live cells was calculated. The expression of immune checkpoint proteins 
PD-1 and Tim-3 on CD8+ cells was examined from indicated groups (n = 8 for control group, n = 19 for TLS group). Data are presented as mean ± SE. *p < 0.05.

FigUre 3 | Activation of tertiary lymphoid structure (TLS)-residing lymphocytes by MC38 tumor lysate-pulsed DC (T-DC) immunization. (a) DCs were isolated from 
mouse bone marrow and pulsed with MC38 tumor lysate. 1e6 T-DCs were injected subcutaneously into TLS-bearing mice once a week for 3 weeks. T cells were 
isolated from the TLSs of mice immunized with T-DC vaccines or naïve mice, and incubated in medium alone (effector only group) or with irradiated MC38 cells 
(MC38 group) for 24 and 48 h. Supernatants were collected and tested for IFNγ levels using ELISA kits. IFNγ levels were normalized to the group of T-DC samples 
incubated with MC38 cells (n = 19–21 for naïve group, n = 12–15 for T-DC group). (B) Detection of IFNγ secretion by purified T cells from the TLSs. Representative 
wells were seeded with 1.25e5 cells from indicated groups. Spots were enumerated and normalized to cell number (n = 7 for naïve group, n = 8 for T-DC group). 
(c) Isolated TLS-residing T cells (effector cells) were incubated with labeled MC38 cells (target cells) at indicated ratio. Released chromium-51 was collected and 
measured after 5 h incubation (n = 3 for naïve group, n = 5 for T-DC group). Data are presented as mean ± SE. *p < 0.05.
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enhanced IFNγ release of TILs and downregulation of their 
expression of checkpoint inhibitors PD-1 and Tim-3. DC 
migration was checked using a congenic marker (transplanted 
DCs are isolated from CD45.1 mice, while the TLS-bearing 
mice are CD45.2 mice). We did not observe obvious CD45.1+ 

DCs migration into the TLSs, tumors, or draining LNs (data 
not shown). This is consistent with a previous study showing 
most of antigen-loaded DCs are retained at the injection site, 
while few live DCs reach the draining LNs and became unde-
tectable soon after their arrival there (40). A novel mechanism 
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for the activation of antigen-specific T  cell responses upon 
DC vaccination has been well reviewed before (41). Antigen 
transfer between ex vivo-loaded DCs and various endogenous 
DC subsets is required for efficient induction of CD8+ T cells.  
A putative mechanism is suggested, whereby host DCs take up 
antigens from injected DCs that die quickly in situ and further 
prime naïve T cells in LNs. We observed abundant DCs in the 
TLSs, which indicates that antigen transfer between host and 
injected DCs could be a possible underlying mechanism of 
T cell induction.

The frequencies of TILs are similar between control and 
TLS groups, as evidenced by the similar percentage of CD3+ 
CD45.2+ cells (TILs) among total cells. In the presence of TLSs, 
there is a trend of a lower percentage of PD-1+ cells on TILs, 
which did not achieve significance (data not shown). Moreover, 
published data show that TILs isolated from MC38 tumors con-
tain tumor-specific T cells (27). MC38 TILs when co-cultured 
in the presence of MC38 tumor cells had significant levels of 
IFNγ production compared with irrelevant tumor cells. When 
the same number of TILs isolated from tumors in control and 
TLS-bearing mice were incubated with MC38 cells, TILs in the 
TLS group displayed higher IFNγ release than that in the control 
group. Taken together, these data argue against the possibility 
that lower PD-1 level is due to a lower frequency of tumor-
specific T cells in the TLS group. For the mechanism of PD-1 
downregulation on CD8+ T cells, a previous study showed that 
injection of DCs engineered to express T-bet (T-box transcrip-
tion factor) into murine tumors resulted in antitumor effects 
and rapid development of TLSs (42). Furthermore, T-bet was 
identified as an inhibitor of PD-1 (43). These results suggest that 
TLSs may downregulate PD-1 through T-bet, which warrants 
further investigation.

Although microarray data showed similar expression of 
different chemokines between the monoclonal and primary 
sLN cells, monoclonal sLN cells were established to induce TLS 
formation, due to their uniform expression of LTβR, podopla-
nin, and VCAM-1 that mimic LTo cells. Similarly, a previous 
study reported on a monoclonal sLN cell line that preserved 
expression of chemokine, LT pathway related receptor and 
lymphocyte-anchoring surface proteins as mature stroma LTo 
cells (44). Since stromal cells in adult LNs are considered to be 
direct descendants of LTo cells or their derivatives, it is likely that 
the adult-type cells maintain some features of embryonic organ-
izers (4). Indeed, successful induction of “artificial” TLSs could 
be achieved in the renal subcapsular space with LTα-expressing 
monoclonal stromal cells from thymus (22). To increase the 
flexibility for future potential clinical practice, we induced  
TLSs subcutaneously. Because an earlier study revealed site-
dependent differences of cytokines production between FRCs 
isolated from skin-draining vs. mesenteric LNs (45), we extracted 
sLN cells from peripheral LNs in our current work.

Comparing the cellular composition of induced TLSs to 
peripheral LNs, we observed: (1) lower percentage of total B 
and T  cells; (2) disproportional ratio between B and T  cells; 
and (3) higher percentage of stromal cells, macrophages, and 
NK  cells. As reviewed previously, recreation of the complex 
architecture of lymphatic organs ex vivo is more challenging due 

to lack of proper microenvironment and efficient interaction 
among different cell populations, in contrast to accomplish-
ments in the formation of human liver, blood vessels, cartilage, 
and skin (46). Despite relative modest size, bioengineering of 
LNs confronts major barriers, including the multitude of cell 
types, complicated and structured stromal network allowing 
cell motility, as well as enormous cell density on a small scale 
(47). The induced TLSs have a lower percentage but a higher 
number of lymphocytes than that in LNs, suggesting lower cell 
density in the TLSs will need further improvement. It is more 
demanding to recruit B cells than T cells, as illustrated in a study 
that also experienced difficulty of attracting B cells using several 
biocompatible materials, until the use of a sponge-like collagen-
ous scaffold (48). Considering that a scaffold was not used in our 
TLSs model, the implanted sLN cells would need to proliferate 
to some extent to provide a 3D structure and molecule cues for 
host immune cell infiltration. Implantation of foreign cells and 
biomaterials in immune-competent animals elicits multiple 
cellular responses, including clearance of foreign antigens by 
macrophages and NK cells (49, 50). Although reports of infiltra-
tion of these innate immune cells were missing in previous TLSs 
mouse models, we speculate they could represent background 
of cell infiltration in response to a foreign substance. In addi-
tion, two recent studies showed that macrophages could play 
a crucial role in TLS formation, because adoptive transfer of 
LIGHT-stimulated macrophages could mimic intratumoral TLS 
induction by LIGHT (51, 52).

Tumor-associated TLSs can be positioned at/outside the 
tumor invasive margin (i.e., extratumoral) or within the tumor 
mass (i.e., intratumoral) (2). It was shown that the position of 
TLSs in regard to tumor could have important implications 
for their prognostic value in the survival of tumor bearers. For 
example, a recent study reported that extratumoral TLSs had 
a weak association with TIL frequencies in colorectal cancers 
derived from patients at various stages (53). Because we injected 
tumor cells adjacent to the structures, this design represented 
an extratumoral TLS model. Although we did not observe an 
increase of TIL number in MC38 tumors in TLS-bearing mice, 
we detected improved antitumor efficacy and downregulation of 
checkpoint inhibitory molecules. TLSs have been described as 
either organized lymphoid aggregates containing distinct T- and 
B cell zones, PNAd+ HEV, germline centers, DC-Lamp+ mature 
DCs, and expression of lymphoid chemokines (6) or as loose and 
less organized structures (2). In our current study, the induced 
TLSs would fall in the latter category, and preliminary multiplex 
immunohistochemistry results show that T  cell clusters were 
detected, while scarce B cells did not form follicles (Figure S4A 
in Supplementary Material). Moreover, podoplanin+ FRCs are 
widely distributed with existence of CD31+ endothelium (Figure 
S4B in Supplementary Material). PNAd+ HEVs were also identi-
fied in the TLSs, but at a lower frequency than LNs (Figure S4C 
in Supplementary Material).

In conclusion, we have shown the potential of induced TLSs 
to mount a preventative antitumor T cell response in vivo. Due 
to the longer time to form TLSs compared with rapid MC38 
tumor progression, we were unable to evaluate the impact of 
functional TLSs on established tumors. Our previously published 
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studies identified important chemokines in the TLS formation. 
Our laboratory systematically performed microchemotaxis 
assays on purified immune subsets including pan-T cells, CD4+ 
T cells, CD8+ T cells, B cells, and NK cells, with 49 recombinant 
chemokines (15). We found that resting pan-T  cells displayed 
concentration-dependent chemoattraction toward CCL19 and 
CCL21, and concentration-dependent chemoattraction of rest-
ing B cells was restricted to CXCL12 and CXCL13. We believe 
a combination of CRISPR-Cas9 genome editing and genetic 
modification of the LN stromal cell lines to better express the key 
chemokines/factors by recombinant viral vectors should provide 
the definitive answer (as well as, in the latter case, enhance the 
formation and function of the TLSs). In the future, we will focus 
on reducing the induction time by combining over-expression 
of lymphoid chemokines/factors in stromal cells with usage of 
proper biomaterials as a scaffold (16). Because not all human solid 
tumors show the presence of TLSs, the concept of constructing 
“designer” TLSs in “immune-cold” tumors to potentially enhance 
immunotherapies seems attractive.

MaTerials anD MeThODs

animals
Female C57BL/6 mice (6–8  weeks old) were purchased from 
Charles River Laboratories. Mice were housed at the Animal 
Research Facility of the H. Lee Moffitt Cancer Center and Research 
Institute. Mice were humanely euthanized by CO2 inhalation 
according to the American Veterinary Medical Association 
Guidelines. Mice were observed daily for specific clinical signs of 
discomfort and were humanely euthanized if a solitary subcuta-
neous tumor exceeded 2.0 cm in diameter or when mice showed 
signs referable to metastatic cancer. 1e6 MC38 cells were injected 
to control or TLS-bearing mice subcutaneously. Tumor length 
(L) and width (W) were measured using a clipper and tumor 
volumes were calculated using formula: V =  (L ×  W × W)/2.  
All animal experiments were approved by the Institutional 
Animal Care and Use Committee and performed in accordance 
with the U.S. Public Health Service policy and National Research 
Council guidelines.

establishment of Monoclonal stromal cell 
lines and induction of subcutaneous Tls
Stromal cells in mouse LNs were isolated as described previ-
ously (54). Briefly, peripheral skin-draining LNs in C57BL/6 
mice were dissected, digested, disaggregated, and filtered into 
single-cell suspension, followed by incubation in complete 
RPMI medium (Corning Inc.). After settlement of stromal 
cells, medium was replaced to discard floating cells in the 
supernatant. Monoclonal stromal cell lines were generated at 
limiting dilution following a previous protocol (55). Trypsin 
EDTA (Corning Inc.) was used to treat the primary cells several 
times to remove fibroblasts with the residual attached cells 
growing to confluency. Then, the residual cells were diluted 
and aliquoted to two 96 wells with approximately 0.5 cells/
well. Eight colonies were picked and expanded. The #2 sLN 
line, which could be passed through to at least passage 38, 

was selected because of shortest doubling time and used in all 
experiments. The doubling time of the #2 sLN line was esti-
mated to be around 24 h. The #2 sLN cells around passage 20 
were harvested from culture, washed two times with PBS, and 
diluted in PBS at 2e6 or 4e6/ml PBS. The #2 sLN cell suspension 
in 100 µl PBS was injected into each mouse subcutaneously in 
the middle of the back to avoid interference from endogenous 
LNs (brachial). The outgrowths were closely monitored and 
analyzed phenotypically and functionally.

rna isolation and Microarray assay
RNA was extracted from the #2 sLN line at passage 17, 18, 
and 19 using RNeasy Plus Mini Kit (QIAGEN). One hundred 
nanograms of total RNA were amplified and labeled with biotin 
using the Ambion Message Amp Premier RNA Amplification 
Kit (Thermo Fisher) following the manufacturer’s protocol  
initially described by Van Gelder et al. (56). Hybridization with 
the biotin-labeled RNA, staining, and scanning of the chips 
followed the prescribed procedure outlined in the Affymetrix 
technical manual and was previously described (57). The oli-
gonucleotide probe arrays used were the GeneChip Mouse 
Genome 430 2.0 Arrays (Affymetrix), which contain over 45,000 
probe sets representing over 39,000 transcripts. The arrays were 
normalized using IRON (58), log2 transformed, and quality 
controlled using sample to sample scatter plots.

Flow cytometry
Stromal cells were collected by trypsin and prepared by passing 
cells through a 40-µm cell strainer. The resulting single-cell 
suspensions were stained in FACS buffer with the following 
antibodies for flow cytometric analysis: anti-mouse CD3 (BD 
Bioscience), and anti-mouse CD45, CD31, Podoplanin, LTβR, 
VCAM-1 (All from BioLegend). TLSs were dissected from mice, 
mechanically dissociated and digested with tumor digestion 
buffer and GentleMACS (Miltenyi Biotec). After lysis of RBCs, 
the single-cell suspensions were analyzed by flow cytometry with 
the following antibodies: anti-mouse CD3, CD4, CD11b, CD11c 
(All from BD Bioscience), anti-mouse CD8, CD19, CD45, CD31, 
Podoplanin (All from BioLegend), and anti-NK1.1 (eBiosci-
ence). MC38 tumors were processed as above and stained with 
the following antibodies: anti-mouse CD3, CD4, CD69, CD27, 
CD45RA, PD-1, LAG3, and CD127 (All from BD Bioscience), 
and anti-mouse CD8, CD62L, CD44, KLRG1, CTLA-4, Tim-3, 
and CD45.2 (All from BioLegend). DAPI (Sigma-Aldrich) was 
used as a cell viability marker. The cells were analyzed by the LSR 
II flow cytometry equipped with five lasers (BD Biosciences), and 
the data were analyzed with Flow Jo (Tree Star).

Tumor lysate-Pulsed Dcs
To investigate antigen-presentation and T cell priming, murine 
bone marrow cells were isolated from CD45.1 congenic mice 
and cultured for 6  days in IL-4 and GM-CSF supplemented 
RPMI complete medium, followed by purification of DCs using 
OptiPrep (Sigma-Aldrich). T-DCs were generated by incubating 
isolated DCs with MC38 tumor lysate at 1:3 ratio overnight. On 
the next day, T-DCs were collected and washed in PBS twice. 1e6 
T-DCs were administrated subcutaneously in the shoulder blade 
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area directly adjacent to the TLSs once a week for 3 weeks. One 
week later, T cells were isolated from TLSs for further experiments.

isolation of T cells From Tlss and Tumors
Single-cell suspensions from digestion of TLSs and MC38 tumors 
were stained with CD90.2 microbeads following manufacturer’s 
protocol (Miltenyi Biotec). CD90.2-positive cells were sorted 
in AutoMACS (Miltenyi Biotec) and cultured in completed 
RPMI medium supplemented with 3,000  IU recombinant IL2 
(Prometheus) for 2 h. Then, non-adherent cells were collected, 
counted, and seeded in 24-well plates at 2e6/well. On the next 
day, the isolated T cells were used in different functional assays, 
as described below.

elisa and elisPOT
For detection of IFNγ release, T  cells isolated from TLSs and 
MC38 tumors were mixed with irradiated MC38 cells at a ratio 
of 10:1 or not in 96-well plates. Culture supernatants were col-
lected after 24 and 48  h, and IFNγ production was measured 
with an IFNγ ELISA kit (BD Bioscience). Isolated T cells were 
seeded at 1.25e5/well, and the number of IFNγ-producing cells 
was measured using a mouse IFNγ ELISpot Kit (R&D systems). 
The number of positive spots was enumerated using an automatic 
ELISPOT counter (AID).

chromium release assay
A 51Cr release assay was performed as described previously 
(27). MC38 cells were used as targets. TLS-residing T cells were 
extracted and used as effector cells. Briefly, MC38 cells were 
labeled for radioactivity with 100 μCi of 51Cr (Amersham Corp.) 
for 2 h at 37°C in a CO2 incubator. The labeled cells were washed 
with HBSS and added to the effector cells in at least triplicate 
wells of 96-well round-bottomed microplates with effector to 
target ratio at an initial 40:1 and subsequent 1:2 dilutions until 
0.15:1. Labeled target cells only were used as minimum release, 
while target cells lysed by TritonX-100 were used as maximum 
release. After 5  h, supernatant was harvested and measured in 
Trilux (PerkinElmer). The percentage of specific 51Cr release 
was determined by the following equation: (experimental 

release  −  minimum release)/(maximum release  −  minimum 
release) × 100.

statistical analysis
The data were analyzed with a two-tailed Student’s t-test or 
Wilcoxon matched-pairs signed rank test by GraphPad Prism. A 
p value of <0.05 was considered statistically significant.

eThics sTaTeMenT

All animal experiments were approved by the Institutional 
Animal Care and Use Committee and performed in accordance 
with the U.S. Public Health Service policy and National Research 
Council guidelines.
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