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Identification of B-cell epitopes (BCEs) is a fundamental step for epitope-based vaccine 
development, antibody production, and disease prevention and diagnosis. Due to the 
avalanche of protein sequence data discovered in postgenomic age, it is essential to 
develop an automated computational method to enable fast and accurate identification 
of novel BCEs within vast number of candidate proteins and peptides. Although sev-
eral computational methods have been developed, their accuracy is unreliable. Thus, 
developing a reliable model with significant prediction improvements is highly desirable. 
In this study, we first constructed a non-redundant data set of 5,550 experimentally 
validated BCEs and 6,893 non-BCEs from the Immune Epitope Database. We then 
developed a novel ensemble learning framework for improved linear BCE predictor 
called iBCE-EL, a fusion of two independent predictors, namely, extremely randomized 
tree (ERT) and gradient boosting (GB) classifiers, which, respectively, uses a combination 
of physicochemical properties (PCP) and amino acid composition and a combination of 
dipeptide and PCP as input features. Cross-validation analysis on a benchmarking data 
set showed that iBCE-EL performed better than individual classifiers (ERT and GB), with 
a Matthews correlation coefficient (MCC) of 0.454. Furthermore, we evaluated the perfor-
mance of iBCE-EL on the independent data set. Results show that iBCE-EL significantly 
outperformed the state-of-the-art method with an MCC of 0.463. To the best of our 
knowledge, iBCE-EL is the first ensemble method for linear BCEs prediction. iBCE-EL 
was implemented in a web-based platform, which is available at http://thegleelab.org/
iBCE-EL. iBCE-EL contains two prediction modes. The first one identifying peptide 
sequences as BCEs or non-BCEs, while later one is aimed at providing users with the 
option of mining potential BCEs from protein sequences.

Keywords: B-cell epitope, ensemble learning, extremely randomized tree, gradient boosting, immunotherapy

INtRodUCtIoN

The humoral immune system is a complex network of cells that work together to protect the body 
against foreign substances or antigens such as bacteria, viruses, fungi, parasites, and cancerous cells. 
Generally, antigens are larger in size, however, only certain parts of antigenic determinants, called 
B-cell epitopes (BCEs), are recognized by specific receptors on the B-cell surface, genera ting soluble 
forms of antigen-specific antibodies (1). These antibodies play an important role in neutralization, 
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cell-mediated cytotoxicity, and phagocytosis for the adaptive  
arm of immunity (2, 3). Thus, the identification and characteri-
zation of BCEs is a fundamental step in the development of 
vaccines, therapeutic antibodies, and other immunodiagnostic 
tools (4–7). Today, interest in epitope-based antibodies in bio-
pharmaceutical research and development is rising due to their 
selectivity, biosafety, tolerability, and high efficacy.

B-cell epitopes are broadly classified into two categories: con-
tinuous/linear and discontinuous/conformational. Continuous/
linear BCEs comprise linear stretches of residues in the anti-
gen protein sequence, while the discontinuous/conformational 
BCEs comprise residues placed far apart in the antigen protein 
sequence, which are brought together in three-dimensional 
space through folding (8, 9). Experimental methods to identify 
BCEs include X-ray crystallography, cryo-EM, nuclear mag ne-
tic resonance, hydrogen–deuterium exchange coupled to mass 
spectroscopy, peptide-based approaches, mutagenesis, and 
antigen fragmentation (5, 10). However, these methods could be 
expensive and time-consuming. Therefore, new sequence-based 
computational methods need to be developed for rapid identi-
fication of potential BCEs. To this end, several computational 
methods based on machine learning (ML) algorithms have 
been developed to predict linear BCEs. These methods can be 
classified into local and global methods. Local methods such as 
Bcepred (11), BepiPred (12), and COBEpro (13) classify each 
residue as a BCE or non-BCE in a given protein sequence; global 
methods such as ABCpred (14), SVMTriP (15), IgPred (16), 
and LBtope (17) predict whether a given peptide is a BCE or 
non-BCE. Among global methods, LBtope is the most recently 
developed one and is also publicly available.

Although global prediction methods for linear BCEs have 
contributed to some development in this field, further studies are 
needed for the following reasons. (i) With the rapidly increasing 
number of BCEs in the Immune Epitope Database (IEDB) (18, 19),  
developing more accurate prediction methods using non-
redundant (nr) benchmark data sets remain an important and 
urgent task. (ii) Most of the existing methods use random pep-
tides as negative data sets. Experimentally determined negative 
data sets are necessary for developing efficient methods. Thus, 
better methods that use ML algorithms based on high-quality 
benchmarking data sets are necessary to accurately predict BCEs.

In this study, we constructed an nr data set of experimentally 
validated BCEs and non-BCEs from the IEDB and excluded 
sequences that showed more than 70% sequence similarity to avoid 
performance bias. We investigated six different ML algorithms 
[support vector machine (SVM), random forest (RF), extremely 
randomized tree (ERT), AdaBoost (AB), gradient boosting (GB), 
and k-nearest neighbors (k-NN)], five compositions [amino 
acid composition (AAC), amino acid index (AAI), dipeptide 
composition (DPC), chain-transition-distribution (CTD), and 
physicochemical properties (PCP)], 23 hybrid features (dif-
ferent combinations of the five compositions), and six binary 
profiles (BPF). We propose a novel ensemble approach, called 
iBCE-EL for predicting BCEs. The ensemble approach combines 
two different ML classifiers (ERT and GB) and uses the average 
predicted probabilities to make a final prediction. Furthermore, 
iBCE-EL achieved a significantly better overall performance on 

benchmarking and independent data sets and was capable of 
more accurate prediction than state-of-the-art predictor.

MAteRIALs ANd Methods

Construction of Benchmarking and 
Independent data sets
To build an ML model, an experimentally well-characterized data 
set is required. Therefore, we extracted a set of linear peptides 
from IEDB that tested positive for immune recognition (BCEs) 
and another set that tested negative (non-BCEs) (18, 19). Less 
than 1% of the peptides had lower than 5 or greater than 25 amino 
acid residues. We excluded these peptides from our data set 
because including them may result in outliers during prediction 
model development.

As mentioned in IEDB, one of the following seven differ-
ent B-cell experimental assays (Qualitative binding, decreased 
disease, neutralization, disassociation constant KD, antibody-
dependent cellular cytotoxicity, off rate, and on rate) are used to 
determine whether a peptide belongs to a positive or negative set 
of epitopes. Indeed, all this assay information is clearly specified 
for each peptide in IEDB (sixth column of the following link: 
http://www.iedb.org/bcelldetails_v3.php). It is worth mention-
ing that the criteria for categorizing positive and negative data set 
are the same as the one used in the recent study (12). To generate 
high confidence in our data set, we carefully examined each 
peptide assay information and considered as positive only when 
it has been confirmed as positive in two or more separate B-cell 
experiments. Similarly, peptides shown as negative in two or 
more separate experiment and never observed as positive in any 
of the above assays were considered as negative ones. To avoid 
potential bias and over-fitting in the prediction model devel-
opment, sequence clustering and homology reduction using 
CD-HIT were performed, thus removing sequence redundancy 
from the retrieved data set. Based on the design of previous 
studies (20, 21), pairs of sequences that showed a sequence 
identity greater than 70% were excluded, thus obtaining an nr 
data set of 5,550 BCEs and 6,893 non-BCEs. Furthermore, each 
peptide present in our nr data set was mapped onto the original 
protein sequence, thus confirming the nature of linear epitopes. 
From this nr data set, 80% of the data was randomly selected as 
the benchmarking data set (4,440 BCEs and 5,485 non-BCEs) 
for development of a prediction model and the remaining 20% 
was used as the independent data set (1,110 BCEs and 1,408 
non-BCEs).

Feature Representation of Peptides
A peptide sequence (P) can be represented as:

 P p p p p= ...1 2 3 N (1)

where p1, p2, and p3, respectively, denotes the first, second, and 
third residues in the peptide P, and so forth. N denotes the pep-
tide length. It should be noted that the residue pi is an element 
of the standard amino acid {A, C, D, E, F, G, H, I, K, L, M, N, P, 
Q, R, S, T, V, W, Y}. To train a ML model, we formulated diverse-
length peptides as fixed-length feature vectors. We exploited five 
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different compositions and BPF that cover different aspects of 
sequence information as described below:

 (i) AAC

Amino acid composition is the percentage of standard 
amino acids; it has a fixed length of 20 features. AAC can be 
formulated as follows:

 AAC P f f f f( ) = ( , , ,……, )1 2 3 20  (2)

where f R i1 = = i

N
( , ,…, )1 2 20  is the percentage of composition of 

amino acid type i, Ri is the number of type I appearing in the 
peptide, while N is the peptide length.

 (ii) DPC

Dipeptide composition is the rate of dipeptides normalized by 
all possible dipeptide combinations; it has a fixed length of 400 
features. DPC can be formulated as follows:

 DPC P f f f f( ) = ( , , ,……, )1 2 3 400  (3)

where f R
N

ii
1 400= = , ,…,( )1 2  is the percentage of composition 

of dipeptide type i, Ri is the number of type i appearing in the 
peptide, while N is the peptide length.

 (iii) CTD

Chain-transition-distribution was introduced by Dubchak 
et  al. (22) for predicting protein-folding classes. It has been 
widely applied in various classification problems. A detailed 
description of computing CTD features was presented in our 
previous study (23). Briefly, standard amino acids (20) are 
classified into three different groups: polar, neutral, and hydro-
phobic. Composition (C) consists of percentage composition 
values from these three groups for a target peptide. Transition 
(T) consists of percentage frequency of a polar followed by a 
neutral residue, or that of a neutral followed by a polar residue. 
This group may also contain a polar followed by a hydro-
phobic residue or a hydrophobic followed by a polar residue. 
Distribution (D) consists of five values for each of the three 
groups. It measures the percentage of the length of the target 
sequence within which 25, 50, 75, and 100% of the amino acids 
of a specific property are located. CTD generates 21 features 
for each PCP; hence, seven different PCPs (hydrophobicity, 
polarizability, normalized van der Waals volume, secondary 
structure, polarity, charge, and solvent accessibility) yields a 
total of 147 features.

 (iv) AAI

The AAindex database has a variety of physiochemical and 
biochemical properties of amino acids (24). However, utilizing all 
this information as input features for the ML algorithm may affect 
the model performance due to redundancy. Therefore, Saha et al. 
(25) classified these amino acid indices into eight clusters by fuzzy 
clustering method, and the central indices of each cluster were 
considered as high-quality amino acid indices. The accession 
numbers of the eight amino acid indices in the AAindex database 
are BLAM930101, BIOV880101, MAXF760101, TSAJ990101, 
NAKH920108, CEDJ970104, LIFS790101, and MIYS990104. 

These high-quality indices encode as 160-dimensional vectors 
from the target peptide sequence. Furthermore, the average of 
eight high-quality amino acid indices (i.e., a 20-dimensional vec-
tor) was used as an additional input feature. As our preliminary 
analysis indicated that both feature sets (160 and 20) produced 
similar results, we employed the 20-dimensional vector to save 
computational time.

 (v) PCP

Amino acids can be grouped based on their PCP, and this 
has been used to study protein sequence profiles, folding, and 
functions (26). The PCP computed from the target peptide 
sequence included (i) hydrophobic residues (i.e., F, I, W, L, V, 
M, Y, C, A), (ii) hydrophilic residues (i.e., S, Q, T, R, K, N, D, 
E), (iii) neutral residues (i.e., H,G, P); (iv) positively charged 
residues (i.e., K, H, R); (v) negatively charged residues (i.e., D, E), 
(vi) fraction of turn-forming residues [i.e., (N + G + P + S)/n, 
where n = sequence length], (vii) absolute charge per residue (i.e., 
R K D E

n
+ − −

− .0 03 ), (viii) molecular weight, and (ix) aliphatic 

index [i.e., (A + 2.9V + 3.9I + 3.9L)/n].

 (vi) BPF

Each amino acid type of 20 different standard amino acids is 
encoded with the following feature vector 0/1. For instance, the 
first amino acid type A is encoded as b(A) = (1, 0, 0, …., 0), the 
second amino acid type C is encoded as b(C) = (0, 1, 0,…., 0), 
and so on. Subsequently, for a given peptide sequence P, its N or 
C-terminus with length of k amino acids was encoded as:

 BPF k b p b p b pk( ) [ ( ), ( ), , ( )]= 1 2   (4)

The dimension of BPF(k) is 20 × k. Here, we considered k = 5 
and 10 both at N-terminus and C-terminus, which resulted 
BPFN5, BPFN10, BPFC5, and BPFC10. In addition to this, we 
also generated BPFN5-BPFC5 and BPFN10-BPFC10.

Performance Assessment
A brief description of ML method employed in this study is 
given in the supplementary information, whose performances 
were evaluated using the receiver operating characteristic (ROC) 
analysis and the corresponding area under the ROC curve 
(AUC). An AUC value of 0.5 is equivalent to random prediction 
and an AUC value of 1 represents perfection. ROC analysis is 
based on the true positive rate and false positive rate at various 
thresholds. Furthermore, we used sensitivity, specificity, accuracy, 
and Matthews correlation coefficient (MCC) to assess prediction 
quality, which were defined as:

 

Sensitivity
TP FN

Specificity TN
TN FP

Accuracy TP TN
TP TN

=
+

=
+

=
+

+ +

TP

FFP FN

MCC TP TN-FP FN
TP FP TP FN TN FP TN FN

+

=
× ×

( + )( + )( + )( + )  

(5)
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FIGURe 1 | Overall framework of the proposed predictor. iBCE-EL development involved the following steps: (1) dataset curation, (2) feature extraction,  
(3) exploration of six different ML algorithms and selection of an appropriate algorithm and the corresponding features, and (4) construction of ensemble model.
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where TP is the number of true positives, i.e., BCEs classified 
correctly as BCEs, and TN is the number of true negatives,  
i.e., non-BCEs classified correctly as non-BCEs. FP is the number 
of false positives, i.e., BCEs classified incorrectly as non-BCEs, 
and FN is the number of false negatives, i.e., non-BCEs classified 
incorrectly as BCEs.

Cross-Validation
In this study, we adopted the 5-fold cross-validation method, 
where benchmarking data set is randomly divided into five 
parts, from which four parts were used for training, and the 
fifth part was used for testing. This process was repeated until 
all the parts were used at least once as a test set, and the overall 
performance with all five parts was evaluated.

ResULts

Methodology overview
Figure  1 shows a flowchart illustrating the methodology of 
iBCE-EL, which comprises four stages: (1) construction of an nr 
benchmarking data set of 9,925 peptides (4,440 BCEs and 5,485 
non-BCEs) and an independent data set of 2,518 peptides (1,110 
BCEs and 1,408 non-BCEs) from IEDB; (2) extraction of various 
features from peptide sequences, including AAC, AAI, CTD, DPC, 
and PCP, and generation of hybrid features (various combinations 
of individual compositions); (3) exploration of six different ML 
algorithms and selection of the appropriate ones and their cor-
responding features; and (4) construction of an ensemble model.

Compositional and Positional Information 
Analysis
Prior to the development of the ML-based prediction model, 
we performed compositional analysis using combined data  
set (i.e., benchmarking and independent) to understand the 
nature of the preference of amino acid residues in BCEs and  
non-BCEs. AAC analysis showed that Asn (N), Asp (D), Pro 
(P), and Tyr (Y) were predominant in BCEs (Figure  2A). 
However, Ala (A), Glu (E), Leu (L), Val (V), and Met (M) were 
predominant in non-BCEs (Welch’s t-test; P  ≤  0.05). DPC 
analysis showed that 32.25% of dipeptides differed significantly 
between BCEs and non-BCEs (Welch’s t-test; P  ≤  0.05). Of 
these, the 10 most abundant dipeptides in BCEs and non-BCEs 
were PP, SP, NK, NN, PN, NP, KY, QP, PY, and DP and LA, LT, 
KE, LL, VL, LQ, GL, AL, LE, and LS, respectively (Figure 2B). 
These results suggested that the most abundant dipeptides in 
BCEs were mostly pairs of aromatic–aromatic residues or a 
positively or negatively charged residue paired with proline. 
The most abundant dipeptides in non-BCEs were aliphatic-
aliphatic residues with hydroxyl group and aliphatic–aromatic 
amino acids. Overall, the differences observed in compositional 
analyses (AAC and DPC) can be used as an input feature for ML 
algorithms, where it can capture hidden relationships between 
features allowing a better classification. Therefore, we consid-
ered them as input features.

To better understand the positional information of each 
residue, sequence logos of the first 10 residues from the N- and 
C-terminals of BCEs and non-BCEs were generated using two 
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FIGURe 2 | Compositional and positional preference analysis. (A) and (B) respectively represent the amino acid and dipeptide preferences of BCEs and non-BCEs. 
(B) Shows significant differences in top 30 dipeptides. (C,d) Represent positional conservation of 10 residues at the N- and C-terminals, respectively, between 
BCEs and non-BCEs, generated using two sample logos. In (A,B), error bar is the SE that indicates the reliability of the mean. A smaller SE indicates that the 
sample mean is more accurate reflection of the actual population mean.
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sample logos (http://www.twosamplelogo.org). To test their 
statistical significance, the height of the peptide logos was scaled 
(t-test; P < 0.05). As shown in Figure 2C, at the N-terminal, Pro 
(P) at positions 2, 3, 4, and 6–10; Asn (N) at positions 2–8 and 
10; Asp (D) at positions 1, 2, 8, and 10; and Tyr (Y) at positions 
4, 5, 8, and 9 were significantly overrepresented, compared with 
other amino acids, while Leu (L) at positions 1, 2, 5, and 7–10; 
Ala (A) at positions 2, 3, and 6–9; Met (M) at positions 3, 6, 7, 
and 9; and Cys (C) at positions 4, 5, and 9 were significantly 
underrepresented. As shown in Figure  2D, at the C-terminal, 
Pro (P) at positions 1–7 and 10; Asn (N) at positions 1, 2, 5–7, 
and 9; Asp (D) at positions 3, 4, 6, and 7; and Tyr (Y) at positions 
1, 3, 4, and 6–10 were significantly overrepresented, compared 
with other amino acids, while Leu (L) at positions 1, 2, and 5–8; 
Ala (A) at positions 3, 4, 7, and 8; Glu (E) at positions 1, 9, and 
10; and Met (M) at positions 2, 7, 8, and 10 were significantly 
underrepresented. Notably, the predominant amino acids in the 
non-BCEs (particularly Leu, Val, and Met) were expected to be 
inside the proteins and if exist on the surface were likely to be 
present on the protein–protein interfaces. Conversely, the amino 
acids enriched in BCEs were mostly expected to be present on 
the protein surface. Overall, these results showed that BCEs and 
non-BCEs have contrasting amino acid preferences, which is 
consistent with the compositional analysis. Furthermore, posi-
tional preference analysis will be useful for researchers to design 
de novo BCEs by substituting amino acids at the specific position 
for increasing peptide efficacy. Interestingly, the properties of 

linear epitopes described here based on our data set are different 
from conformational epitopes (27), which is mainly due to the 
local arrangement of amino acids.

Construction of Prediction Models Using 
six different ML Algorithms
In this study, we explored six different ML algorithms, including 
SVM, RF, ERT, GB, AB, and k-NN, using five different encoding 
schemes (AAC, AAI, CTD, DPC, and PCP) and their combina-
tions (17 hybrid features), which included H1 (AAC + AAI); H2 
(AAC +  DPC +  AAI); H3 (AAC +  DPC +  AAI +  CTD); H4  
(AAC  +  DPC  +  AAI  +  CTD  +  PCP); H5 (AAC  +  DPC); 
H6 (AAC  +  CTD); H7 (AAC  +  PCP); H8 (AAI  +  DPC); H9 
(AAI + DPC + CTD); H10 (AAI + DPC + CTD + PCP); H11 
(AAI  +  CTD); H12 (AAI  +  PCP); H13 (DPC  +  CTD); H14 
(DPC + CTD + PCP); H15 (DPC + PCP); H16 (CTD + DPC); 
and H17 (AAC + AAI + PCP). Furthermore, we used six fea-
tures set based on binary profiles, including BPFN5, BPFC5, 
BPFN5 + BPFC5, BPFN10, BPFC10, and BPFN10 + BPFC10. For 
each feature set, we used six different ML algorithms as inputs 
and optimized their corresponding ML parameters (Table S1 in 
Supplementary Material) using 5-fold cross-validation on the 
benchmarking data set. We repeated 5-fold cross-validation 10 
times by randomly portioning the benchmarking data set and 
considering median ML parameters and average performance 
measures. The average performances of these six methods in 
terms of MCC is shown in Figure 3. RF, ERT, and GB performed 
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FIGURe 3 | Performance of six different ML-based classifiers. Performance of various classifiers in distinguishing between B-cell epitopes (BCEs) and non-BCEs.  
A total of 27 classifiers were evaluated using 10 independent 5-fold cross-validation techniques, and their average performances in terms of AUC is shown. The final 
selected model for each ML-based method is shown with arrows. Abbreviations: AAC, amino acid composition; DPC, dipeptide composition; CTD, chain-transition-
distribution; AAI, amino acid index; PCP, physicochemical properties; H1: AAC + AAI; H2: AAC + DPC + AAI; H3: AAC + DPC + AAI + CTD; H4: 
AAC + DPC + AAI + CTD + PCP; H5: AAC + DPC; H6: AAC + CTD; H7: AAC + PCP; H8: AAI + DPC; H9: AAI + DPC + CTD; H10: AAI + DPC + CTD + PCP; 
H11: AAI + CTD; H12: AAI + PCP; H13: DPC + CTD; H14: DPC + CTD + PCP; H15: DPC + PCP; H16: CTD + DPC; H17: AAC + AAI + PCP; N5: BPFN5;  
C5: BPFC5; N5C5: BPFN5 + BPFC5; N10: BPFN10; C10: BPFC10; and N10C10: BPFN10 + BPFC10.
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consistently better than other ML-based methods (SVM, AB, and 
k-NN), regardless of the input features, indicating that decision 
tree-based methods are better suited for BCE prediction. Next, 
we investigated the features that produced the best performance 
for each ML algorithm. We found that SVM and k-NN performed 
best when using N10C10 binary profile as input feature; ERT, RF, 
GB, and AB performed best when H7, H12, H15, and PCP were 
used as input features, respectively. This analysis showed that the 
use of PCP-containing hybrid features as inputs could improve 
the performance of the ML method. Among the 6 ML methods, 
surprisingly, RF, ERT, and GB showed similar performances with 
MCC of 0.437, 0.443, and 0.426, respectively, which was signifi-
cantly better than MCC of other 3 ML methods (SVM: 0.287, AB: 
0.398, and k-NN: 0.221).

Construction of iBCe-eL
An ensemble model (EM) refers to a combination of several 
pre diction models to make the final prediction (28). The major 
advantage of EMs over single models is the reported increase 
in robust  ness and accuracy (29). Here, we generated six ensemble  
models by combining different ML-based models, EM1 (GB +   
ERT); EM2 (GB + ERT + RF); EM3 (GB + ERT + RF + SVM); 
EM4 (GB  +  ERT  +  RF  +  SVM  +  AB); EM5 (GB  +  ERT  +   
RF +  SVM + AB + NN); and EM6 (GB +  SVM + ERT). EM 

was cal cu lated as follows: EM =
=

1
1n
Pii

n∑ , where n is the number of  

ML-based models and P is the predicted probability value. 
Notably, we optimized the probability cut-off values (P) with 
respect to MCC using the grid search to define the class (BCEs 
or non-BCEs), which is a quite common approach and has been 

applied in various methods (30, 31). A model that produced the 
highest MCC was considered as the optimal one for each ensemble 
model. Surprisingly, all these ensemble models showed similar 
performances (Figure S1A in Supplementary Material) and hence 
it seems difficult to pick the best one. However, we checked its 
transferability on an independent data set and selected a model 
that showed consistent performance both on benchmarking and 
independent data sets (Figure S1B in Supplementary Material). 
According to this criterion, EM1 was selected as the best model 
and was labeled as iBCE-EL. To compare the performance of 
iBCE-EL with other ML-based models developed in this study, 
same optimization procedure was applied (Figure 4). Our results 
showed that iBCE-EL, RF, ERT, GB, AB, SVM, and k-NN pro-
duced the highest MCC with an optimal cut-off of 0.35, 0.47, 0.45, 
0.26, 0.50, 0.41, and 0.41, respectively.

Performance of Various Methods on 
Benchmarking data set
We compared the performance of iBCE-EL with that of the other 
6 ML-based methods (RF, ERT, SVM, GB, AB, and k-NN). The 
results are shown in Table  1, where the methods are ranked 
according to the MCC associated with predictive capability. iBCE-
EL had the highest MCC, accuracy, and AUC of 0.454, 0.729, 
and 0.782, respectively. Interestingly, MCC, accuracy, and AUC 
of iBCE-EL were 0.8–15.9, 0.4–9.5, and 0.6–21.9% higher than 
those of the other six ML-based methods (RF, ERT, SVM, GB, AB, 
and k-NN). McNemar’s Chi-square test (32) was used to evaluate 
the statistical significance of the differences in the performances 
of methods. At a P-value threshold of 0.05, iBCE-EL significantly 
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FIGURe 4 | Optimization of probability value threshold. The x- and y-axes, 
respectively, represent the probability value threshold and Matthews 
correlation coefficient. The optimal value selected for each method is  
shown with a circle.

tABLe 1 | Performance comparison of iBCE-EL with other ML-based methods on the benchmarking data set.

Method Matthews correlation coefficient (MCC) Accuracy sensitivity specificity AUC P-value

iBCE-EL 0.454 0.729 0.716 0.739 0.782 –
GB 0.446 0.725 0.712 0.735 0.773 0.051
ERT 0.437 0.718 0.734 0.705 0.776 0.205
RF 0.434 0.718 0.717 0.719 0.770 0.051
AB 0.396 0.702 0.662 0.722 0.737 1.2e−16
k-NN 0.301 0.644 0.715 0.591 0.691 1.1e−9
SVM 0.295 0.634 0.634 0.602 0.696 <2.2e−16
LBtope 0.330 0.667 0.660 0.672 0.730 –

The first column represents the methods developed in this study. The columns 2–6 respectively represent the MCC, accuracy, sensitivity, specificity, and AUC value. The last column 
represents McNemar’s Chi-squared test was used to evaluate the performance between iBCE-EL and other methods. A P value <0.05 was considered to indicate a statistically 
significant difference between iBCE-EL and the selected method (shown in bold). For comparison, we have also included LBtope (LBtope_variable_nr) cross-validation performance 
on non-redundant data set.

tABLe 2 | Performance comparison of the iBCE-EL with other methods on independent data set.

Method Matthews correlation coefficient (MCC) Accuracy sensitivity specificity AUC P-value

iBCE-EL 0.463 0.732 0.742 0.724 0.789 –
GB 0.445 0.727 0.717 0.734 0.776 0.596
RF 0.434 0.718 0.718 0.718 0.777 0.839
ERT 0.440 0.719 0.742 0.703 0.780 0.476
AB 0.385 0.697 0.660 0.725 0.742 2.4e−05
LBtope 0.328 0.652 0.759 0.567 0.781 7.4e−06
k-NN 0.275 0.615 0.787 0.479 0.685 4.9e−05
SVM 0.269 0.624 0.721 0.548 0.694 1.4e−05

The first column represents the method employed in this study. The columns 2–6, respectively, represent the MCC, accuracy, sensitivity, specificity, and AUC value. The last  
column represents McNemar’s Chi-squared test was used to evaluate the performance between iBCE-EL and other methods. A P value <0.05 was considered to indicate a 
statistically significant difference between iBCE-EL and the selected method (shown in bold). LBtope (LBtope_variable_nr) used SVM threshold of −0.1 to define the class as 
reported in Ref. (17).
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outperformed SVM, k-NN, and AB and performed better than 
RF, ERT, and GB, thus indicating the superiority of iBCE-EL. 
To the best of our knowledge, iBCE-EL is the first ensemble 
approach for BCE prediction. For comparison, we also included 

LBtope (LBtope_variable_nr) cross-validation performance on 
an nr data set published previously (17). Although four variants 
are available for LBtope (LBtope_variable, LBtope_confirm, 
LBtope_variable_nr and LBtope_nr), LBtope_variable_nr is the 
only model that was developed using nr data set with variable 
length. Hence, we included only this model for comparison and 
evaluation. The accuracy, AUC, and MCC of iBCE-EL were 
higher than those of LBtope by ~6, 12.4, and 5.2%, respectively. 
To assess generalization and practical applicability of these  
models, we evaluated them using independent data set and 
compared their performances.

Performance of Various Methods on 
Independent data set
By comparing the newly developed method with existing algo-
rithms on the same data set, we could estimate the percentage of 
improvement. We compared the performance of iBCE-EL with 
those of LBtope and six other ML-based models. As shown in 
Table  2, iBCE-EL showed MCC, accuracy, and AUC of 0.463, 
0.732, and 0.789, respectively. Indeed, the MCC, accuracy, and 
AUC of iBCE-EL were ~2.0–19.4, ~0.5–11.7, and ~1.0–10.4% 
higher than those of the other methods, thus indicating the 
superiority of iBCE-EL.

At a P-value threshold of 0.05, iBCE-EL significantly outper-
formed SVM, AB, k-NN and LBtope, and performed better than 
ERT, RF and GB, thus indicating that our approach is indeed 
a significant improvement over the pioneering approaches 
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FIGURe 5 | Receiver operating characteristic curves of the various prediction models. Results of 5-fold cross-validation on (A) a benchmarking data set and  
(B) independent data set.
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in predicting linear BCEs. Interestingly, iBCE-EL performed 
consistently in both benchmarking and independent data sets 
(Figure 5) among the methods developed in this study suggesting 
its suitability for BCE prediction, despite the complexity of the 
problem. We made significant efforts to curate a large nr data 
set, explore various ML algorithms, and select an appropriate one 
for constructing an ensemble model thus resulting in consistent 
performance.

Comparison of iBCe-eL With LBtope 
Methodology
We compared our method and LBtope (LBtope_variable_nr) 
in terms of algorithm characteristics. Since the variation in 
the number of B-cell experiments were considered to classify 
the peptides (positive or negative), LBtope used ~2-fold larger 
benchmarking data set than iBCE-EL. Moreover, we tested for 
significant differences in the data set using positional informa-
tion analysis. However, we did not observe any significant differ-
ences between these two methods (Figure S2 in Supplementary 
Material). The choice of ML algorithm is different between these 
two methods, i.e., SVM used in LBtope, however, a combina-
tion of ERT and GB (ensemble model) were used in iBCE-EL. 
Interestingly, three features such as AAC, PCP, and DPC provide 
the most discriminative power for identifying BCEs; however, 
only DPC was used in LBtope.

Web server Implementation
Prediction methodologies available as web servers will be helpful 
for experimentalists, and several web servers for protein func-
tion predictions have been reported (23, 33–38). A web server 
has been developed to implement the iBCE-EL method and 
made publicly accessible at www.thegleelab.org/iBCE-EL for the 
use of the wider research community. Python, JAVA script, and 

HTML languages were employed to construct the web server. 
Users can submit amino acid sequences in the FASTA format. 
The output of the web server contains the class and predicted 
BCE probability values. The data set used in this study can also 
be downloaded from the iBCE-EL web server.

dIsCUssIoN

Computational identification of BCEs is one of the hot research 
topics in bioinformatics. An increasing number of experi-
mentally validated BCEs is growing exponentially in IEDB, 
where most BCEs are found to be derived from protein sequen-
ces. To identify BCEs from a given protein sequence, experi-
mental methods seem to be time-consuming, highly expensive, 
and complex to be utilized in a high-throughput manner.  
Therefore, recent efforts have focused on the development of 
computational methods to accelerate the identification of BCEs 
(12–15, 17, 39–46). Most existing BCE prediction methods 
were developed using very small data sets, with negative ones 
derived from randomly chosen peptides that are not experi-
mentally validated (13–15, 17, 40, 42). This practice is quite 
common in other peptide-based prediction methods, including 
those for anticancer, antifungal, and cell-penetrating peptides  
(30, 47, 48). Among existing methods, LBtope is the latest 
publicly available tool with three different prediction models 
(17). It was developed using an nr data set that produced an 
accuracy of 66.7%, which is far from satisfactory. Hence, a novel 
method with better accuracy is necessitated. In this study, we 
developed a novel software called iBCE-EL, which allowed us 
to predict BCEs from a given primary peptide sequence based 
on the features derived from a set of experimentally validated 
BCEs and non-BCEs.

To the best of our knowledge, the data set we utilized was the 
most stringent redundancy-reduced data set with variable length 
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of epitopes (12–25 amino acid residues). Recent studies demon-
strated that BCEs with shorter lengths (7–12 amino acids) bind 
antibodies poorly (49). Therefore, such shorter peptides were not 
considered in our data set. In general, models developed using 
such high-quality data sets would have a wide range of applica-
tions in modern biology (50). Before developing the prediction 
model, we analyzed our data set to understand the compositional 
and positional preferences of BCEs and non-BCEs. We found 
that Pro and Asn were highly abundant in BCEs, compared to 
non-BCEs. These observations were consistent with the results 
of previous reports, where immunoglobulin binding antigenic 
regions were found to be rich in Pro/Gly (51, 52) residues. Future 
studies should focus on the experimental validation of the bio-
logical significance of various dipeptides we found to be involved 
in B-cell induction.

It is essential to explore different ML algorithms using the 
same data set and then select the best one, instead of arbitrarily 
selecting an ML algorithm (47, 53–58). We explored six differ-
ent ML algorithms (SVM, RF, ERT, AB, GB, and k-NN) and 23 
different features encoding schemes for classifying BCEs and 
non-BCEs. All the features and ML algorithms used in this 
study have been successfully applied in various sequence-based 
classification methods (53–55, 59–61); however, only SVM and 
DPC were used in LBtope (17). To the best of our knowledge, 
this is the first study to evaluate several ML algorithms for 
BCE prediction. Our systematic evaluation of features and 
ML algorithms revealed that RF, ERT, and GB showed similar 
performances, respectively, with a combination of PCP and 
AAI, a combination of PCP and AAC, and a combination of 
DPC and PCP as input features. Subsequently, we constructed 
an ensemble method called iBCE-EL by fusing ERT and GB. 
iBCE-EL performed better than individual component clas-
sifiers. The ensemble approach has been successfully applied 
for various problems, including signal peptide prediction (62), 
membrane protein type classification (63), protein subcellular 
location (64), and DNase I hypersensitive site prediction (65). 
However, this is the first instance where this approach has 
been utilized for BCE prediction. iBCE-EL performed signifi-
cantly better than the existing method and six other methods 
developed in this study, when objectively evaluated on an 
independent data set. Interestingly, the performance of iBCE-
EL was consistent on both benchmarking and independent 
data sets, thus indicating its ability to classify unseen peptides 
well when compared to other methods. The superior perfor-
mance of iBCE-EL was primarily due to the larger size of the 
benchmarking data set, rigorous optimization procedures to 
select the final ML parameters, and the choice of ML methods 
to construct the ensemble model. Future studies should focus 
on identifying novel features that can be combined with the 
current feature set to further improve prediction performance. 
Furthermore, we expect that our proposed algorithm could 
also be applied to other fields of peptide or protein function 
prediction. Several authors still query whether BCE could be 
considered as a discrete feature of a protein molecule or not. 
Indeed, van Regenmortel suggests that an epitope is not an 

intrinsic feature of a protein molecule, but is a relational entity 
that can be defined only by its ability to react with the paratope 
of an antibody molecule (6, 27, 43, 49, 66).

In conclusion, we proposed a novel ensemble method called 
iBCE-EL to classify a given primary peptide sequence as BCE or 
non-BCE. The essential component of this study is the generation 
of high-quality data sets with several manually curated BCEs and 
non-BCEs. iBCE-EL showed consistent performance with both 
benchmarking and independent data sets, thus indicating its 
effectiveness and robustness. We have also created a user-friendly 
web interface, allowing researchers to use our prediction method. 
iBCE-EL is the second publicly available method for predicting 
BCEs, and its accuracy is remarkably higher than that of currently 
available methods. We anticipate that iBCE-EL will become a 
very useful tool for BCE prediction.
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FIGURe s1 | Optimization of probability value threshold. The x- and y-axes, 
respectively, represent the probability value threshold and MCC. The optimal 
value selected for each method is shown with a circle. (A) A benchmarking  
data set and (B) independent data set.

FIGURe s2 | Comparison of position preference analysis using iBCE-EL and 
LBtope data set. (A,B) Represent positional conservation of 10 residues at N- 
and C-terminal, respectively, using iBCE-EL data set. (C,d) Represent positional 
conservation of 10 residues at N- and C-terminal, respectively, using LBtope 
data set.
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