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Unrestricted cell proliferation is a hallmark of cancer. Purines are basic components of 
nucleotides in cell proliferation, thus impaired purine metabolism is associated with the 
progression of cancer. The de novo biosynthesis of purine depends on six enzymes to 
catalyze the conversion of phosphoribosylpyrophosphate to inosine 5′-monophosphate.  
These enzymes cluster around mitochondria and microtubules to form purinosome, 
which is a multi-enzyme complex involved in de novo purine biosynthesis and purine 
nucleotides requirement. In this review, we highlighted the purine metabolism and 
purinosome biology with emphasis on the therapeutic potential of manipulating of 
purine metabolism or purinosome in cancers. We also reviewed current advances in our 
understanding of mammalian target of rapamycin for regulating purinosome formation 
or purine metabolism in cancers and discussed the future prospects for targeting puri-
nosome to treat cancers.
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iNTRODUCTiON

Normal cells undergo a series of highly regulated physiological responses to provide necessary 
substrates for the basic cellular processes, while cancer cells are involved in a complex metabolic 
rearrangement characterized by an increase in energy production and biosynthetic processes to 
sustain cell growth and proliferation (1–8). Purines are the most abundant metabolic substrates 
for all living organisms by providing essential components for DNA and RNA. Besides as build-
ing blocks for DNA and RNA, purines provide the necessary energy and cofactors to promote 
cell survival and proliferation. Thus, purines and their derivatives widely participate in biological 
processes, including immune responses and host–tumor interaction (9). Notably, high concentra-
tions of purine metabolites have been indicated in tumor cells, and this discovery favors to the 
development of the earliest antitumor drugs (purine antimetabolites) to treat cancers by blocking 
DNA synthesis and halting cell growth. Purinosome has been recently identified within purine 
metabolism, and the formation of purinosome is closely related to the cell cycle (10, 11). These 
results provide a novel therapeutic strategy for cancers by targeting purinosome formation and 
purine metabolism.

Abbreviations: mTOR, mammalian target of rapamycin; HPRT, hypoxanthine-guanine phosphoribosyltransferase; APRT, 
adenine phosphoribosyltransferase; PRPP, phosphoribosylpyrophosphate; IMP, inosine monophosphate; GMP, guanine 
monophosphate; PNP, purine nucleoside phosphorylase; XO, xanthine-oxidase; THF, tetrahydrofolate; FDA, Food and Drug 
Administration; GPCRs, G protein-coupled receptors; Hsp90, Heat shock protein 90; NSCLC, non-small-cell lung cancer.
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FigURe 1 | Purine metabolism pathways. Purine metabolism includes de novo purine biosynthetic pathway, purine salvage pathway, and degradation. The de novo 
purine biosynthetic pathway uses six enzymes to catalyze the transformation of phosphoribosylpyrophosphate (PRPP) into inosine 5′-monophosphate (IMP) via 10 
highly conserved steps (orange). Purine salvage (green) recycles hypoxanthine, inosine, and adenine as substrates to generate purine nucleotides. Inosine and 
hypoxanthine can be further oxidized into xanthine and uric acid in the purine degradation pathway (blue).
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In this review, we discuss the purine metabolism, including 
the complementary salvage pathway and de novo biosynthetic 
pathway. We then discussed the purinosome with emphasis on 
purinosome formation and composition, and its interaction with 
mitochondria. We also described the potential therapeutic strate-
gies for cancers by targeting purine metabolism and purinosome, 
which may be used to reprogram cancer metabolism. Finally, the 
mechanism of mammalian target of rapamycin (mTOR) regulat-
ing the formation of purinosome is discussed.

PURiNe MeTABOLiSM

Purine metabolism maintains cellular pools of adenylate and 
guanylate via synthesis and degradation of purine nucleotides. In 
mammalian cells, purine nucleotides are synthesized in two dif-
ferent pathways: the complementary salvage pathway and de novo 
biosynthetic pathway (Figure 1). Generally, the complementary 
salvage pathway accounts for most of the cellular require-
ments for purine by recycling the degraded bases with help of 
hypoxanthine-guanine phosphoribosyltransferase (HPRT) and 
adenine phosphoribosyltransferase (Figure 1). HPRT is an Mg2

+-
dependent enzyme and recycles hypoxanthine and guanine via 
transferring phosphoribosyl group from phosphoribosylpyroph-
osphate (PRPP) to generate inosine monophosphate (IMP) and 
guanine monophosphate (GMP), respectively.

Under the conditions with higher requirement for purine 
nucleotides, such as dividing cells and tumor cells, the de novo 
biosynthetic pathway is fundamental to replenish the purine 
pool. In humans, six enzymes catalyze PRPP to form IMP in 10 
highly regulated and conserved steps. These enzymes include 
one trifunctional enzyme (TrifGART: GARS, GART, and AIRS 
domains), two bifunctional enzymes (PAICS: CAIRS and 
SAICARS domains; ATIC: AICART and IMPCH domains), and 
three monofunctional enzymes (PPAT, FGAMS, and ASL). The 
generated IMP contributes to the production of various inter-
mediates, such as AMP, GMP, adenosine, and inosine. Inosine 
is further converted to hypoxanthine by purine nucleoside 
phosphorylase (PNP), and xanthine-oxidase (XO) catalyzes 
hypoxanthine oxidation to form xanthine (12).

The de novo biosynthetic pathway is energy intensive, and 
numerous amino acid substrates and one-carbon units contribute 
to the 10-step enzymatic processes, such as glutamine, ATP, and 

formate. In this pathway, five molecules of ATP, two molecules of 
glutamine and formate, and one molecule of glycine, aspartate, 
and carbon dioxide are necessary for generation of one molecule 
of IMP (13). Therefore, these substrates play a critical role in 
purine metabolism especially in rapid proliferating cancer cells. 
Indeed, metabolic dependencies on glutamine and aspartate are 
increased to fuel anabolic processes to support cancer growth 
(14), and glycine metabolism contributes to biosynthetic 
requirement of purines, ATP, and NADPH in cancer cells (15).

PURiNOSOMe

Metabolic pathway is generally assembled with several sequen-
tial enzymes into a higher order protein structure to facilitate 
metabolic flux, and the formation of the protein complex of 
enzymes is known as metabolon (16). Metabolon has been found 
in various metabolic pathways, such as the glycosome in the 
glycolytic pathway (17). Metabolon improves the efficiency 
of metabolic pathway by increasing the local concentration of 
intermediates and metabolic substrates, decreasing the concen-
tration of enzymes needed to maintain a given flux, directing 
the products to a specific subcellular location, or minimizing the 
escape of reactive intermediates (16, 18). For example, compared 
to the effector T cells, which have more “fissed” mitochondria, 
memory T cells have more “fused” mitochondria to densely pack 
the electron transport chain complexes to form respirasomes, 
resulting in efficient transfer of electrons and minimizing proton 
leak during ATP production (19). Purine metabolism has been 
investigated for decades and there is a wide speculation that 
enzymes in the de novo purine biosynthesis are organized into a 
metabolon to maintain cellular purine pool. In 2008, purinosome 
was first confirmed in living cells through the discovery that all 
six enzymes in the de novo biosynthetic pathway are recruited to 
form punctate bodies in the cellular cytoplasm (10). The assembly 
and disassembly of purinosome can be regulated dynamically by 
cellular level of purine (10, 20), which directly activates the de 
novo purine biosynthesis (21, 22).

During cell growth or division, the de novo purine biosyn-
thesis is significantly activated to provide purine nucleotides for 
growth (G1), duplication of genetic materials (S), division (G2), 
and divide (M) (23–25). Through the time-lapse fluorescence 
microscopy assay, high percent of purinosome-positive cells 
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FigURe 2 | Purinosome formation and its interaction with mitochondria. PPAT, GART, and FGAMS constitute the core scaffolding structure of purionsome, then, 
PAICS, ADSL, and ATIC appear to interact peripherally. Assembled purionsomes are mainly localized with mitochondria and interact mutually.
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are identified in the G1 phase of cell cycle when purine demand 
is the highest (11). The requirement of purine decreases with 
progression of cells into the S and G2/M phases, which accounts 
for the drop in the relative amount of purinosome-positive cells 
throughout the cell cycle (11).

Through mapping protein–protein interactions within the 
purinosome, Deng et al. found that the first three enzymes in the 
pathway constitute the core scaffolding structure, including PPAT, 
GART, and FGAMS, whereas PAICS, ADSL, and ATIC appear 
to interact peripherally (26) (Figure 2). Deficiency or mutation 
of any enzymes within purinosome impairs purinosome forma-
tion and complex stability (27, 28). Purine supplementation or 
deficient in specific enzymes results either in a complete loss 
or a significant reduction of purinosomes (13). Various factors 
have been identified to affect purinosome function. For example, 
mitochondrial tetrahydrofolate (THF), an essential substrate for 
de novo purine synthesis, enhances purine biosynthesis by deliv-
ering 10-formyl THF to purinosome (29). Interestingly, although 
purinosome-positive cells vary from G1 to G2/M phases, the 
expressions of enzymes in the de novo purine biosynthetic path-
way are not altered throughout the cell cycle (11). Therefore, we 
anticipate that the assembly and disassembly of purinosome in 
cells are not totally governed by protein abundances.

Considering that five molecules of ATP are needed for 
generating one molecule of IMP, mitochondrial function may 
be associated with purinosome biology and de novo purine 
biosynthesis. Indeed, mitochondrial THF cycle contributes to 
non-essential amino acids and one-carbon formyl units to medi-
ate production of purine nucleotides (30). Using two-color 3D 
STORM imaging, a substantial larger fraction of purinosomes is 
localized with mitochondria rather than randomly distributed 
within the cytoplasm in purinosome-positive cells (31), indicat-
ing a high possibility of ordered distribution of purinosomes 
and mitochondria (Figure  2). This is further supported by the 
discovery that purinosome proteins (i.e., ASL and FGAMS) are 
co-precipitated with the purified mitochondria, indicating a 
potential possibility of interaction between mitochondria and 
purinosome. Mitochondria dysregulation (i.e., defect in electron 
transport or oxidative phosphorylation) enhances purinosome 
formation in cells and inhibition of purinosome formation also 
impairs mitochondrial metabolism in purine-rich conditions 
(31). Although the molecular mechanisms of the purinosome and 
mitochondria interaction still need to be uncovered, mitochon-
dria provides enough ATP, amino acid substrates, and one carbon 

formyl units for the de novo purine biosynthesis, which partially 
helps to explain the potential mechanism (13).

PURiNe MeTABOLiSM iN CANCeRS

Aberrant cell cycle with uncontrolled cell proliferation is a 
hallmark of cancers, thus targeting cell cycle has been considered 
as an attractive strategy for cancer therapy (32–38). Purines and 
enzymes for de novo purine biosynthetic pathway are enhanced 
in tumor cells because purine nucleotides are fundamental and 
necessary for tumor cell proliferation (39–42). For example, 
inosine strongly enhances proliferation of human melanoma cells 
(43), and altered ratio of adenosine to inosine has been widely 
noticed in cancer cells, affecting growth, invasiveness, and metas-
tasis (44, 45). Meanwhile, purines serve as potent modulators in 
the response of immune cells and cytokine release via various 
receptor subtypes, such as P2X ligand-gated ion channels and G 
protein-coupled P2Y receptors (46, 47), which is substantially 
involved in the development of oncogenesis and tumorigenesis 
(48–51). For example, adenosine plays a role in the regulation of 
neutrophil function and modulates the interaction of neutrophils 
with pathogens (52). Also, mutation or deficiency of adenosine 
deaminase, which is a key enzyme for purine metabolite degrada-
tion or salvage into the nucleotide pool, increases susceptibility to 
infections and autoimmunity, and adenosine deaminase activity 
has been used as a diagnostic marker for cancers (53, 54). More 
specific details about the interaction between purine metabolism 
and immune system in tumor microenvironment can be found in 
reviews by Antonioli et al. (55), Kumar (56), and Muller-Haegele 
et al. (57). Therefore, targeting purine metabolism may serve as a 
potential therapy in cancers.

Aberrant metabolisms of amino acids and one-carbon 
units for purine metabolism are also presented in cancer cells, 
which can be used to predict the subtype of cancer and disease 
progression (58). For example, glutamine is a key substrate for 
catalytic activity of PPAT and FGAMS in the purinosome and 
plays important roles in anabolic processes and physiological 
responses in cancer cells, including sustaining proliferative 
signaling, enabling replicative immortality, resisting cell death, 
and invasion and metastasis (14, 59). Moreover, other substrates 
of purine metabolism, such as glycine, aspartate, and precursor 
of one-carbon unit, have also been reported to anticipate in the 
rapid cancer cell proliferation (60–64), thus, targeting amino 
acid substrates or one-carbon unit metabolism may serve as a 
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potential therapeutic power of manipulating cell proliferation for 
treating cancers. Indeed, targeting glutamine metabolism and 
uptake in cancer cells reduces tumor weight, nodules, and metas-
tasis (65, 66). One-carbon unit also support the high proliferative 
rate of cancer cells, thus, antifolate drugs that target one-carbon 
metabolism have long been used in the treatment of cancers. For 
example, cancer cells are particularly susceptible to deprivation 
of one-carbon units by serine restriction or inhibition of de novo 
serine synthesis (67). Also, dietary starvation of serine or glycine 
reduces tumor growth and improves survival in different cancer 
models through antioxidant responses and mitochondrial oxida-
tive phosphorylation (68, 69).

Purine antimetabolites are the one of earliest developed chemo-
therapy drugs and have been widely used in the clinic to treat 
cancers (70, 71). Currently, more than 10 purine antimetabolites 
have been approved by the Food and Drug Administration for 
treatment of cancers, such as 6-mercaptopurine, 6-thioguanine, 
and methotrexate. Purine antimetabolites are chemical analogs 
sharing with similar structure to the metabolites in the purine 
metabolism and can compete to incorporate into purine nucleo-
tides and DNA during the S phase of the cell cycle to inhibit rapid 
division and proliferation (72, 73). Unfortunately, resistance of 
antimetabolites often occurs, and various genes are involved in 
the intolerance (74, 75). In addition, purine antimetabolites also 
affect the proliferation of healthy cells and thereby cause potential 
toxicity to normal cells. Therefore, it is urgent to identify new 
regulatory targets within purine metabolism, which would inhibit 
tumorigenesis without drug resistance and hurting normal cells.

Targeting purine degradation has also been used to treat cancers 
as enhanced purine degradation limits the available purines for 
nucleotides synthesis, resulting in inhibition of cell proliferation 
in cancers. For example, an intratumoral injection of adenoviral 
vector expressing E. coli PNP to accelerate inosine degradation 
shows safety and antitumor activity in the first-in-human clinical 
trial (76). Activation of XO suppresses disulfide bond formation 
of breast cancer resistance protein (77), and reactive oxygen 
species derived from XO further interrupt dimerization of breast 
cancer resistance protein (78, 79).

Considering that purinosome formation plays an important 
role in de novo purine biosynthesis, one strategy may arise by 
targeting purinosome assembly/disassembly in cancers. For 
example, G protein-coupled receptors (GPCRs) regulate a myriad 
of biological responses via multiple signaling pathways in both 
normal and cancer cells (80–82). GPCRs have also been dem-
onstrated to affect purinosome assembly/disassembly to control 
metabolic flux via de novo purine biosynthesis in human cancer 
cells (83, 84), which may contribute to the regulatory mechanism 
of GPCRs in cancers. Heat shock protein 90 (Hsp90) and Hsp70 
functionally colocalize with purinosomes (85), thus inhibitors 
of Hsp90 and Hsp70 reversibly disrupt purinosome formation, 
and have a synergistic effect with methotrexate (86) to treat 
cancers (87, 88). Most cancer cells abundantly express Hsp90/
Hsp70 (89), and its chaperone machinery in the assembly of the 
purinosome may provide a novel strategy for the development of 
advanced anticancer therapies via disrupting purine biosynthesis. 
Upregulations of specific pathway enzymes (i.e., PPAT, PAICS, 
and ATIC) in numerous cancers indicate an importance of purine 

metabolism and purinosomes in tumorigenesis (41, 90), while 
mutations of these enzymes affect purinosome assembly in cul-
tured skin fibroblasts from patients with AICA-ribosiduria and 
ADSL deficiency (27). In conclusion, disruption of purinosome 
formation is likely to mediate cell cycle and to enhance sensitivity 
to cancer chemotherapeutics (86).

mTOR-MeDiATeD-PURiNOSOMe AND 
PURiNe MeTABOLiSM iN CANCeRS

Purinosomes and mitochondria interaction may improve the 
efficiency of de novo purine biosynthesis, thus disruption in the 
purinosome juxtaposition to the mitochondria may serve as a 
novel therapeutic potential for cancers. Using human kinome 
screen, mTOR has been identified as a putative kinase network 
associated with the translation of chemical signals into purino-
some and mitochondria interaction (31). In sporadic cancers, 
mTOR activation is the result of amplification/activation muta-
tions in genes encoding upstream tumor signal transduction 
cascades or deletion/inactivation of tumor suppressors (91–93). 
In response to proliferating signal in cancer cells, mTOR acti-
vates ATF4, which stimulates the expressions of MTHFD2 and 
other enzymes for serine synthesis and THF cycle, providing 
amino acid substrates and one-carbon units required for the 
de novo purine synthesis (30). Rapamycin (a mTOR inhibitor) 
inhibits the interaction between purinosomes and mitochondria 
in a dose-dependent manner (31). Mitochondria dysregulation 
enhances the formation of purinosomes and the percentage of 
purinosome-positive cells, while these increases are abrogated 
by rapamycin (31). Meanwhile, mTOR is also suppressed by 
a de novo purine synthesis antagonist (AG2037) that reduce 
intracellular purine nucleotide pools via reducing the level of 
GTP-bound Rheb, an obligate upstream activator of mTOR com-
plex 1 (mTORC1) (94). Meanwhile, AG2037 treatment markedly 
inhibits mTORC1 activation and robust tumor growth in mice 
bearing non-small-cell lung cancer xenografts (94). These results 
confirm the mutual interaction among mTOR, mitochondria, and 
the de novo purine biosynthetic pathway, and further studies are 
needed to explore the therapeutic effects of inhibitors for purine 
biosynthesis and the underlying mechanism of mTOR-mediated 
purinosome-mitochondria localization and purine metabolism 
in cancers.

Recent work has shown that alterations of amino acid 
metabolism are common observed in cancers, and glutamine is 
an abundant and versatile nutrient that participates in the growth 
and metabolism of cancer cells (95–97). Glutamine also serves as 
a substrate of PPAT and FGAMS for catalyzing PRA and FGAM 
formation in the de novo purine biosynthesis, which may partially 
explain why glutamine is one of the most highly consumed nutri-
ent by cancer cells. mTOR also serve as a master regulator that 
senses amino acid availability to regulate cell growth in normal 
and cancer cells (98–104). For example, glutamine transporta-
tion plays a key role in controlling cellular metabolism, growth, 
and survival via mTOR signal in lung cancer and breast cancer  
(105, 106). Also, mTOR-mediated alteration of amino acid sub-
strates (glycine and aspartate) for the de novo purine biosynthesis 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigURe 3 | Mammalian target of rapamycin (mTOR)-mediated purine metabolism. In response to growth signal in cancer cells, mTOR activates ATF4, which 
upregulates enzymes of tetrahydrofolate cycle and provides one-carbon unit formate for de novo purine synthesis. mTOR also serve as a master regulator that 
senses and mediates amino acids pool, which may further regulate glutamine (Gln), glycine (Gly), and aspartate (Asp) flux into purinosomes.
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has been reported in a subset of tumors (107–109). Collectively, 
these studies suggest that mTOR is a critical regulatory signal in 
the de novo purine biosynthetic pathway by influencing purino-
some and mitochondria interaction and amino acid substrates, 
which further reprogram metabolic responses in cancer cells 
(Figure 3).

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

Purines are the scaffold substrates of nucleic acids, coenzymes, 
allosteric modulators, and energy intermediates for cells. Thus, 
purine metabolism is associated with several of biochemical 
reactions, including metabolism, cell cycle, immune function, 
and signal transduction. Recently, scientists have identified puri-
nosomes, which formed from the de novo purine biosynthesis 
enzymes to improve the efficiency of metabolic flux in the cells 
when purines are highly required. In addition to providing ATP 
for the de novo purine biosynthesis, there may be a potential 
interaction between mitochondria and purinosome, which fur-
ther accelerates purine synthesis. Several decades ago, targeting 
purine metabolism has been used to design the antimetabolite 
drugs to treat cancers, and purinosome represents a novel target 
to pharmacologically control cellular metabolism.

Although the current results are inspiring, various questions 
have been raised after the discovery and characterization of the 
purinosome. For example, purinosome-mitochondria colocali-
zation plays an important role in purine metabolism, how does 

purinosome sense and locate mitochondria? Besides mTOR-
mediated link between purinosomes and mitochondria, is there 
any other signaling events involving purinosome formation? 
Protein-coupled receptors and p38MAPK have been reported to 
activate purine metabolism to initiate cell cycle in response to 
stress (25, 83, 110), the mediatory roles of these signals in purino-
some need to be further studied.
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