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Mesenchymal stem cells (MSCs) have been broadly used as a therapy for autoimmune 
disease in both animal models and clinical trials. MSCs inhibit T effector cells and many 
other immune cells, while activating regulatory T  cells, thus reducing the production 
of pro-inflammatory cytokines, including tumor necrosis factor (TNF), and repressing 
inflammation. TNF can modify the MSC effects via two TNF receptors, i.e., TNFR1 in 
general mediates pro-inflammatory effects and TNFR2 mediates anti-inflammatory 
effects. In the central nervous system, TNF signaling plays a dual role, which enhances 
inflammation via TNFR1 on immune cells while providing cytoprotection via TNFR2 on 
neural cells. In addition, the soluble form of TNFR1 and membrane-bound TNF also 
participate in the regulation to fine-tune the functions of target cells. Other factors that 
impact TNF signaling and MSC functions include the gender of the host, disease course, 
cytokine concentrations, and the length of treatment time. This review will introduce the 
fascinating progress in this aspect of research and discuss remaining questions and 
future perspectives.

Keywords: mesenchymal stem cells, tumor necrosis factor, TNFR, regulatory T, autoimmune and inflammatory 
diseases

iNTRODUCTiON

Among many multipotent stem cell types, mesenchymal stem cells (MSCs) are a unique cell type 
that possesses not only stem cell properties but also immunomodulatory capabilities. MSCs refer to 
multipotent cells derived from the mesenchyme—the embryonic connective tissue that originates 
from the mesoderm. MSCs can differentiate into a wide variety of cells from the mesoderm, includ-
ing osteocytes, chondrocytes, adipocytes, and smooth muscle cells (1, 2), and some cell types from 
the other germ layers, such as neurons from the ectoderm (3, 4) and hepatocytes from the endoderm 
(5, 6). Recently, neural crest cells were identified as another source giving rise to mesenchymal 
progenitors, which, similar to MSCs, have a high potential to differentiate into osteocytes and 
chondrocytes (7, 8). MSCs can be isolated from many fetal and adult tissues or differentiated from 
human pluripotent stem cells (hPSCs). In vitro and in vivo studies have demonstrated that MSCs 
modulate immune responses and inflammation and execute cytoprotective and reparative effects 
mainly through cell–cell contact and paracrine mechanisms. Thus, MSCs have been used as a cell 
therapy for an increasing number of autoimmune, inflammatory, and degenerative diseases (1, 2).
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Autoimmunity and chronic inflammation are known to share  
numerous factors, and thus, frequently coexist in the same 
patients. Autoimmune disease occurs when the immune system 
abnormally attacks a part of a normal body. Approximately 80 
types of autoimmune diseases have been identified, and these 
diseases can involve almost any part of the body. The abnormal 
immune response is often associated with complicated genetic 
factors and the environment. Autoimmune disease is a common 
and often serious clinical problem due to the chronic nature, 
high incidence in human populations, especially in women, and 
rising cost of healthcare. Among the list of common autoimmune 
diseases, rheumatoid arthritis (RA) (9), inflammatory bowel 
disease (IBD) (10), and type-1 diabetes (T1D) (11) are on the 
top. Approximately 7% of people in the United States are affected 
by autoimmune disease. Tumor necrosis factor (TNF or TNFα), 
which is involved in a wide range of biological functions, is 
considered the master mediator of the pathogenesis of chronic 
inflammation and autoimmune diseases. Therefore, anti-TNF 
therapies have become mainstay treatments for autoimmune and 
inflammatory diseases.

Mesenchymal stem cells are susceptible to environmental 
changes, and their immunosuppressive functions can be modu-
lated when exposed to an inflammatory milieu (12). TNF and 
other pro-inflammatory cytokines, such as interferon γ (IFNγ) 
and interleukin 1 (IL-1), determine the disease onset, severity, 
and relapse of autoimmune diseases and affect the efficacy of 
treatment, including MSC-based therapy. IFNγ, TNF, and IL-1 
present in inflammatory tissues can augment the immunosup-
pressive functions of MSCs (13–15). Priming of MSCs with IFNγ 
can yield an augmented immunosuppressive population with 
a higher efficacy for anti-inflammatory treatment than non-
primed MSCs (16). Primed MSCs have been broadly applied in 
both basic and clinical research (17). However, no focused review 
has discussed the role of TNF signaling in MSC-based therapy of 
autoimmune and inflammatory diseases, given the great progress 
in this area of research. TNF exerts its functions by binding to 
two receptors (TNFR1 and TNFR2) to regulate the survival, 
proliferation, migration, and differentiation of target cells, espe-
cially immune cells. This molecule also interacts with MSCs to 
modify or mediate their therapeutic effects. This review, aimed 
to introduce the progress in this area, will specifically discuss 
how TNF/TNFR and MSCs converge on the immune system to 
prevent autoimmune and inflammatory diseases.

MSC eFFiCACY ON AUTOiMMUNe AND 
iNFLAMMATORY DiSeASeS

Mesenchymal stem cells have tremendous potential as a cellular 
therapy for autoimmune and inflammatory diseases because of 
their strong immunomodulatory effects and tissue regenerative 
capability. A growing number of translational studies have been 
carried out on MSCs for the treatment of many autoimmune 
and inflammatory diseases, including T1D (18), RA (19), IBD 
(20), ulcerative colitis (21), systemic lupus erythematosus (SLE) 
(22), autoimmune uveitis (23, 24), and Sjogren’s syndrome 
(25). So far, over 5,000 MSC-related clinical trials have been 

registered at ClinicalTrials of the National Institutes of Health 
in the U.S. (https://clinicaltrials.gov/), of which over 1,900 tri-
als have been completed. Both autologous and allogenic MSCs 
were used in these trials, in which bone marrow (BM), adipose 
tissue, umbilical cord, placenta, and dental pulp were the most 
common sources for MSCs. In addition, MSCs differentiated 
from hPSCs, including embryonic stem cells and induced 
pluripotent stem cells (iPSCs), have also been examined and 
demonstrated efficacy on a variety of animal disease models 
and may become new options for future clinical applications 
(21, 26–28).

Mesenchymal stem cells regulate the adaptive immune sys-
tem by promoting the generation of regulatory T  cells (Tregs) 
and repressing the functions of T effector (Teff) and B effector 
cells (29–31). These effects are mainly triggered by exposure 
to pro-inflammatory cytokines, such as TNF, IFNγ, and IL-1β, 
which are widely present in tissues affected by inflammatory and 
autoimmune diseases. For instance, TNF deregulates the balance 
between Tregs and pathogenic Th17 and Th1  cells in the syn-
ovium of RA patients and impairs Treg functions in RA and MS 
patients (32, 33). Systemically transplanting MSCs into patients 
leads to a decrease in the number of Teff cells and restoration of 
Treg functions (22, 34). Moreover, IFNγ-primed MSCs inhibit 
B  cell differentiation by arresting the cell cycle and inducing 
apoptosis (35).

As for innate immunity, MSCs can inhibit natural killer (NK) 
cell cytotoxicity and block the differentiation and/or maturation 
of macrophages and dendritic cells (DCs). MSCs skew the polari-
zation of macrophages from M1 to M2 in wound healing (36) and 
inhibit DC generation and migration to lymph nodes in vivo (37). 
Studies of the molecular mechanisms for the therapeutic effects of 
MSCs have revealed that MSCs modulate immune responses and 
promote tissue repair via secretion of soluble factors and direct 
cell–cell contact (29). MSCs exert immunosuppressive effect by 
secreting soluble factors, such as indoleamine 2,3-dioxygenase 
(IDO), prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), 
transforming growth factor-β1, insulin-like growth factor-1  
(IGF-1), nitric oxide, and human leukocyte antigen-G5 (38, 39).  
Inhibition of IDO or PGE2 synthesis results in reduction of 
MSC-mediated immunosuppression, and priming MSCs with 
pro-inflammatory cytokines, such as IFNγ and TNF, enhances 
the immunosuppressive effects by elevating the secretion of IDO, 
CXCR4, and PGE2 (29, 39–42). MSCs mixed with activated 
T cells have the strongest inhibition on the T cells via direct cell 
contact (43), and upregulated expression of intercellular adhesion 
molecule-1 and vascular adhesion molecule-1 in MSCs streng-
thens their interaction with T cells (44).

Although promising results have been obtained from MSC-
based therapy, the outcomes are not always consistent and 
sometimes even contradictory, depending on the delivery strate-
gies, MSC sources, and disease course (45–49). A phase I study 
reported that 7/10 patients with Crohn’s disease did not respond to 
autologous BM-MSC infusion, and three of them even manifested 
worsened symptoms (50). Site-specific administration of MSCs 
to patients with Crohn’s disease and mice with collagen-induced 
arthritis (CIA) appeared to be more effective than systemic injec-
tion (51, 52). It has been well documented that the functions of 
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MSCs depend on the microenvironment. MSCs often manifest 
immunosuppressive effects in a strong inflammatory milieu, and 
this ability is reduced or lost and the immunogenicity of the cells 
increased in a weak inflammatory environment (2). Long-term 
exposure to IFNγ or TNF even converts MSCs from an immuno-
suppressive to pro-inflammatory status (53–55). Moreover, MSCs 
are effective at disease onset or when the symptoms reach peaks 
but fail to alleviate the symptoms after the disease stabilizes or 
during disease progression (46, 56).

In addition, the origin of MSCs also influences their immu-
nomodulatory effects. For example, autologous BM-MSCs from 
patients with SLE or synovial-derived MSCs from patients with 
RA failed to improve the symptoms of the same donor patients 
(47, 57). Adipose-derived MSCs from mice with experimental 
autoimmune encephalomyelitis (EAE) had no therapeutic effect 
on the donor animals (58). MSCs isolated from obese mice or 
non-obese diabetic mice failed to alleviate the symptoms in EAE 
and T1D mice (18, 59). Thus, choosing MSCs from the right 
source and determining the immunomodulatory effects of MSCs 
are necessary before therapeutic applications.

TNF SiGNALiNG

Currently, 19 members have been identified in the TNF superfam-
ily (TNFSF), including TNF, TNFβ, CD40L, FasL, and TRAIL,  
which participate in diverse cellular activities, including inflam-
mation, cell proliferation, apoptosis, and morphogenesis (60). In 
particular, TNF is abundant in the serum and many other body 
fluids in patients with autoimmune disease. TNF is a trimeric 
type-II transmembrane protein that shares a TNF homology 
domain with the other TNFSF members and is produced mainly 
by activated macrophages, T, B, and NK cells. TNF is present in 
two different forms, the membrane-bound TNF (mTNF) and 
soluble TNF (sTNF or TNF), and TNF is cleaved from mTNF 
via metalloproteinases, such as TNF-converting enzyme (TACE) 
(61–63).

Tumor necrosis factor and sTNF bind to two structurally 
distinct transmembrane receptors, TNFR1 and TNFR2, both 
belonging to the TNFR superfamily, which comprises trimeric 
type-I transmembrane proteins with repeated extracellular 
cysteine-rich domains for ligand binding; the two receptors 
regulate gene expression via different signaling pathways (61). 
TNFR1 can be activated by both mTNF and TNF, whereas 
TNFR2 preferentially binds to mTNF to initiate the activation 
of the receptor (64). Moreover, TNFR1 is expressed on almost all 
cells of the body, whereas TNFR2 is expressed only on limited 
cells, e.g., immune cells, endothelial cells, nerve cells, and MSCs. 
TNFR also includes membrane-bound (mTNFR or TNFR) and 
soluble (sTNFR) forms, and sTNFR is cleaved from TNFR by 
TACE (63).

In general, TNF induces cell apoptosis or survival through at 
least five different signals, including caspase, NFκB, ERK, JNK, 
and P38 MAPK pathways, via TNFR1 and -R2 (60). TNFR1 
contains 434 amino acids, and its intracellular region contains 
a death domain (DD), which recruits the TNF-associated death 
domain (TRADD), and the latter then recruits Fas-associated 
death domain to trigger the caspase cascades and apoptosis. In 

addition, TNFR1 also induces reactive oxygen species release 
from mitochondria to activate apoptotic events. Paradoxically, 
TRADD can also recruit the TNFR-associated factor (TRAF2) to 
initiate the NFκB, ERK, JNK, and p38 MAPK signaling pathways 
to regulate the cell survival and proliferation. By contrast, TNFR2 
consists of 439 amino acids and does not include a cytoplasmic 
DD, which binds to TRAF2 directly and activates pro-survival 
genes through the NFκB, ERK, JNK, and p38 MAPK pathways 
(60). There is some degree of cross talk between the TNFR1 and 
-R2 signaling pathways.

Another key feature of TNF signaling is the phenomenon 
called “reverse signaling,” in which the signal transmits from the 
TNFRs (including their membrane-bound and soluble forms) to 
mTNF-bearing cells (outside to inside). Reverse signaling of TNF 
has been shown to be functional in macrophages and T, B, and 
NK  cells in humans. For example, activation of mTNF reverse 
signaling enhances the cytotoxicity of CD8 T cells and NK cells 
and the survival of B cells (65–67). In addition, soluble TNFR1 
(sTNFR1)-stimulated monocytes manifest pro-inflammatory 
effects without TNF treatment and anti-inflammatory effects 
after TNF treatment, as reflected by regulation of the pro-
inflammatory cytokines IL1β and IL8 (68). Moreover, the mTNF 
reverse signaling renders macrophage resistant to LPS-induced 
effects by inducing TGFβ expression (69, 70). It has been 
shown that the cytoplasmic domain of mTNF contains a casein 
consensus sequence, which is dephosphorylated during activa-
tion of the mTNF reverse signal. mTNF then triggers the p38 
MAPK and JNK pathways via interaction with protein kinases. 
Alternatively, a 10-kDa cytoplasmic domain of mTNF can be 
cleaved and translocated into the nucleus to regulate the expres-
sion of various cytokines, such as IL1β and IL12 (71). However, 
how the mTNF reverse signal works has not yet been fully  
understood.

TNF iN AUTOiMMUNe AND 
iNFLAMMATORY DiSeASeS

The important role of TNF in autoimmune and inflammatory 
disease has been supported by large amounts of evidence from 
clinical studies. TNF and sTNFR1 are recognized as useful indi-
cators for assessing disease activity. For example, they are often at 
high levels in patients with RA and ankylosing spondylitis (72). 
In SLE patients, TNF is also elevated, and circulating sTNFR is 
significantly higher than in patients with RA and spondyloar-
thropathies (73). Chronic progressive MS patients manifest 
elevated TNF in CSF and active lesions compared with serum 
(74). The TNF level correlates with the manifestation and degree 
of disability in patients.

A vast number of animal studies have uncovered much more 
knowledge than clinical trials about the pathogenesis mediated 
by TNF. Transgenic mice overproducing TNF develop severe 
inflammatory arthritis, and the disease onset depends on IL1 
production (75). IL17 promotes osteoclastogenesis by stimulating 
TNF production (76). In IBD patients, TNF disrupts the intestinal 
epithelial barrier, which makes the intestines vulnerable to infec-
tions, thus promoting inflammation (77). Mice overexpressing 
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TNF develop chronic inflammation resembling IBD (77). 
However, TNF/lymphotoxin knockout or ectopic expression of 
mTNF delays the disease onset of EAE in mice (78, 79).

TNFR1 in Autoimmune and inflammatory 
Diseases
Activation of TNF/TNFR1 signaling predominantly promotes 
inflammation and tissue degeneration. Interaction of TNF with 
TNFR1 activates Teff cells and guides the migration of Teff cells 
to inflammatory sites (80); for example, CD4+ Teff cells are 
preferably accumulated in synovial joints in RA patients (81). 
Meanwhile, TNFR1 knockout prevents the development of arth-
ritis and IBD in mice (82) and shortens the disease course of 
EAE and T1D in mice (78, 83), indicating a pro-inflammatory 
role of TNFR1 signaling. Furthermore, TNFR1 signaling likely 
impairs Treg functions via induction of the dephosphorylation of 
FoxP3 by protein phosphatase 1 in the inflamed synovium of RA, 
accompanied by increased numbers of Th17 and IFN+ CD4 T cells 
(84). Thus, TNF and TNFR1 have been used as therapeutic targets 
for the treatment of autoimmune and inflammatory diseases. An 
anti-TNFR1 nanobody protects against EAE development in 
mice (85), and sTNFR1 has been used as a natural inhibitor of 
TNFR1 signaling by binding and saturating TNF to repress its 
signaling (64).

TNFR2 in Autoimmune and inflammatory 
Diseases
In contrast to the pro-inflammatory effects of TNFR1, the TNF/
TNFR2 interaction preferentially mediates immunosuppressive 
effects (86–89). In mice with dextran sulfate sodium-induced 
colitis, TNFR1 ablation exacerbated the severity of the disease, 
while TNFR2 deficiency led to the opposite results (90). TNFR2 
knockout in EAE mice accelerated the disease progression accom-
panied by severe demyelination (78), suggesting a repressive role 
of TNFR2 in the disease development. Similarly, polymorphisms 
in TNFR2 have been found in various autoimmune diseases, 
which might lead to deregulation of TNF signaling via upregula-
tion or shedding of TNFR2 (91).

TNFR2 has been identified as a marker for activated Tregs. 
TNFR2 and its ligands can activate and stabilize Tregs in an 
inflammatory environment (92–94). A subset of Tregs with high 
TNFR2 expression exhibits maximally suppressive activities in 
both mouse and human, which makes them the most desirable 
cells for the treatment of autoimmune and inflammatory diseases 
(95, 96). Furthermore, TNFR2 agonists have proved effective for 
the treatment of autoimmune disease (91, 97). Upon stimulation, 
TNFR2 is rapidly upregulated in Tregs, which are empowered 
to exert stronger immunosuppressive effects on Teff cells than 
non-stimulated Tregs (93).

However, stimulation of TNFR2 on Teff (e.g., Th1, Th17, and 
CD8+) cells promotes the cells to proliferate, secrete cytokines, 
and develop resistance to Treg-mediated suppression (95, 98–100). 
For example, the CD25hi/TNFR2+ Treg subset induced upon 
TCR stimulation allows the identification of maximal cytokine-
producing effectors (101). These lines of evidence indicate the 
complex effects of TNFR2 on T cells, which help balance between 

Treg and Teff cells and partially explain the reasons for the contro-
versial responses of some patients to TNFR2 agonists.

DUAL eFFeCTS OF TNF ON 
AUTOiMMUNe AND iNFLAMMATORY 
DiSeASeS iN THe CeNTRAL NeRvOUS 
SYSTeM (CNS)

Although beneficial effects of TNF therapies have been observed 
in patients with RA, Crohn’s disease, SLE, and psoriasis, clinical 
trials on MS patients showed the opposite effects, with worsening 
of their symptoms (102). Adverse effects have also been found in 
trials on patients with optic neuritis, MS, and other demyelinat-
ing diseases following anti-TNF medications (103, 104). The 
adverse effects occurred in 0.05–0.2% of patients treated with 
three licensed anti-TNF agents. The opposing outcomes of TNF 
therapies may result from the dual effects of TNF on inflamma-
tion in the CNS.

Circulating TNF in the periphery can cross the blood–brain 
barrier (BBB) and enter the CNS. Infiltrating immune cells such 
as macrophages as well as activated microglia in the CNS can pro-
duce TNF (105). Generally, binding of TNF to TNFR1 predomi-
nantly mediates pro-inflammatory effects of TNF accompanied 
by activation of the target cells. In murine models of ischemia and 
EAE, TNFR1-ablation reduced neuronal loss and demyelination 
(105, 106). In addition, TNFR1 signaling activates microglia to 
promote neural inflammation due to increased production of 
pro-inflammatory factors including TNF, IL-1β, and IL-6 (107). 
TNF also induces apoptosis of human adult oligodendrocytes by 
causing mitochondrial dysfunction via TNFR1/JNK-3 signal-
ing pathway and inhibits differentiation of oligodendrocyte 
progenitor cells (OPC) via AMPK activation and mitochondrial 
impairment (108, 109). These results indicate the adverse effects 
of TNFR1 signaling on multiple cell types in the CNS during the 
disease progression.

By contrast, upregulation of TNFR2 in OPC, microglia, and astro-
cytes promotes neuroprotection and remyelination, as obser ved  
in TNFR1-ablated mice with cerebral ischemia and EAE (105). 
TNFR2 ablation impairs OPC differentiation and causes dys-
function of oligodendrocytes (110). TNFR2 signaling promotes 
OPC differentiation and remyelination by inducing secretion  
of CXCL12 and leukemia inhibitory factor from astrocytes (111) 
and protects oligodendrocytes from oxidative stress-induced  
damage (112).

In addition, TNFR2 ablation in microglia in the CNS ac cele rates 
the onset of EAE, whereas disruption of TNFR2 in monocytes/
macrophages suppresses the disease progression accompanied 
by reduction of T cell activation and infiltration, and attenuated 
demyelination (113), indicating that TNFR2 plays opposite roles 
even in microglia and macrophages during development of 
EAE. Activated microglia enhance the myelin debris clearance 
and remyelination, which is likely mediated by TNFR2 signaling 
(113, 114). These findings are instrumental for developing tis-
sue- and receptor-specific medications to target TNF signaling 
in the treatment of different autoimmune and inflammatory  
diseases.
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TNF ReGULATiON OF MSC eFFiCACY  
ON AUTOiMMUNe AND iNFLAMMATORY 
DiSeASeS

Interferon γ affects MSC efficacy in a dose-dependent manner. 
At low concentrations, it completely abolishes the therapeutic 
effect of MSCs on EAE, accompanied by increased secretion of 
the pro-inflammatory chemokine CCL2 and elevated expression 
of major histocompatibility complex molecules (115). At higher 
concentrations, IFNγ strengthens the MSC efficacy to reduce the 
severity of induced colitis in mice (27, 41). Similarly, TNF also 
dose dependently alters MSC functions. For example, osteogenic 
differentiation from murine ST2 MSCs is promoted by TNF at 
lower concentrations as indicated by elevated expression of the 
osteogenic genes Runx2, Osx, OC, and ALP but inhibited by TNF 
at higher concentrations, which depends on NFκB signaling 
(116). Compared with non-primed controls, TNF-primed MSCs 
have stronger immunomodulatory and tissue-repair capacity, evi-
denced by increased secretion of immunosuppressive molecules, 
such as PGE2, sTNFR, and TSG-6 (42, 117–123); chemokines, 
such as IL-8, CXCL5, and CXCL6 (124, 125); growth factors, such 
as HGF, IGF1, and VEGF (126–128); and increased tunneling 
nanotube (TNT) formation (129) through the TNFR1 or TNFR2 
signaling pathway. The important effects of MSC through TNF 
signaling are listed in Table 1.

TNFR1-Mediated Regulation of MSC 
efficacy
Generally, TNFR1-mediated signaling reduces the MSC effi-
cacy. For example, BM-MSCs derived from mice with TNFR1 
knockout caused greater recovery of myocardial functions in a 
rat model of acute ischemia than wild-type MSCs, which was 
associated with increased production of VEGF and decreased 
production of the pro-inflammatory factors TNF, IL-1β, IL-6, 
etc., in the myocardium (136, 138). Interestingly, another study 
found that TNFR1 knockout only increased the cardioprotective 
effect of male, but not female, MSCs in a murine ischemic injury 
model (137), indicating that the effect of TNFR1 signaling is 
gender dependent.

TNFR1 signaling reduces MSC efficacy by inhibiting the pro-
duction of immunosuppressive molecules and growth factors. 
For example, TNF-priming reversed the immunosuppressive 
effect of mouse MSCs on T  cell proliferation, accompanied by 
increased secretion of the pro-inflammatory cytokine IL-6 and 
failure of the MSCs in the treatment of murine CIA (54). In addi-
tion, ablation of TNFR1 remarkably increased TNF-stimulated 
HGF production from human BM-MSCs (142), indicating the 
inhibitory effect of TNFR1 signaling in HGF production. Similar 
effects have been observed on MSCs derived from patients with 
autoimmune diseases. For instance, it has been shown that TNF 
treatment decreased the HGF production by BM-MSCs derived 
from SLE patients via the TNFR1/IKK-β pathway (80) and 
induced apoptosis in BM-MSCs from ankylosing spondylitis 
patients via TNFR1-mediated upregulation of TRAIL-R2 (133).

Interestingly, in some scenarios, TNFR1 signaling can enhance 
MSC efficacy by inducing production of immunomodulatory 

molecules. For example, TNFR1 knockdown in mouse skin-
derived MSCs abrogated their therapeutic effects on EAE 
accompanied by reduced inhibition on the polarization of 
Th17 cells (121), which might be partially explained by the loss 
of beneficial effects of sTNFR1 produced by MSC under the 
inflammatory situation. In addition, in dilative cardiomyopathy, 
acute lung injury, and LPS-induced intoxication, both murine 
and human BM-MSCs primed by TNF or inflammatory serum 
secreted more sTNFR1 than the non-primed controls, which 
promotes disease recovery (119, 120). In addition, human adi-
pose-derived MSCs engineered to express sTNFR1-Fc improved 
the survival of porcine islets and reversed the hyperglycemia in a 
mouse model of streptozotocin-induced diabetes (140). sTNFR1 
may act by neutralizing circulating TNF and activating mTNF-
mediated reverse signaling in immune cells during diseases 
progression.

TNFR1 signaling can also increase PGE2 secretion by induc-
ing COX2 expression in mouse or human BM-MSCs, which in 
turn reprograms host macrophages to increase IL-10 produc-
tion thus inhibiting inflammation in a mouse sepsis model and 
experimental allergic conjunctivitis (117, 118). In addition, it has 
been shown that other immunosuppressive molecules, growth 
factors, and chemokines such as TSG-6, TGFβ, and IL-8 were 
produced by TNF-primed MSCs to attenuate the symptoms in 
diseases including EAE, myocardial infarction, ischemic hind 
limb, and cutaneous wound probably via TNFR1 signaling path-
way (122, 135, 139, 141). TNF can also induce TNT formation 
between iPSC-derived MSC and cardiomyocytes for mitochon-
dria transfer to attenuate the damage in mouse anthracycline-
induced cardiomyopathy, which is regulated by TNF/NFκB/
TNF-IP2 signaling pathway (129). Thus, TNFR1 signaling can 
exert dual effects on MSC-based therapy in autoimmune and 
inflammatory diseases, depending on the type and stage of the 
diseases.

TNFR2-Mediated Regulation of MSC 
efficacy
In contrast to the dual effects of TNFR1, TNFR2-mediated 
signaling enhances MSC efficacy in general. For example, 
compared with wild-type controls, both male and female 
murine BM-MSCs with TNFR2 knockout showed less or no 
myocardial functional recovery in a rat model of acute ischemia 
accompanied by increased production of pro-inflammatory fac-
tors and a reduced level of VEGF in the myocardium (136, 138).  
These results are consistent with the in  vitro observations 
that production of VEGF, IGF-1, and HGF by TNF-primed 
human BM-MSCs is mediated through the TNFR2 signaling 
(126–128). Consistently, TNFR2 knockout reduced the secre-
tion of VEGF and IGF-1 by TNF-primed BM-MSCs, but this 
only happened on BM-MSC from female mice. By contrast, 
secretion of these growth factors increased in TNF-primed 
TNFR2−/− BM-MSCs from male mice (143, 144), and TNFR2−/− 
BM-MSCs from male mice failed to promote myocardial func-
tional recovery (136, 138). The opposite outcomes implicate 
that the effects of TNFR2 signaling, like TNFR1 signaling, 
on MSC functions are also gender dependent. In support of 
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TABLe 1 | Tumor necrosis factor (TNF) regulation of mesenchymal stem cell (MSC) efficacy on autoimmune and inflammatory diseases.

Disease MSCs Findings Reference

Experimental autoimmune 
encephalomyelitis (mouse)

Mouse skin MSCs Secrete soluble TNFR1 (sTNFR1)
Inhibit differentiation of Th17 via sTNFR1-mediated TNF neutralization

(121)

Human placental
MSCs (TNF primed)

Express TSG-6
Attenuate disease severity

(122)

Systemic lupus 
erythematosus (SLE) (human)

BM-MSC (TNF primed)  
from SLE patients

Inhibit in vitro migration and in vivo homing capacity of BMSC
Decrease hepatocyte growth factor production via the TNFR1/IKK-β pathway

(80)

Th1 cell induced pre-
eclampsia (mouse)

Human decidual MSCs Reverse abnormal TNF expression in uterine and splenic lymphocytes (130)

Collagen-induced arthritis 
(CIA) (mouse)

Human BM-MSCs 
(expressing sTNFR2-Fc)

Secrete sTNFR2-Fc
Decrease Th17 cell population
Suppress osteoclastogenesis

(131)

Mouse MSC line (TNF 
primed)

Secrete interleukin (IL)-6
Accentuate Th1 response
No benefit on disease

(54)

Collagen II antibody-induced 
arthritis (mouse) or CIA (rat)

Human BM-MSCs 
(expressing sTNFR2-Fc)

Secrete sTNFR2-Fc
Reduce joint inflammation

(132)

Ankylosing spondylitis (AS) 
(human)

Human BM-MSCs from 
AS patients (TNF primed)

Express TRAIL-R2
Induce MSC apoptosis via TRAIL-R2 and TNFR1 signal

(133)

Myocardial infarction (rat) Rat BM-MSCs 
(overexpressing TNFR2)

Secrete sTNFR2
Attenuate expression of TNF, IL-1β, and IL-6

(134)

Rat BM-MSCs  
(TNF primed) 

Express TGFβ, FGF2, angiopoietin-2, and VEGF-1
Increase BM-MSC migration in vitro

(135)

Mouse BM-MSCs TNFR1 knockout
Increases cardiac protection
Decreases TNF, IL-1β, and IL-6
Increases VEGF in myocardium

TNFR2 or TNFR1/2 knockout
Reduces cardiac protection
Increases TNF, IL-1β, and IL-6
Decreases VEGF in myocardium

(136)

Myocardial infarction (mouse) Human BM-MSCs  
(TNF primed)

Express TSG-6
Decrease inflammatory responses
Reduce infarct size
Improve cardiac function

(123)

Myocardial ischemia–
reperfusion injury (rat)

Mouse BM-MSCs TNFR1 knockout increases the cardioprotective effect in male but not in female MSCs (137)

Mouse BM-MSCs TNFR1 (but not TNFR2 or TNFR1/2) knockout MSCs increase the cardioprotective effect (138)

Anthracycline-induced 
cardiomyopathy (mouse)

Human induced pluripotent 
stem cell-MSCs/human 
BM-MSCs (TNF primed)

Express MCP-1, IL-6, IL-8, and VEGF
Form tunneling nanotubes for mitochondria transfer via TNF/NFκB/TNFαIP2 signal

(129)

Inflammatory dilative 
cardiomyopathy or LPS-induced 
acute lung injury (mouse)

Mouse BM-MSCs Secrete sTNFR1 to neutralize TNF and LTα
Suppress NFκB pathway in cardiomyocytes

(120)

Ischemic hindlimb (mouse) Human ASCs  
(TNF primed)

Secrete IL-6 and IL-8
Promote angiogenesis, chemotactic migration of human cord blood-derived endothelial progenitor cell

(139)

Sepsis (mouse) Mouse BM-MSCs  
(TNF primed)

Express COX2 to synthesize PGE2, which increases IL10 expression in macrophages via 
TNF/TNFR1 signaling

(118)

LPS intoxication (systemic 
inflammation) (rat)

Human BM-MSCs  
(LPS intoxication  
serum primed)

Promote sTNFR1 secretion via NF-κB signaling
Decrease TNF, interferon γ, and IL-6
Decrease infiltration of macrophages and neutrophils

(119)

Pig islet xenotransplantation in 
streptozotocin-induced diabetes 
model (humanized mouse)

Human ASCs 
(sTNFR1-Fc)

Improve survival of porcine islets
Reverse hyperglycemia

(140)

Cutaneous wound (rat) Human ASCs  
(TNF primed)

Express IL-6 and IL-8
Enhance macrophage infiltration
Enhance cell proliferation and angiogenesis

(141)

Experimental allergic 
conjunctivitis (mouse)

Human BM-MSCs  
(TNF primed)

Express COX-2 to synthesize PGE2
Decrease IgE production and histamine release
Decrease conjunctival vascular hyperpermeability

(117)
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this, the male sex hormone testosterone has been reported to 
exert deleterious effect on myocardial recovery in a rat model  
(145, 146).

Furthermore, overexpression of sTNFR2 or TNFR2 in human 
or rat BM-MSCs enhanced their therapeutic effects in mice and 
rats with RA (131, 132) and rats with cardiac ischemia (134, 147), 
which was associated with reduced TNF level and attenuated 
expression of IL1β and IL6. Macrophages are a major cell type 
that secretes TNF. Treating activated macrophages with culture 
supernatant of human sTNFR2-expressing MSCs reduced osteo-
clast formation in vitro (131). Similar to sTNFR1, sTNFR2 may 
also execute cytoprotective effect via neutralization of circulat-
ing TNF or induction of mTNF-mediated reverse signaling in 
immune cells.

The expression of TNFR2 is highly upregulated in oligoden-
drocytes, microglia, astrocytes, and several subsets of neurons in 
neurological diseases (105, 148). TNFR2 on astrocytes mediates 
beneficial activities to protect oligodendrocytes in co-culture 
(111). Upregulated TNFR2 on activated microglia promotes the 
clearance of myelin debris and remyelination (149). In addition, 
MSCs that infiltrate into the CNS can exert immunomodulatory 
effects by regulating the local microglia and astrocytes as well as 
infiltrating immune cells, e.g., suppressing the functions of Teff 
cells and macrophages and promoting the proliferation of Tregs 
(150). Moreover, TNF in inflamed CNS induces MSC to secrete 
immunomodulatory factors and neural tropic factors such as 
BDNF and HGF (151), which exert pleiotropic effects to attenu-
ate the brain inflammation, reduce brain damage, and promote 
neural regeneration.

TNF SiGNALiNG iNTeRACTiNG wiTH 
MSCs ON Tregs

Regulatory T cells play a central role in the maintenance of the 
immune balance to tolerate self-antigens and prevent autoim-
munity (152). In general, they refer to CD4+/FOXP3+ T  cells, 
including two major subtypes: natural Treg (nTreg) cells and 
induced adaptive Treg (iTreg) cells. nTreg cells are generated and 
selected in the thymus and then migrate to peripheral tissues 
(153), while iTreg cells acquire CD25 (IL-2Rα) expression outside 
of the thymus and are typically induced by inflammation and dur-
ing disease processes, such as autoimmunity and cancer (152). 
T cell receptor stimulation and the cytokines TGFβ and IL-2 are 
required for iTreg cell generation in vitro and in vivo (95, 154, 
155). In contrast to the pro-inflammatory effects of TNF/TNFR1 
signaling (156), TNF/TNFR2 signaling preferentially activates, 
stabilizes, and expands Tregs to mediate their immunosup-
pressive effects and contribute to the treatment of autoimmune 
disease (86–89). TNFR2 is an expression marker relevant to Treg 
functions. TNFR2 agonists have been shown to be effective for 
the treatment of autoimmune and inflammatory diseases (91, 97).

Mesenchymal stem cells regulate both innate and adaptive 
immune systems partially by promoting the generation of Tregs 
(29–31). In the presence of high levels of inflammatory cytokines, 
e.g., TNF and IFNγ, MSCs produce various soluble factors, such 
as IDO, TGFβ, PGE2, and IGF, to inhibit Teff cells and increase 
the expression of FOXP3, CTLA4, and GITR in Tregs to enhance 
their immunosuppressive effects (53). Cell-to-cell contact also 
mediates the induction of Tregs by cytokine-primed MSCs (53). 
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Overexpression of inducible co-stimulator ligands in MSCs 
promotes the induction of functional Tregs (157).

In addition, MSCs also modulate antigen-presenting cells, such  
as DCs and macrophages, by converting them to anti-inflam-
matory phenotypes (M2), which then promote Treg expansion 
and suppress Teff cell functions (30). Recently, Miyagawa et al. 
reported that MSCs control Treg proliferation by releasing 
IGFBP4, an inhibitor of IGF (53). Moreover, some studies have 
shown that low levels of IFNγ and TNF or long-term exposure 
to these cytokines converts MSC from an immunosuppressive to 
pro-inflammatory status (53–55). Thus, these pro-inflammatory 
cytokines can modify MSC effects on Tregs, altering their efficacy 
on autoimmune and inflammatory diseases.

STRATeGY AND PeRSPeCTive

Mesenchymal stem cells have demonstrated immunosuppressive 
effects against various autoimmune and inflammatory diseases. 
However, the efficacy of MSC on many of the diseases remains 
controversial, which can be attributed to many reasons. The 
first is the challenge MSCs encounter when adapting to a new 
microenvironment following delivery into the body. They have to 
first survive in the new and often harsh conditions, during which 
the MSC effects can be reduced or even lost. Thus, improvement 
of the MSC efficacy should focus on achieving high delivery effi-
ciency, long-term retention, and specific modification to target 
different inflammatory diseases.

Genetically modified MSCs can gain remarkably enhanced 
therapeutic capability, in which MSCs serve as a carrier to deliver 
cytokines or verified biological drugs for target-oriented therapies. 
For example, compared with unmodified MSCs, MSCs trans-
duced with TGFβ suppressed CIA in a mouse model (158). MSCs 
expressing IL-12p40 alleviate murine colitis more effectively than 
a wild-type control (159). Overexpressing IL-10 in MSCs sup-
pressed the development of graft-versus-host disease (160), and 
MSCs overexpressing TNFR2 treat CIA in mouse more effectively 
than controls (131). MSCs can also be engineered to release 
abundant amounts of sTNFR1 to neutralize TNF in the circulation  
(121, 140). In addition, since MSCs promote activation and pro-
liferation of Tregs, combined therapy of MSCs and Tregs further 
enhances the number and functions of Tregs and achieves much 
stronger efficacy than each alone, which has been observed in 
GVHD (161, 162) and ischemic myocardium (163).

CONCLUDiNG ReMARKS

In this review, we describe the progress in research on how TNF 
signaling interacts with MSCs in the treatment of autoimmune 
and inflammatory diseases (Figure 1). At appropriate concentra-
tions and timing, TNF promotes secretion of immunosuppressive 
molecules from MSCs, which inhibit Teff cells and activate Tregs. 
In the periphery, TNFR2 signaling also stimulates Tregs; thus, it 
may synergize with MSCs to repress inflammation. In the CNS, 
TNFR2 signaling protects the survival of astrocytes, OPC, micro-
glia, and neurons. Activated MSCs secrete immunosuppressive 
molecules to inhibit inflammation and neurotropic molecules to 
protect neural cells and promote remyelination. Some of the TNF 
functions mediated by either TNFR1 or -R2 in MSCs can vary 
in different genders. Together, these findings suggest that TNF 
signaling plays a pivotal role in MSC-based therapy of autoim-
mune disease, which is highly dependent on the context, timing, 
concentration, gender, etc.

Despite these interesting findings, many more questions 
remain to be addressed than have been solved. For example, how 
do transplanted MSCs respond to TNF, function in the periphery 
and infiltrate the inflamed CNS in patients. Why does gender 
affect TNF functions? Would genetic variations among different 
individuals affect TNF functions? Can inflammatory factors 
also epigenetically modify and alter the expression of the genes 
involved in TNF signaling? Future studies are needed to address 
these and many new challenging questions. Continuous progress 
in this field will most likely lead to the identification of new 
targets for more precise and effective therapies of autoimmune 
and inflammatory diseases.
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