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Sepsis, a life-threatening organ dysfunction, results from a dysregulated host response 
to invading pathogens that may be characterized by overwhelming systemic inflam-
mation or some sort of immune paralysis. Sepsis remains a major cause of morbidity 
and mortality. Treatment is nonspecific and relies on source control and organ support. 
Septic shock, the most severe form of sepsis is associated with the highest rate of 
mortality. Two large multicentre trials, undertaken 15 years apart, found that the com-
bination of hydrocortisone and fludrocortisone significantly reduces mortality in septic 
shock. The corticosteroids family is composed of several molecules that are usually 
characterized according to their glucocorticoid and mineralocorticoid power, relative to 
hydrocortisone. While the immune effects of glucocorticoids whether mediated or not 
by the intracellular glucocorticoid receptor have been investigated for several decades, 
it is only very recently that potential immune effects of mineralocorticoids via non-renal 
mineralocorticoid receptors have gained popularity. We reviewed the respective role of 
glucocorticoids and mineralocorticoids in counteracting sepsis-associated dysregulated 
immune systems.

Keywords: glucocorticoids, mineralocorticoids, nF-κB, animal models, clinical trials, septic shock, sepsis, organ 
function

inTRODUCTiOn

Sepsis is defined by a life-threatening organ dysfunction resulting from deregulated host response 
to invading pathogens (1). The host–pathogen interaction in sepsis is associated with an excessive 
response of the innate immune system leading to systemic inflammation and organ failure (2). 
This excessive inflammatory response coexists with compensatory anti-inflammatory signaling 
(3). An initial immune response occurs after recognition of pathogen- or damage-associated 
molecular patterns by specific cellular receptors, leading to cellular activation and systemic 
inflammation (4, 5). In practice, patients with sepsis may present with a hyperimmune response, 
typically around the time of admission when the infectious process is not fully under control, 
or with an immune suppression state, which tends to occur at a later time (3). The resolution of 
inflammation is also an active process, partly mediated by lipid mediators such as eicosanoids, 
which exhibit pro-resolving proprieties, and lead to tissue reparation (6). Then, knowing the time 
course of the immune response to sepsis is likely a key factor for the success of immunomodulatory 
interventions (7). Sepsis is a leading cause of mortality and morbidity, with annual prevalence 
of sepsis estimated at 31.5 million and the annual number of deaths at 5.3 million, worldwide  
(8, 9). The incidence of sepsis is steadily rising (10). Approximately half of sepsis survivors suffer 
from physical and psychological sequel, directly impacting their quality of life (11, 12). Treatment 
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FigURe 1 | Corticosteroids biosynthesis. Abbreviations: CYP11A1, 
cholesterol desmolase; 3β-HSD, 3β hydroxysteroid dehydrogenase;  
CYP17, steroid 17α-hydroxylase; CYP21, steroid 21-hydroxylase;  
CYP11B2, aldosterone synthase; CYP11B1, steroid 11β-hydroxylase.

TaBle 1 | Relative potencies of natural and synthetic steroids.

Compound glucocorticoid activity Mineralocorticoid activity

natural steroids
Cortisol 1 1
Corticosterone 0.3 15
Aldosterone 0.3 3,000
Deoxycorticosterone 0.2 100
Synthetic steroids
Cortisone 0.8 0.8
Fludrocortisone 10 125
Prednisone 4 0.8
Prednisolone 4 0.8
Methylprednisolone 5 0.5
Betamethasone 25 0
Dexamethasone 25 0

Glucocorticoid and mineralocorticoid activity of natural and synthetic steroids, relative 
to cortisol.
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of sepsis is based on source control and organs support (13). 
Corticosteroids are produced by the adrenal glands lying at the 
superior pole of the kidneys. Corticosteroids are synthesized 
by adrenal cortical cells from esterified cholesterol and possess 
four carbon rings. Each step of corticosteroid biosynthesis is 
controlled by a specific enzyme (Figure 1). Corticosteroids are 
divided into mineralocorticoids, which preferentially affect salt 
and water balance while glucocorticoids preferentially affect 
sugar metabolism and sex hormones. The adrenal cortex is 

divided into the zona glomerulosa, the outermost layer beneath 
the capsule, which secretes mineralocorticoids, the zona 
 fasciculata, which secretes glucocorticoids, and the innermost 
layer, the zona reticularis, which secretes sex hormones. We 
will hereafter describe the biological effects of glucocorticoids 
and mineralocorticoids, without further mentioning sex hor-
mones. Corticosteroids are commonly categorized accord-
ing to their glucocorticoid and mineralocorticoid power, 
relative to hydrocortisone (Table  1). Glucocorticoids exhibit 
immune-modulating proprieties, in part through interaction 
with NF-κB (14). Thus, glucocorticoids have been used to 
treat patients with severe infections for more than 50  years. 
Much less information is available regarding immune effects 
of mineralocorticoids, yet the combination of fludrocortisone 
to hydrocortisone significantly reduced mortality from septic 
shock (15, 16). We herein reviewed the immune effects of 
glucocorticoids and mineralocorticoids that may be relevant 
to the management of sepsis.

iMMUne-MODUlaTing eFFeCTS  
OF CORTiCOSTeROiDS

glucocorticoids
Molecular Mechanisms of Action
Glucocorticoids have anti-inflammatory effects through the 
production of anti-inflammatory proteins and inhibition of 
pro-inflammatory proteins. Glucocorticoids bind to a specific 
intracellular receptor, the glucocorticoid receptor (GR). The GR 
is a transcription factor belonging to the nuclear receptor super-
family encoded on chromosome 5q31-31 (17). Glucocorticoid-
regulated transcription factors are 94-kDa proteins, composed 
of several specific domains. A ligand-binding domain made 
up of 12 α-helices is involved in the recognition and binding 
of corticosteroids, a DNA-binding domain composed of two 
zinc fingers for interaction of the hormone–receptor complex 
with specific DNA sequences, and a trans-activating domain for 
binding of transcriptional factors (18). Unbound GR located 
in the cytoplasm of almost all cells, are stabilized by chaperone 
proteins such as heat-shock proteins 70, heat-shock protein 
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FigURe 2 | Mechanism of action of corticosteroids. Abbreviations: GR, glucocorticoid receptor; MR, mineralocorticoid receptor; HSP, heat-shock protein;  
HRE, hormonal response element.
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90 (Hsp90), and immunophilin (19). Upon binding with glu-
cocorticoids, the GR dissociates from chaperone proteins and 
translocates into the nucleus. Within the nucleus, homodimers 
of the glucocorticoid–GR complex interact with specific DNA 
sequences (glucocorticoid responsive elements) of the regula-
tory region of target genes (Figure 2). The expression of genes 
modulated by the hormone–GR complex occurs through chro-
matin remodeling (20, 21). Chromatin consists of nucleosomes; 
DNA associated with core histone proteins. Quiescent genes 
are composed of tightly wound DNA around histone proteins, 
hampering the ability of RNA polymerases to bind to DNA and 
to produce mRNA. Core histones may be acetylated, modifying 
the structure of nucleosomes, loosening the chromatin, and 
ultimately enhancing gene expression. Transcription factors 
such as NF-κB activate histone acetyltransferases (HATs), 
leading to acetylation of core histones. By contrast, histone 
deacetylases (HDACs) induce a tightening of the chromatin, 
repressing target genes expression. Activated GR inhibit HATs 
and activate HDACs, overall repressing the expression of pro-
inflammatory genes. For instance, the expression of the IRF3 
transcription factor, implicated in interferon production and 
viral protection, is downregulated by glucocorticoids (22, 23). 
The GR–glucocorticoid complex also inhibits the production of 
pro-inflammatory proteins by sequestration of NF-κB within 
the cytosol (24). NF-κB is implicated in the production of 
pro-inflammatory cytokines (25, 26). In a resting state, inactive 

NF-κB is bound to IκBα. Upon cellular activation, NF-κB and 
IκBα dissociate and NF-κB translocates into the cellular nucleus. 
Glucocorticoids increase the expression of the inhibitory pro-
tein IκBα, thereby sequestering NF-κB (27). Glucocorticoids 
also induce the expression of glucocorticoid-induced leucine 
zipper (GILZ) which inhibits NF-κB (28) as well as the anti-
inflammatory protein MAP kinase phosphatase 1, which inhibits 
nuclear translocation of transcription factor GATA-3 implicated 
in Th2 type cytokine expression (29). In addition, glucocorti-
coids promote the production of annexin 1, which inhibits the 
expression of phospholipase A2. Phospholipase A2 catabolizes 
the production of arachidonic acid-derived ele ments, including 
prostaglandins and leukotrienes, which are implicated in pain 
and inflammatory responses (26). Annexin 1 is also implicated 
in the resolution of inflammation as well as in the phagocytosis 
by macrophages of apoptotic neutrophils (25).

The genomic effects of glucocorticoids take place only after 
several hours, following nuclear translocation of activated GR 
and gene regulation (30). This latency is explained by the 
time needed for mRNA production, protein synthesis, and 
transport (31).

Effect of Glucocorticoids in Health
Glucocorticoids suppress the production of acute phase reactants 
and of chemokines implicated in leukocyte chemo-attraction 
(32, 33), thereby reducing leukocytes migration into inflamed 
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areas. Glucocorticoids suppress the expression of endothelial-
leukocyte adhesion molecule 1, intracellular adhesion molecule 
1 (ICAM-1), and vascular adhesion molecule 1 (VCAM-1) 
opposing to leukocytes trafficking through the endothelium 
(34, 35). Glucocorticoids affect both the innate and adaptive 
arms of the immune system. Target immune cells include (1) 
myeloid cells; macrophages, monocytes, dendritic cells (tissue-
resident DCs, migratory DCs, and plasmacytoid DCs), as well 
as granulocytes and (2) lymphocytes, including CD8, T helper 
1 (Th1), Th2, and Th17 as well as Treg and B cells (14). Broadly 
speaking, glucocorticoids repress the maturation, differentiation 
and proliferation of leukocytes of all subtypes.

Glucocorticoids attenuate fever by reducing monocytes and 
macrophages production of interleukin (IL)-1, TNF, IL-8, and 
MCP-1 (36). Glucocorticoids reduce the number of monocytes/
macrophages, dendritic cells, and eosinophil and basophil 
granulocytes (37). Despite reducing the number of monocytes/ 
macrophages, the capacity of glucocorticoid-treated macro-
phages for phagocytosis seems unaltered or even improved (38). 
Neutrophil granulocytes are not affected by the increased apop-
tosis induced by glucocorticoids, possibly because of the specific 
production of an inactive isoform of the GR (GR-beta) (39). 
Indeed, after treatment by glucocorticoids, the number of circu-
lating neutrophil granulocytes increases, through an increased 
release by the bone marrow associated with increased demar-
gination. However, these leukocytes may be functionally less 
efficient. Glucocorticoid-treated circulating polymorphonuclear 
leukocytes exhibit decreased levels of L-selectin receptors (40). 
Dexamethasone induces the expression by polymorphonuclear 
leukocytes of a decoy receptor for IL-1 (41). Glucocorticoids 
stabilize the lysosomal membranes, greatly reducing the amount 
of proteolytic enzymes released by lysosomes. Dendritic cells 
treated by glucocorticoids produce increased levels of the anti-
inflammatory cytokines IL-10 and TGF-β (42). Glucocorticoids 
reduce the membrane expression of MHC class II and Fc recep-
tors (43, 44) and suppress antigen presenting to T cells (45).

Activation, proliferation, and production of immunoglo-
bu lins by B cell lymphocytes are depressed by glucocorticoids  
(46, 47). They deplete thymic stroma cells and T cells by apopto-
sis (48–50). Circulating T-cell numbers are reduced with a shift 
from a pro-inflammatory Th1 phenotype to an anti-inflam-
matory Th2 phenotype (51–54). Glucocorticoids suppress the 
production by lymphocytes of the pro-inflammatory cytokines 
IL-2, IL-4, IL-5, IL-13, and INF (55, 56).

Mineralocorticoids
Molecular Mechanisms of Action
While the immune effects of glucocorticoids have been exten-
sively investigated, those of mineralocorticoids have only 
recently gained attention. The biological activity of mineralo-
corticoids is mediated by interaction with a specific intracel-
lular receptor, the mineralocorticoid receptor (MR). The MR 
is a transcription factors belonging to the nuclear receptor 
superfamily, encoded on chromosome 4, in the q31.1 region 
(57, 58). The structure of the mineralocorticoid-regulated tran-
scription factor is highly similar to that of the GR and displays 

several specific domains, including a ligand-binding domain, 
a DNA-binding domain, and a trans-activating domain. The 
amino acid sequence of the DNA-binding domain of the GR 
and MR are approximately 94% similar, indicating that these 
two receptors may recognize and bind similar DNA sequences. 
The activated MR regulates the expression of a set of genes 
within target tissues, in a similar way to that of the activated 
GR. Unbound MR are stabilized in the cytoplasm by Hsp90. 
Activated MR will shed their chaperone proteins and translo-
cate into the nucleus, form dimmers, and go on to recognize 
specific hormone recognizing elements of the DNA (Figure 2) 
(59). There is evidence that MR and GR may form functional 
heterodimers with specific properties (60, 61).

Surprisingly, cortisol and aldosterone bind the MR with equal 
affinity, indicating that the MR does not specifically recognize 
mineralocorticoids over glucocorticoids (57). However, the 
tran scriptional response of the MR in response to aldosterone 
is approximately 100-fold higher than cortisol (62). Corticosteroid 
specificity is in part due to the activity of the type 2 isoenzyme 
of the 11β-hydroxysteroid dehydrogenase (11βHSD2), found in 
the kidney and in the colon and located near the MR. 11βHSD2 
metabolizes glucocorticoids into an inactive derivative, corti-
sone. Since mineralocorticoids are unaffected by 11βHSD2 they 
are therefore able to interact with the MR (63). Therefore, the 
role of glucocorticoid binding of MR in non-epithelial tissues, 
which are devoid of 11βHSD2, is raised. The MR has several 
isoforms, some of which are able to bind both glucocorticoids 
and mineralocorticoids, while other isoforms bind exclusively 
mineralocorticoids (64). The density of GR and MR varies from 
one tissue to another. For instance, MR expression is higher 
than GR expression in the central nervous system; MR and GR 
are similarly expressed in the cardiovascular system while GR 
expression is higher than MR expression in the immune system 
(65). Finally, GR and MR also differ in their capacity to inhibit 
AP-1-mediated gene activation (66).

Effect of Mineralocorticoids on the  
Immune System in Health
Mineralocorticoid receptors play specific roles depending on 
their tissue expression. MRs located in the kidneys and the 
colon are implicated in NaCl reabsorption and K+ secretion 
(67, 68), where NaCl reabsorption is mediated by serum and 
glucocorticoid-induced kinase (SGK1), GILZ protein, and the 
epithelial sodium channel (69). Mineralocorticoid stimulation 
promotes the expression by endothelial cells of the VCAM-1, 
ICAM-1, and P-selectin membrane receptors, implicated in the 
adhesion of leukocytes to endothelial cells (70). In endothelial 
cells, mineralocorticoids also induce the production of reactive 
oxygen species via the activation of NADPH oxidase and Rac1 
(71). In the brain, MRs are specifically located in the limbic 
system and are implicated in learning and memory (72). MRs 
are expressed in monocytes and macrophages (73), dendritic 
cells (74), and neutrophils (75). MR signaling in myeloid cells 
induces a pro-inflammatory response (76, 77). Indeed, mac-
rophages exposed to mineralocorticoid agonists undergo a M1 
type pro-inflammatory polarization associated with an increased 
production of TNF-α and of reactive oxygen species (78–80).  
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TaBle 2 | Main effects of glucocorticoid or mineralocorticoid administration 
during sepsis.

Compound glucocorticoid Mineralocorticoid

Small animal  – Improves  
survival (100–102)

 – Restores the 
expression of the 
mineralocorticoid 
receptor (104)

 – Reduces the levels 
of plasma histamine, 
plasma serotonin, 
blood bradykinin, and 
plasma catecholamine 
concentration (105)

 – Improves the 
hemodynamic 
response (106)

 – Reduces mortality 
(107–109)

Large animal  – Improves survival (103)  – Improves survival and 
the hemodynamic 
response (110, 111)

 – Lowers IL-6  
levels (111)

Man  – Reduces plasma levels  
of TNF-α (112)

 – Reduced levels of E-selectin  
sE-selectin (113, 114)

 – Decreases the number  
of eosinophils (115)

 – Decreases levels of  
phospholipase A (116)

 – Decreases levels of nitrite/nitrate,  
IL-6, IL-8, and markers of  
neutrophil activation (decreased 
expression of CD11b, CD64,  
and neutrophil elastase) (116)

 – Lowers whole blood production  
of IL-1 and IL-6 (113, 116–119)

 – Monocyte mHLA-DR levels are 
depressed (113, 118)

 – Decreases monocyte production of 
migration inhibitory factor (120)

 – Decreases the binding capacity  
of glucocorticoid receptor in  
neutrophils (121)

 – Improves the hemodynamic 
response and survival (122)

 – Improves the 
hemodynamic 
response in the  
most severe subgroup 
of a pediatric 
population (123)
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In microglial cells, which are resident macrophages of the central 
nervous system, aldosterone activation induces an increased 
production of TNF-α and IL-6 in response to lipopolysaccha-
ride stimulation (81). By contrast, MR knockout macrophages 
or macrophages treated by MR antagonists exhibit a M2 anti-
inflammatory polarization (78). Mineralocorticoid agonists 
induce the activation of the mitogen-activated protein kinase 
pathway in dendritic cells, leading to the secretion of IL-6 and 
TGF-β1 (74). Mineralocorticoids indirectly lead to an increase 
in platelet cytosolic calcium concentrations, leading to platelet  
activation, thrombin formation, and platelet procoagulant  
acti vity (82, 83). Indeed, platelet cytosolic calcium entry is 
upregulated by the serum- and glucocorticoid-inducible kinase 
isoform SGK1, which is upregulated by mineralocorticoids 
(84). SGK1 upregulates IL-17-producing CD4+ helper T  cells 
(Th17 cells). Th17 cells are dependent on IL-23 expression; SGK1 
ensures the proper expression of the IL-23 receptor (85).

Mineralocorticoid receptor activation indirectly affects 
T  lymphocyte phenotype. Indeed, dendritic cells activated 
by mineralocorticoid agonists impose a pro-inflammatory 
Th17 phenotype on CD4 T  cells (74). Aldosterone stimulates 
IL-1β secretion by macrophages through NF-κB signaling and 
reactive oxygen species generation. Aldosterone also increases 
the expression of NLRP3, implicated in the formation of 
inflammasone and mature IL-1β in human peripheral blood 
mononuclear cells (86). Infusion of aldosterone in rodents 
results in elevated plasma IL-1β levels (86). Human blood mono-
nuclear cells exposed to MR antagonists produce less cytokines, 
including TNF, IL-1α, IL-2, IL-6, INFγ, and GM-CSF (87). 
Aldosterone and MR agonists promote myocardial and kidney 
fibrosis (88, 89). Fludrocortisone, at high doses administered 
in  vivo, paradoxically exhibits anti-inflammatory properties. 
Fludrocortisone inhibits histamine release by basophils (90) 
and IL-1 production by lung fragments (91).

iMMUnOMODUlaTiOn in SePSiS

glucocorticoids
Animal Studies
The expression of the GR is upregulated in LPS-stimulated mouse 
macrophages and in mouse models of sepsis (92–94) (Table 2). 
However, others have shown that GR expression and protein  
levels decreased following a TNF challenge (95). The binding 
capacity of the GR decreases after an endotoxin challenge (94).  
The binding capacity of the GR may be altered through the 
action of nitric oxide (96, 97). LPS challenge in GR knockout 
mice induces higher mortality than in control animals (98). 
The endothelial GR regulates NF-κB in a model of endotoxin-
induced sepsis (99). The deletion of the GR from endothelial 
cells, through the activation of NF-κB, is associated with higher 
mortality, higher nitric oxide levels, and higher levels of pro-
inflammatory cytokines (TNF-α and IL-6) (99). In small animals 
with sepsis, high doses of dexamethasone and methylpredni-
solone significantly prolong survival (100–102). High doses 
of methylprednisolone continuously administered in a canine 
model of endotoxin shock also improve survival (103).

Studies in Humans
When LPS is administered to healthy subjects, the concomi-
tant administration of hydrocortisone reduces plasma levels 
of TNF-α (112). The levels of E-selectin and of the soluble 
form of the receptor sE-selectin are also reduced following 
hydrocortisone therapy in sepsis (113, 114). During septic 
shock, hydrocortisone decreases the number of eosinophils 
(115), circulating levels of phospholipase A (116), serum 
levels of nitrite/nitrate, IL-6, IL-8, and markers of neutro-
phil acti vation (decreased expres sion of CD11b, CD64, and 
neutrophil elastase). Moreover, hydrocortisone lowers ex vivo 
whole blood production of IL-1 and IL-6 in response to LPS 
(113, 116–119). In hydrocortisone-treated patients with septic 
shock, monocyte mHLA-DR levels are depressed, while the 
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capacity for phagocytosis of mono cytes increases (113, 118). 
Glucocorticoids also attenuate LPS-stimulated monocyte pro-
duction of migration inhibitory factor (120). In neutrophils of 
hydrocortisone-treated sepsis patients, the binding capacity of 
GR for glucocorticoid is reduced (121).

Clinical Trials
Short courses of high dose methylprednisolone or dexa-
methasone do not significantly reduce mortality and may even 
harm patients with sepsis (124–127). The introduction of the 
concept of sepsis-associated relative adrenal insufficiency in the 
90s, led physicians and trialists to consider using prolonged 
courses of low doses of hydrocortisone (128). Several small 
size trials found that 200–400 mg of hydrocortisone per day for 
more than 3 days improved cardiovascular function in sepsis  
(117, 129, 130). GERINF05 was the first phase 3 trial that 
tested a prolonged course (7 days) of low to moderate doses 
(200 mg/day) of cor ticosteroids in septic shock with evidence 
of relative adrenal insufficiency (15). This trial found a sig-
nificant improvement on survival and cardiovascular function 
in patients with septic shock and non-responders to a 250 µg 
ACTH test (Delta cortisol <9  μg/dl) (15). The CORTICUS 
trial could not reproduce the survival benefit of corticosteroids  
found in GERINF05 while confirming the benefit on car-
diovascular homeostasis and organs function (131). A meta-
analysis of the use of corticosteroids in sepsis published in 
2015 concluded that corticosteroids reduced 28-day mortality, 
increased the rate of shock reversal, without increasing the 
risk of infection (122). More recently, the ADRENAL trial 
found no significant survival benefit from a continuous infu-
sion of hydrocortisone in patients with septic shock (132). 
Nevertheless, the trial found that, when compared with placebo, 
hydrocortisone fasten the resolution of shock, shortened the 
duration of mechanical ventilation, and reduced the require-
ment for blood transfusion (132). In keeping with GERINF05 
observations, the APROCCHSS trial found that the combina-
tion of hydrocortisone to fludrocortisone significantly reduced 
90-day mortality (16). Likewise, corticosteroids hastened 
the resolution of shock and organs failure without causing  
major adverse events.

Mineralocorticoids
Animal Studies
In models of chronic cardiovascular diseases, aldosterone is 
associated with increased vascular and cardiac oxidative stress, 
inflammation, and fibrosis (133). In models of acute cardiovas-
cular diseases, both exogenous aldosterone and overexpression 
of the MR increased blood pressure (134, 135). Aldosterone 
plays a role in salt appetite (136), and in coping behavior (137). 
MRs, contrary to GRs, when activated, play a neural antiapop-
totic role by differentially influencing genes of the bcl-2 family 
(138). Similar to the renal epithelium, aldosterone may also 
favor the clearance of alveolar fluid by type II epithelial cells 
(139). By extrapolation, these responses may be of benefit dur-
ing sepsis. However, very little is known about the MR or its 
regulation during sepsis. In small animals, sepsis is associated 
with downregulation of the MR in endothelial cells (92, 104),  

which is restored by supplementation by exogenous MR (104). 
In endotoxin shock, aldosterone reduces plasma levels of his-
tamine, serotonin, bradykinin, and catecholamine (105). MR 
agonists reduce mortality in endotoxin-challenged small ani-
mals (107–109). In large animal sepsis models, aldosterone levels 
correlate with the severity of shock and with mortality (140), 
and mineralocorticoid supplementation improved survival and 
hastened shock reversal when administered prior to a bacterial 
challenge (110). The early administration of glucocorticoids plus 
mineralocorticoids improves the outcome in large animals with 
sepsis. In the sickest animals, glucocorticoids plus mineralocor-
ticoids treatment hastened shock reversal and lowered plasma 
IL-6 levels (111).

Clinical Studies
The plasma concentrations of aldosterone were found to be 
unexpectedly low in meningococcal sepsis compared with 
ICU admissions for other reasons (141). Lower than expected 
aldosterone levels have also been reported in adults’ septic 
shock (142, 143). Inappropriately low aldosterone levels dur-
ing septic shock were associated with increased ICU length of 
stay, an increased incidence of acute kidney failure (144), and 
increased mortality (145). Low aldosterone levels occurred 
despite high renin levels, suggesting impaired adrenal syn-
thesis of aldosterone. In addition, a subset of patients with 
sepsis did not increase aldosterone levels in response to ACTH 
stimulation (146). Mineralocorticoid levels were found to 
correlate with IL-6 levels in meningococcal sepsis (147). The 
expression of the MR is downregulated in human endothelial 
cells exposed to TNF-α (104). The MR agonist fludrocortisone 
is administered orally, and there is no currently available 
intravenous formulation. The pharmacokinetics of fludrocor-
tisone were assessed in healthy subjects (148), and in septic 
shock patients (149). However, there are still too few data on 
the direct effects of mineralocorticoids in patients with sepsis. 
A retrospective study in a pediatric population found that 
hydrocortisone combined with fludrocortisone was associ-
ated with shorter duration of vasopressor support in the most 
severe patients (123). Finally, it remains unclear whether or not 
part of the survival benefit from corticosteroids observed in 
the GERINF05 (15) and APROCCHSS (16) trials are directly 
related to fludrocortisone.

Future research should start with an individual patient 
data meta-analysis of all trials comparing hydrocortisone and/
or fludrocortisone against placebo. Then, next trial should be 
designed as a two-by-two factorial placebo-controlled trial com-
paring hydrocortisone versus fludrocortisone versus hydrocor-
tisone plus fludrocortisone (150).

COnClUSiOn

In sepsis, there is sufficient evidence from animals and humans 
studies to support that glucocorticoids modulate innate immu-
nity to promote the resolution of inflammation and organs failure. 
Much less is known about the immune effects of mineralocorti-
coids though increasing evidence from laboratory investigations 
suggested that they might favorably impact the outcome from 
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