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Immune checkpoint inhibitors (ICIs) have recently revolutionized cancer treatment, 
providing unprecedented clinical benefits. However, primary or acquired therapy resis-
tance can affect up to two-thirds of patients receiving ICIs, underscoring the urgency 
to elucidate the mechanisms of treatment resistance and to design more effective ther-
apeutic strategies. Conventional cancer treatments, including cytotoxic chemotherapy, 
radiation therapy, and targeted therapy, have immunomodulatory effects in addition to 
direct cancer cell-killing activities. Their clinical utilities in combination with ICIs have 
been explored, aiming to achieve synergetic effects with improved and durable clinical 
response. Here, we will review the immunomodulatory effects of chemotherapy, tar-
geted therapy, and radiation therapy, in the setting of ICI, and their clinical implications 
in reshaping modern cancer immunotherapy.
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iNTRODUCTiON

Deeper understanding in the regulatory mechanisms of antitumor immunity, especially the identifi-
cation of immune checkpoint pathways, has led to the success of modern immunotherapy. The past 
decade has witnessed a revolution in cancer therapy since the introduction of immune checkpoint 
inhibitors (ICIs), including anti-CTLA4 antibody and anti-PD-1/PD-L1 antibody. These antibodies 
have reshaped the landscape of treatments in various types of cancers, including melanoma, renal cell 
cancer, colorectal cancer (CRC), and non-small-cell lung cancer (NSCLC). However, it is estimated 
that up to 60–70% of patients do not respond to single-agent ICI therapy (1–7). To address this clini-
cal challenge, different conventional cancer treatment modalities have been tested in combination 
with ICIs to achieve synergetic effects and to overcome the resistance to immunotherapy. Although 
some of these approaches have provided clinical benefits, the lack of knowledge in the functional 
interactions between conventional cancer therapies and immune checkpoint blockades at the 
molecular level remains a crucial hurdle in developing rational and optimal combination strategies. 
In this article, we will review the immune-regulatory effects of conventional cancer treatments and 
their clinical applications in combination with immune checkpoint blockades and future challenges.

COMBiNATiON OF iMMUNOTHeRAPY AND CHeMOTHeRAPY

immunomodulatory impact of Cytotoxic Chemotherapy
It has long been speculated that the immunoregulatory properties of conventional cytotoxic 
chemotherapy contribute to the antitumoral effects of these agents, in addition to direct tumor killing 
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(8). Although the mechanisms are yet to be fully understood, 
chemotherapy can regulate antitumor T  cell response through 
increasing tumor antigenicity, inducing immunogenic cell death 
(ICD), disrupting immune suppressive pathways, and enhancing 
effector T-cell response (9–12).

Chemotherapy executes direct cancer killing via multiple 
mechanisms, including causing DNA damage, inhibiting DNA 
replication, and preventing mitosis (13). The induced tumor cell 
death further elicits systemic and intratumoral immune responses, 
contributing to the antitumor immunity. Chemotherapy enhances 
the antigenicity of the tumors through the increase of mutation 
burden and neoantigen load (such as in NSCLC and other various 
malignancies), which are correlated with higher responses to ICI 
therapy (14, 15). Some chemotherapy drugs upregulate MHC 
class 1 expression to increase antigen presentation (16, 17). In 
addition, chemotherapy drugs promote dendritic cell maturation 
and enhance the T  cell activation by DCs (18). Chemotherapy 
also promotes ICD by releasing damage-associated molecular 
patterns, which can generate effector immune response when 
bound to pattern-recognition receptor. Experiments in animal 
models have suggested that some chemotherapy drugs induce the 
expression of PD-L1 on ovarian cancer cells (19).

Cytotoxic chemotherapy is regarded as immunosuppressive 
due to its dose-limiting myelosuppression. However, recent 
studies have demonstrated that it also can disrupt suppressive 
pathways. These immunosuppressive subsets play critical roles in 
downregulating the antitumor T-cell response and in promoting 
resistance to ICI treatments. Lymphodepletion resulted after 
chemotherapy can potentiate antigen-specific T-cell responses, 
therefore, augment antitumor immunity, particularly during 
the recovery phase from lymphopenia. Lymphodepletion can 
eliminate regulatory T cells (Treg) and other immunosuppressive 
cell subsets, such as myeloid-derived suppressor cells (MDSCs) 
(20–22) and tumor-associated macrophages (TAMs) (23). For 
instances, cyclophosphamide eliminates Treg and improves 
overall survival when combined with immunotherapy in a 
colon cancer models (24). Doxorubicin eliminates MDSCs and 
enhances the efficacy of immunotherapy in breast cancer (25). 
Reductions of these immunosuppressive populations in the 
tumor microenvironment of glioblastoma, synergize with anti-
PD-1 therapy, and enhance the antitumor immunity (26, 27). The 
elimination of these immunosuppressive cells will increase the 
availability of survival and proliferative cytokines for T cells and 
lower the threshold for T-cell activation. Chemotherapeutic rea-
gents also promote the polarization of Th1/Th2 and enhance the 
proliferation of T-lymphocytes in patients with advanced solid 
cancers (such as renal cell carcinoma, colon cancer, and ovarian 
cancer) (28, 29). Over the past decade, multiple studies have 
shown that different types of chemotherapy drugs can modulate 
the antitumor immunity in various mechanisms (9).

Given the extensive roles of chemotherapy in regulating the 
antitumor immune response, it is safe to hypothesize that the 
addition of chemotherapy to ICI may further enhance the activi-
ties of cytotoxic T cells with improved clinical outcomes. Over 
the past few years, chemoimmunotherapy (CIT) combination has 
attracted attention from clinicians and researchers and has been 
investigated in multiple clinical trials.

Clinical Studies with CiT Combinations
Chemotherapy in combination with immunotherapy (CIT) has 
been studied in multiple solid tumors, largely in NSCLC, provid-
ing broadened treatment options with improved outcomes.

The combination of pembrolizumab with pemetrexed and 
carboplatin has been evaluated in KEYNOTE-021, a multicenter 
phase 1/2 study, in patients with NSCLC. In the phase 1 study 
(30), pembrolizumab in combination with either carboplatin 
and paclitaxel, or carboplatin and paclitaxel plus bevacizumab, 
or carboplatin and pemetrexed was investigated, with overall 
response rate (ORR) of 52, 48, and 71%, respectively, irrespec-
tive of PD-L1 expression levels. These results led to the phase 
2 study, evaluating the clinical outcome of pembrolizumab in 
combination with carboplatin and pemetrexed (31). A total of 
123 chemotherapy-naïve nonsquamous NSCLC patients were 
randomized to chemotherapy alone, or chemo-pembrolizumab 
combination. Indefinite pemetrexed maintenance therapy was 
allowed for patients in chemotherapy alone group, and mainte-
nance therapy with indefinite pemetrexed and up to 24 months of 
pembrolizumab was allowed for patients in chemo-pembrolizumab 
combination group. A significantly higher response rate was 
observed in the CIT combination group (55%) than in the 
chemotherapy alone group (29%), with progression-free survival 
(PFS) of 13 vs. 6 months, respectively. The magnitude of adverse 
effects (grade 3 or above) in both the groups was comparable 
(39 vs. 26%, respectively). Based on this study, the FDA granted 
accelerated approval of pembrolizumab in combination with 
carboplatin and pemetrexed for the treatment of NSCLC adeno-
carcinoma in the first-line setting. Updated survival data with 
median follow-up of 18.7 months showed a PFS of 19.0 months 
in CIT group vs. 8.9 months in chemotherapy group, with OS 
in CIT group not reached vs. 20.9 months in the chemotherapy 
arm (32).

In KEYONOTE-021 study, the tumor cell-associated PD-L1 
expression level can impact the response rates in patients who 
received CIT treatment: response rate of 57% in those with <1% 
PD-L1 expression, 54% in those with ≥1% PD-L1 expression, 
26% in those with 1–49% PD-L1 expression, and 80% in those 
with ≥50% PD-L1 expression (30). Accordingly, higher cutoff of 
PD-L1 expression was associated with higher response rates. Since 
pembrolizumab singe-agent is only indicated in NSCLC patients 
with ≥50% PD-L1 expression in the frontline setting (33, 34), 
this study established CIT as an alternative first-line therapeutic 
approach for nonsquamous NSCLC patients with <50% tumor 
PD-L1 expression, who do not harbor targetable mutations.

The results of the phase 3 trial (KEYNOTE-189) evaluating 
pembrolizumab in combination with chemotherapy in frontline 
setting in nonsquamous NSCLC patients without sensitizing 
EGFR or ALK mutations have been recently reported. A total of 
616 patients were randomized in a 2:1 ratio to receive pemetrexed 
and platinum-based drug plus either pembrolizumab or placebo 
for 4 cycles, followed by pembrolizumab or placebo (for up to 
35 cycles) plus pemetrexed maintenance therapy. With a median 
follow-up of 10.5 months, the 12-month OS was 69.2% in com-
bination group vs. 49.4% in placebo group, and median PFS was 
8.8 vs. 4.9 months, respectively. Interestingly, the survival benefit 
was seen across all PD-L1 categories (35).

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Yan et al. Combination Immunotherapy With Other Cancer Treatments

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1739

A phase 3 trial evaluating CIT combination in frontline setting 
is currently ongoing for squamous NSCLC (KEYNOTE-407). 
The results from a second interim analysis after patients had 
been followed for a median of 7.8 months were recently presented 
(36). A total of 559 patients were enrolled and stratified prior to 
randomization based on tumor PD-L1 expression (<1 vs. ≥1%) 
as well as the choice of taxane (paclitaxel vs. nab-paclitaxel). 
Patients were assigned to receive four cycles of carboplatin and 
paclitaxel/nab-paclitaxel plus either pembrolizumab or placebo, 
followed by pembrolizumab (for CIT group) or placebo (for 
placebo group) maintenance therapy. Patients in the placebo 
group could cross over to receive pembrolizumab monotherapy 
after disease progression. Significant improvements in OS, PFS, 
and response rate were observed in CIT group vs. chemo-alone 
group regardless of PD-L1 expression level: the median OS of 15.9 
vs. 11.3 months (HR 0.64, 95% CI [0.49, 0.85]; p = 0.0008), PFS 
of 6.4 vs. 4.8 months (HR 0.56, 95% CI [0.45, 0.70]; p < 0.0001), 
and objective response rate of 58.4 vs. 35.0% at the first interim 
analysis (p = 0.0004), respectively.

Nivolumab has also been tested in multiple clinical trials. 
In phase 1 CHECKMATE-012 trail, 56 patients with NSCLC 
received first-line therapy with combination of nivolumab with 
either gemcitabine and cisplatin, pemetrexed and cisplatin, or 
paclitaxel and carboplatin, followed by nivolumab maintenance 
therapy (37). CIT combination demonstrated improved ORR 
compared with nivolumab monotherapy in the front-line set-
ting, with a manageable, non-overlapping toxicity profile. While 
nivolumab monotherapy has shown an ORR of 23% in the his-
torical study (38), it demonstrated a higher ORR when combined 
with gemcitabine and cisplatin (33%), or pemetrexed and cispl-
atin (47%), or paclitaxel and carboplatin (43%), with acceptable 
tolerability and toxicity profiles. In addition to that, association 
between treatment response and PD-L1 expression levels was not 
observed (ORR 48% in PD-L1 ≥ 1 vs. 43% in PD-L1 < 1%).

A phase 3 study (CHECKMATE-227) is ongoing to evaluate 
nivolumab in combination with chemotherapy vs. chemotherapy 
alone in the frontline setting for patients with NSCLC (39). A total 
of 550 chemo-naive NSCLC patients without known sensitizing 
EGFR/ALK mutations, with <1% tumor PD-L1 expression were 
randomized to receive nivolumab 3 mg/kg Q2W + ipilimumab 
1  mg/kg Q6W, nivolumab 360  mg Q3W  +  chemo, or chemo-
therapy for 2 years. In the recently presented results (40), a total 
of 177 patients received CIT while 186 received chemotherapy 
alone. With a minimum follow-up of 11.2 months, an improved 
PFS was seen in nivolumab-chemo arm vs. chemotherapy alone 
arm (HR = 0.74, 95% CI [0.58, 0.94]). Part 2 of CheckMate 227 
is currently ongoing to evaluate the benefit of nivolumab-chemo 
combinational irrespective of PD-L1 expression.

The FDA approval of the pembrolizumab-chemotherapy 
com bi nation in NSCLC has encouraged physicians to inves-
tigate various CIT in clinical trials in other types of cancers 
(Table  1). The combination of pembrolizumab with different 
chemotherapy regimens is being evaluated in PembroPlus study 
(NCT02331251) for patients with various types of advanced 
cancers. Pembrolizumab in addition to cisplatin or capecitabine 
or 5-Fluorouracil is being investigated in KEYNOTE-062 study 
(NCT02494583) for patients with advanced gastric cancer. 

Atezolizumab, an anti-PD-L1 antibody, has also been evaluated 
in combination with chemotherapy in the phase 1 GP28328 
study (NCT01633970) in multiple tumor types, demonstrating 
improved ORR of CIT in patients with NSCLC (41). Phase 3 
studies are the currently ongoing to determine the clinical benefit 
of atezolizumab in combination with chemotherapy (IMpower 
130, IMpower132). Durvalumab, another anti-PD-L1 antibody, is 
also being evaluated in a phase 3 clinical trial (POSEIDON), ran-
domizing untreated NSCLC patients to chemotherapy alone or 
chemotherapy in combination with durvalumab with or without 
anti-CTLA4 antibody, tremelimumab (NCT03164616).

Considerations and Challenges
Despite recent clinical success, our limited understanding of the 
interplay between chemotherapy and immunotherapy hurdles 
the design of the optimal combination strategy. Different types 
of chemotherapies execute cytotoxicity against tumors through 
distinct mechanisms. Similarly, each chemotherapy drug demon-
strates unique impact on the systemic and intratumoral immune 
responses (8). Distinct intrinsic signaling pathways in different 
types of tumors attribute to the variability in their chemosensitivi-
ties. Moreover, the advanced knowledge of immune checkpoint 
pathways has rapidly expanded the list of ICIs that are acting 
through different mechanisms (e.g., TIM-3, LAG-3, indoleamine 
2,3-dioxygenase, B7-H3). Understanding the impact of chemo-
therapy in the setting of different types of immunotherapies, as 
well as the impact of immunotherapy on chemosensitivity (or 
chemoresistance) of tumors, at both cellular and molecular levels 
are crucial for the design of rational combination regimens with 
minimized toxicity.

It is not just the appropriate combination but also the sequence 
and scheduling of CIT that have to be considered in the clinical 
scenario. In most of the clinical trials, chemotherapy and immu-
notherapy are given concurrently, lacking the understanding of 
the impact of sequencing on the antitumor immunity. Given the 
fact that antitumor T cell response has different phases that can 
be targeted by different ICIs (47, 48), and that chemotherapy 
can modulate immune system while having cytotoxicity against 
T cells at the same time, it is very likely that the sequence and tim-
ing of CIT would significantly impact the treatment outcomes. 
Both preclinical and clinical studies have shown controversial 
results regarding the sequence of CIT, and the ideal combination 
regimens are evolving. Since chemotherapy can cause immu-
nogenic tumor death that promotes T cell priming, some have 
thought that immunotherapy should be given after chemotherapy 
to allow maximal T cell proliferation and expansion. In a phase 
2 study investigating carboplatin and paclitaxel in combination 
with concurrent or sequenced ipilimumab in small-cell lung can-
cer (SCLC), the sequenced treatment is associated with improved 
PFS compared with chemotherapy alone (49). However, in a 
mesothelioma mouse model, concurrent treatment with ipili-
mumab and chemotherapy improved outcomes compared with 
sequential therapy (50). By contrast, studies in lung cancers 
and melanoma have shown that chemotherapy administered 
after immunotherapy can achieve successful clinical responses 
(51, 52). Our group recently demonstrated that in metastatic 
melanoma patients who had disease progression after anti-PD1 
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TABle 1 | Completed and ongoing clinical trials evaluating chemotherapy in combination with immune checkpoint inhibitors.

Trial Tumor type Therapy regimes endpoints

Gadgeel et al. (30) NSCLC (KEYNOTE 
021) phase 1

Cohort A:
Pembrolizumab (pembro) + carboplatin and paclitaxel (CP) → 
pembro
Cohort B:
Pembro + CP + bevacizumab (BEV) → pembro + BEV
Cohort C:
Pembro + carboplatin + pemetrexed (PEM) → pembro + PEM

Overall response rate (ORR): 52%
Progression-free survival (PFS): 10 months
ORR: 48%
PFS: NR
ORR: 48%
PFS: 10

Langer et al. (31) NSCLC (KEYNOTE 
021) phase 2

Pembro + carboplatin + PEM → pembro + PEM
Carboplatin/PEM → PEM

ORR: 55%
PFS: 19 months
ORR 29%
PFS: 8.9 months

Borghaei et al. (32)

Gandhi et al. (35) NSCLC (nonsquamous) 
(KEYNOTE-189)

Pembro + platinum + PEM → pembro + PEM
Placebo + platinum + PEM → PEM

OS (12 months): 69.2%
PFS: 8.8 months
OS (12 months): 49.4%
PFS: 4.9 months

KEYNOTE-047 
(ongoing)

NSCLC (squamous) Pembro + CP → Pembro
Placebo + CP

Primary: OS and PFS
Secondary: ORR

Weiss et al. (42) Advanced, metastatic 
solid tumors 
(PEMBRO-PLUS)

Pembrolizumab plus gemcitabine (G), G + docetaxel (D), 
G + nab-paclitaxel (NP), G + vinorelbine (V), or irinotecan

Standard dose pembrolizumab can be safely 
combined with G, G + NP, G + V, I, and LD

Rizvi et al. (37) NSCLC (CHECKMATE 
012) phase 1

Nivolumab (Nivo) + gemcitabine (GEM) + cisplatin (CIS) → Nivo
Nivo + PEM the + CIS → Nivo
Nivo (10 mg/kg) + CP →Nivo
Nivo (5 mg/kg) + CP → Nivo

PFS: 5.7 months
OS: 11.6 months
PFS: 6.8 months
OS: 19.2 months
PFS: 4.8 months
OS: 14.9 months
PFS: 7.1 months
OS: NR

Paz-Ares et al. (39) NSCLC (CHECKMATE 
227) phase 3
Ongoing

Chemotherapy alone or in combination with Nivo
Squamous: CP
Nonsquamous: PEM + carboplatin (or cisplatin)

Primary: PFS and OS
Secondary: ORR

Liu et al. (41) NSCLC Atezolizumab (Atezo) + CP → Atezo
Atezo + carboplatin/PEM → Atezo + PEM
Atezo + carboplatin + nab-paclitaxel → Atezo

ORR: 36%
PFS: 7.1 months
OSS: 12.9 months
ORR: 68%
PFS: 8.4 months
OS: 18.9 months
ORR: 46%
PFS: 5.7 months
OS: 17.0 months

NCT02367781
NCT02367794
NCT02657434

IMpower 130 (NSCLC 
nonsquamous)
IMpower 131 (NSCLC 
Squamous)
IMpower 132 (NSCLC 
nonsquamous)

All ongoing

Atezo + carboplatin + nab-paclitaxel → Atezo
Atezo + CP → Atezo
Atezo + PEM/carboplatin (or cisplatin) → Atezo + PEM

Primary: PFS and OS
Secondary: ORR

NCT02537418 NSCLC (PESEIDON) 
Phase 3
Ongoing

Durvalumab + tremelimumab + chemotherapy (histology-based)
Durvalumab + chemotherapy (histology-based)
Chemotherapy (histology-based)

Primary: PFS Secondary: OS and ORR

NCT02735239 Metastatic/locally 
advanced esophageal 
cancer (neoadjuvant 
therapy)

Durvalumab in combination with standard of care chemotherapy 
or chemoradiation

Primary: Adverse events, dose-limiting toxicities
Secondary: ORR, PFS, OS

NCT03317496 NSCLC
Urothelial Cancer

Avelumab + pemetrexed/carboplatin
Avelumab + gemcitabine/cisplatin

Primary: Confirmed OR
Secondary: PFS, OS, duration of response, time to 
tumor response

(Continued)
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Trial Tumor type Therapy regimes endpoints

Govindan et al. (43) Advanced NSCLC Ipilimumab + CP
Placebo + CP

OS: 13.5 months
PFS: 5.6 months
(with higher toxicities)
OS: 12.4 months
PFS: 5.6 months

Patel et al. (44) Metastatic melanoma Ipilimumab plus temozolomide 6-month PFS was 45% with median OS of 
24.5 months. 10 (15.6%) confirmed partial responses 
and 10 (15.6%) confirmed complete responses. No 
deaths/unexpected toxicities

Reck et al. (45) SCLC Ipilimumab + etoposide and platinum
Placebo + etoposide and platinum

OS: 11.0 months
PFS: 4.6 months
OS: 10.9 months
PFS: 4.4 months

Yamazaki et al. (46) Melanoma Ipilimumab + dacarbazine Was not considered tolerable in the Japanese patient 
population

TABle 1 | Continued
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monotherapy, the addition of chemotherapy to PD-1 blockade 
induced a significantly improved clinical response, with an 
ORR of 65% (CR of 25%) (53–55). Using peripheral blood from 
patients who benefited from the CIT combination, we identified 
a novel subset of therapy-responsive CD8+ T  cells (CX3CR1+) 
that can survive chemotherapy toxicity with preserved CTL 
functions (53). This subset of effector T cells is less actively pro-
liferating during the combination therapy, and hence is spared 
from chemocytotoxicity. In addition, these CX3CR1+CD8+ 
T  cells demonstrate the ability to efflux chemotherapy drugs. 
Our preclinical animal model studies also demonstrate that that 
CIT combination after previous exposure to immunotherapy 
provides better tumor control with an increase in CX3CR1+CD8+ 
T cells population (53). Our results elucidated mechanisms that 
are responsible for the success of combination, facilitating the 
rational design of CIT. This subset of T cells may be used as a 
biomarker in monitoring and predicting clinical response to CIT, 
especially when tumor PD-L1 levels fail to show direct correla-
tion with the CIT treatment outcomes in multiple clinical trials. 
Future studies are warranted to define whether the efficacy of CIT 
is dependent on certain ICI to recruit immune cells into tumor 
tissues (like CX3CR1+CD8 effector T  cells) or to expand local 
tumor-infiltrating immune cells to reject tumors.

The scheduling and timing of chemotherapy in CIT are also 
critical for achieving clinical success. The fluctuation of dynamic 
systemic immunity in metastatic melanoma patients has been 
reported. Chemotherapy that was delivered in synchronization 
with unique phase of dynamic immune response tends to correlate 
with improved response (56). Some chemotherapy drugs work in 
cell cycle specific manners (e.g., S phase for drugs inhibiting DNA 
synthesis), suggesting that their direct tumor-killing activities and 
immunomodulatory effects can be influenced by the schedule of 
drug administrations. Platinum-based chemotherapy given in 
different dosing schedules has shown different antitumor immune 
responses associated with variable clinical outcomes in an ovarian 
cancer mouse model (57). Our recent preclinical study further 
demonstrated that the timing of chemotherapy administration 
after the immunotherapy initiation can affect the frequencies of 
CX3CR1+ T  cell population and the treatment outcomes (53), 

suggesting the variable chemo-induced immunomodulation in 
relationship to the timing of the immunotherapy. With the over-
whelming possibility of CIT combinations, further preclinical 
and clinical research is in need to design rational combinations 
for different types of cancers, while minimizing the therapeutic 
toxicities.

COMBiNATiON OF iMMUNOTHeRAPY 
AND MOleCUlAR TARGeTeD THeRAPY

The identification of deregulated cellular signaling pathways that 
are responsible for tumorigenesis has led to the successful develop-
ment of molecular targeted therapy in recent decades. Medications 
inhibiting oncogenic pathways, DNA repair response, and angio-
genesis pathways have provided effective treatment options for 
patients with different types of malignancies, although response 
durability is often lacking. Recent research has demonstrated that 
these pathways also have immunomodulatory effects on systemic 
and intratumoral antitumor immune responses, suggesting that 
the combination of molecular targeted therapy with ICIs can 
result in synergistic antitumor effects.

BRAF and MeK inhibitors
Dysregulations in the RAS/RAF/MAPK pathway are commonly 
seen in oncogenic transformation and tumorigenesis. Mutations 
in BRAF, a proto-oncogene, are associated with various types 
of cancers, especially melanoma. In patients with BRAF mutant 
metastatic melanoma, high response rates are observed after 
treatment with BRAF/MEK inhibitors, although the duration of 
response is short lasting due to adaptive therapy resistance. Since 
ICIs provide durable clinical benefit, combinations of ICIs with 
BRAF/MEK inhibitors may provide fast and long-lasting disease 
control.

In melanoma cell models, BRAFV600 mutations can lead 
to decreased antitumor immunity through upregulation of 
immunosuppressive factors [e.g., IL-10, vascular endothelial 
growth factor (VEGF)] (58), elevation of PD-L1 expression levels 
(59), increased tumor infiltration of immunosuppressive cells  
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TABle 2 | Clinical trials of BRAF targeted therapy in combination with immune checkpoint inhibitors.

Trial Mutation status Therapy regimens Outcomes

Puzanov et al. (70) BRAF V600 mutant melanoma Dabrafenib ± trametinib + ipilimumab Triple therapy resulted in severe GI toxicities

Ribas et al. (67) BRAF V600 mutant melanoma Vemurafenib + ipilimumab Combination resulted in severe liver toxicities

Ribas et al. (69) Both wild-type and BRAF mutant 
melanoma

Durvalumab + dabrafenib + trametinib
Durvalumab + trametinib
Trametinib → durvalumab

Tolerable, no unexpected toxicity

Amin et al. (68) BRAF V600 mutant melanoma Vemurafenib + ipilimumab Combination resulted in high-grade GI and skin 
toxicities

NCT02224781 Metastatic melanoma Dabrafenib + trametinib followed by 
ipilimumab + nivolumab at progression 
vs. ipilimumab + nivolumab followed by 
dabrafenib + trametinib

Ongoing
Primary: OS
Secondary: PFS

6

Yan et al. Combination Immunotherapy With Other Cancer Treatments

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1739

(e.g., Treg) (60), and downregulation of melanoma MHC-1 
expression (61). In patients with metastatic melanoma, BRAF 
inhibitors have shown to decrease the immunosuppressive cyto-
kines with resultant increased CD8+ T cell tumor infiltration and 
antitumor immunity (62). In addition, the treatment response of 
BRAF inhibitors is CD8+ T-cell dependent (60, 63). Interestingly, 
in CRC patients, the majority of those who have PD-L1 positive 
tumor carry BRAF mutations along with microsatellite instabi lity, 
suggesting that the immunosuppressive tumor microenviron-
ment can be induced by BRAF mutations (64). In a colorectal 
carcinoma mouse model, MEK inhibitors demonstrated syn-
ergistic therapeutic effects with anti-PD-L1 antibody (65). In 
a melanoma mouse model, dabrafenib treatment alone results 
in increased TAMs and Treg, while the addition of trametinib 
further decreases these suppressive cell subsets. When combined 
with anti-PD-L1 antibody, the triple therapy provides a superior 
tumor control (66).

The combination of BRAF inhibitors with anti-CTLA-4 anti-
body has been studied in multiple clinical trials. However, sub-
stantial immune-related adverse effects were the main concern in 
several studies. Liver toxicity and high-grade skin adverse effects 
were seen in trials with vemurafenib and ipilimumab combina-
tion (NCT01400451 and NCT01673854) (67, 68). Severe colitis 
was seen in patients who received dabrafenib, trametinib, and 
ipilimumab triple combination (NCT01767454). Anti-PD1/
PD-L1 antibodies were also evaluated in combination with 
BRAF/MEK inhibitors (Table 2). In a phase 1 study, the combi-
nation of dabrafenib, trametinib, and durvalumab demonstrated 
tolerable toxicity profiles and encouraging disease response rates 
(69). Pembrolizumab is also being studied in combination with 
dabrafenib and trametinib in patients with metastatic melanoma 
(NCT02130466). Multiple other clinical trials are currently 
ongoing (NCT01940809; NCT01656642; NCT02027961; NCT0-
2224781) to test similar combinations.

Combining BRAF/MEK inhibitors with ICIs has the poten-
tial to overcome resistance to targeted therapy; however, fur ther 
investigations are needed to understand the underlying molecular 
interplay and to design the ideal combination regimens. Given the 
toxicities observed in early trials, the optimum tolerable dose of 
targeted therapy in combination with ICIs needs to be determined. 
The rapid development of resistance to BRAF/MEK inhibitors 
and their dynamic impacts on the tumor microenvironment and 

systemic antitumor immunity should also be considered to deter-
mine the sequencing and scheduling of the combination. One 
study demonstrated long-term tumor control after short-term 
targeted therapy with subsequent anti-PD1 antibody in patients 
with metastatic melanoma, and T cell tumor infiltration was seen 
in tumor biopsies within 1  week after BRAF/MEK inhibitors 
administration while less frequent after 2 weeks on therapy (71), 
suggesting that the timing of combination with PD-1 blockade 
can impact patient outcomes.

Other oncogenic pathways, such as PI3K–Akt–mTOR path way 
and KIT, can also regulate the antitumor immunity in addition 
to regulating cellular proliferation, providing further options for 
combination therapy with ICIs. For example, inhibition of PI3kγ 
can promote T  cell infiltration through regulating the balance 
between stimulatory and suppressive TAMs (72). Inhibition 
of KIT decreased the INF-γ induced PD-L1 expression (73). 
Treatments targeting these pathways are also being investigated in 
combination with ICIs to overcome their limited clinical response. 
The crosstalk between multiple signaling oncogenic pathways in 
the setting of immunotherapy should be further investigated to 
determine the ideal drugs to be combined, with special considera-
tion of the individual’s unique intrinsic genetic background.

Poly (ADP-Ribose) Polymerase (PARP) 
inhibitors
DNA damage repair machinery plays important roles in cell cycle 
regulation and tumorigenesis (74). Inhibition of DNA damage 
repair can potentially increase the tumor mutational burden, 
especially in tumors with high endogenous DNA damage. PARP 
plays a critical role in the repair of single-strand DNA break. In 
tumor cells with BRCA mutations, PARP inhibition can increase 
the genomic instability and cell death, with resultant increased 
neoantigen load and antitumor T  cell response (75). This syn-
thetic lethality of PARP inhibitors established the foundation for 
its clinical application in cancer treatment (76). PARP inhibitors 
also demonstrate immunoregulatory effects in preclinical stud-
ies. They can attenuate chronic inflammation and increase T cell 
infiltration (77).

Olaparib has been recently approved for the treatment of 
ovarian cancers with BRCA1 and BRCA2 mutations. Olaparib 
in combination with PD-L1 inhibitor, durvalumab, was recently 
investigated in a clinical trial for patients with gynecologic 
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TABle 3 | Clinical trials of immune checkpoint inhibitors in combination with poly (ADP-ribose) polymerase inhibitors or vascular endothelial growth factor targeting 
therapy.

Trial Tumor type Treatment regimen Outcome

Lee et al. (78) Gynecological cancers Durvalumab + olaparib
Durvalumab + cediranib

83% disease control rate in 
durvalumab + olaparib group
75% disease control rate in 
durvalumab plus cediranib group

NCT02734004 Breast, gastric, ovarian and SCLC Durvalumab + olaparib Ongoing

NCT02484404 NSCLC, SCLC, breast, ovarian, colorectal, prostate Durvalumab + olaparib
Durvalumab + cediranib
Durvalumab + olaparib + cediranib

Ongoing

NCT02657889 Breast and ovarian Pembrolizumab + niraparib Ongoing

NCT02944396 NSCLC Nivolumab + veliparib + platinum-based chemotherapy
Veliparib + platinum-based chemotherapy

Ongoing

NCT02849496 Breast Veliparib
Atezolizumab
Veliparib + atezolizumab

Ongoing

NCT02443324 Gastric, GEJ adenocarcinoma, NSCLC, transitional 
cell carcinoma of the urothelium, biliary tract

Pembrolizumab + ramucirumab Ongoing

NCT02572687 GI or thoracic malignancies Durvalumab + ramucirumab Ongoing
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cancers. Among 26 enrolled women, a disease control rate of 83% 
was reported, with an acceptable safety profile (78). Several trials 
evaluating different PARP inhibitors in combination with ICIs are 
currently ongoing in various solid tumors, including NSCLC and 
breast cancer (Table 3). The combination of niraparib with pem-
brolizumab was studied in the phase 1/2 TOPACIO/Keynote-162 
(NCT02657889) study, and the results from the recurrent ovarian 
cancer cohort were recently reported (79). Among the 60 evalu-
able patients, an ORR of 25% was seen in all platinum-resistant 
ovarian cancer patients with an ORR of 45% in those with BRCA 
mutations. No new safety concerns were identified.

Given the fact that DNA repair response not only regulates 
tumorigenesis but also plays role in antitumor immunity, it 
is imperative to fully understand the interplay between DNA 
repair inhibitors and ICIs to combine them in a safe and effective 
manner, since inhibition of DNA repair response can potentially 
decrease the immune response. Moreover, the intrinsic tumor 
genetic background and DNA repair response status [e.g., BRCA 
mutation vs. wild-type (WT)] have positive impact on the PARP 
inhibitor-induced antitumor immune response during immuno-
therapy. Furthermore, it is possible that different PARP inhibitors 
can modulate the antitumor immune response through different 
mechanisms, which could impact the treatment outcomes when 
combined with different ICIs.

veGF inhibitors
Vascular endothelial growth factor stimulates angiogenesis, 
tissue remodeling, and fibrosis. Its immunosuppressive effects 
make VEGF a good target candidate to potentiate the antitumor 
immune response in combination with ICIs (80, 81). Studies from 
our group have shown that in patients with stage IV melanoma 
the baseline Treg concentration positively correlates with baseline 
VEGF level, which associates with poor clinical outcomes (82). 
Upregulated VEGF level and chronically Th-2-mediated immune 
status are observed in patients with metastatic melanoma (83). 

Animal models have shown that anti-VEGF antibody can 
increase T  cell tumor infiltration with enhanced antitumor 
response (84). Decreased Treg proliferation and MDSC popula-
tion are associated with bevacizumab treatment in CRC (85). The 
hypoxic conditions resulting from anti-VEGF treatment also can 
upregulate PD-L1 expression.

Tremelimumab in combination with sunitinib has been eva-
luated in patients with metastatic melanoma. Unfortunately, 
unexpected dose-limiting renal toxicity was observed (86). 
High dose of tremelimumab (6 mg/kg) used in this study could 
contribute to the adverse effects. Bevacizumab was also inves-
tigated in combination with ipilimumab in melanoma patients 
(87). A disease control rate of 67.4% was observed with com-
bination therapy, with increased CD8+ lymphocyte infiltration 
resulting from more effective lymphocytic trafficking. Multiple 
clinical trials are currently ongoing investigating the combina-
tion of bevacizumab and pembrolizumab in patients with ovar-
ian cancer (NCT02853318) and solid tumor brain metastases 
(NCT02681549). Other agents targeting VEGF pathway, such 
as ramucirumab, are also being evaluated in combination regi-
mens (Table 3). Lenvatinib, a tyrosine kinase inhibitor, is being 
studied in combination with pembrolizumab in a phase 1/2 trial 
(NCT03006926). However, the dynamic immunologic effects of 
these combinations remain to be elucidated. In a recent report, 
10 patients with metastatic renal cell carcinoma were treated with 
bevacizumab plus atezolizumab after bevacizumab run-in period 
(88). A partial disease response was observed in four patients, and 
median time to response was 4.2  months. Following combina-
tion therapy, increased intratumoral CD8+ T  cells, Th1, and T 
effector markers are found. Interestingly, increases in intratu-
moral chemokine, CX3CL1, and peripheral CX3CR1+ (CX3CL1 
rece p tor) CD8+ T cells are observed after combination therapy, 
similar to the observation in patients received CIT combination 
(53). Clinical trials are ongoing to evaluate this combination in 
untreated metastatic renal cell carcinoma (IMmotion151 study) 
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(89) and untreated locally advanced or metastatic hepatocellular 
carcinoma (IMbrave150) (NCT03434379). Further investigation 
will be critical to design safe and efficacious combinations and to 
address biomarker selection.

COMBiNATiON OF iMMUNOTHeRAPY 
wiTH RADiOTHeRAPY (RT)

Radiotherapy remains to be the backbone modality in the treat-
ment for different types of cancer, either given alone or in combi-
nation with chemotherapy. It induces single- and double-strand 
DNA breaks, triggering multiple signaling pathways including 
DNA damage responses and activation of cell cycle checkpoints. 
The RT-induced cell death can further initiate systemic antitumor 
responses through various immune cell subsets (90). The partici-
pation of immune cells is indispensable for the clinical benefit of 
RT; in turn, RT can also modulate the antitumor immunity. It has 
been reported that localized tumor radiation can result in distant 
systemic tumor control in the unirradiated area. This clinical phe-
nomenon, known as the abscopal effect, is a result of RT-induced 
immune modulations (91). The potential synergistic antitumor 
activities of RT in combination with ICIs have attracted increased 
research efforts in this new era of cancer immunotherapy (92).

Increased infiltration of macrophages and monocytes has been 
observed post-irradiation in multiple humana cancer xenograft 
models (squamous cell carcinoma, breast, and lung carcinoma), 
and depletion of the TAMs with antibody to CD11b or inhibitor 
of SDF-1a receptor CXCR4 (AMD3100) provided further tumor 
control when combined with irradiation (93, 94). The activation of 
dendritic cells and their release of type I interferon after irradia-
tion is also critical in CD8+ T cell activity and treatment efficacy 
in mouse colon carcinoma (MC38), lung carcinoma (LLC), and 
melanoma models (B16F10) (95, 96). In an animal model of Lewis 
lung carcinoma (LLC), when the local area was exposed to irradia-
tion, distant tumor control was observed only in p53 WT (vs. in 
p53 null mice), suggesting that the abscopal effect was mediated 
through pathways downstream of p53 (97). Multiple studies have 
shown that cytotoxic CD8+ T  cells are required for RT-induced 
tumor control in mouse breast cancer (4T1), melanoma (B16), 
lymphoma (EL4), and lung cancer (98, 99).

Although the myelosuppression after irradiation is thought 
to be immunosuppressive, RT can regulate T  cell-mediated 
immune responses via various mechanisms (100). RT regulates 
key cell surface molecules for cytotoxic immune cell activation 
(NKG2D), and antigen presentation machinery (MHC class I 
expression with antigen peptides), therefore augments T  cell 
tumor recognition and activation (101, 102). RT also enhances 
T cell priming for activation via activation of antigen-presenting 
cells (dendritic cells) and releasing of immunogenic antigens 
(95, 103). RT increases the release of chemokines (CXCL16, a 
chemokine that binds to CXCR6 on Th1 CD4 and effector CD8 
T cells) by mouse breast cancer (4T1) cells, therefore enhances 
the infiltration of cytotoxic T cells (104). In this situation, block-
ade of CTLA-4 further promotes tumor regression. Irradiation 
also alters the immunosuppressive tumor microenvironment 
to a M1 phenotype, favoring accessibility for T cell infiltration 

(105). In addition, in melanoma and Kras-mutant lung cancer 
models, irradiation was found to upregulate PD-L1 expression 
in tumor microenvironment (106, 107). The synergistic relation-
ship between RT and ICI has been further explored in preclinical 
models. In mice bearing poorly immunogenic breast carcinoma, 
treatment with CTLA-4 blockade in combination with RT (vs. 
CTLA-4 blockade alone) resulted in decreased tumor growth and 
metastasis with improved survival (108). RT in combination with 
PD-1 blockade also induced improved and durable tumor control 
in NSCLC mouse models (107). In melanoma and renal cell car-
cinoma animal models, PD-1 knockout (KO) mice demonstrated 
higher survival after stereotactic ablative radiotherapy (SABR) 
compared with their PD-1 WT little mates. The addition of 
PD-1 blocking antibody to SABR led to the improved antitumor 
response and survival in PD-1 WT mice. In addition, treatment 
with SABR and anti-PD1 antibody combination induced signifi-
cant reduction of non-irradiate tumor. The increased frequency 
of CD11ahighCD8+ tumor-reactive T  cells and their enhanced 
functions were associated with the antitumor response in PD-1 
KO mice, suggesting the translation potential of combining RT 
and PD-1 blockade (109).

Over the recent years, the clinical efficacy of RT in combina-
tion with ICIs have been studied in multiple clinical trials were 
designed to investigate. However, data supporting the routine 
application of this combination are still limited. The RT and ipili-
mumab combination demonstrated acceptable toxicity profile in 
patients with metastatic melanoma, yet failed to provide survival 
benefit (110). Ipilimumab in combination with radiation was 
evaluated in a single-arm phase 2 study in melanoma patients 
with unresectable brain metastases (111). Fifty-eight patients 
were enrolled in this study; with 1-year OS of 31.8% (95% CI 
[18.8–44.8%]) that is higher than the historical reported results, 
without unexpected adverse events.

In a phase 1 KEYNOTE-001 study, 97 patients with advanced 
NSCLC were enrolled (112). Longer PFS and OS, without higher 
incidence of grade 3 or above pulmonary toxicity, were seen in 
patients who underwent RT prior to anti-PD1 therapy compared 
with those who did not receive RT, supporting the safety and 
potential synergistic activity of the RT-ICI combination. The phase 
3 randomized PACIFIC trial investigated the role of subsequent 
durvalumab therapy in stage III NSCLC patients after definitive 
chemoradiation (NCT02125461) (113). A total of 713 patients with 
locally advanced unresectable NSCLC without disease progression 
after definitive chemoradiation were randomly assigned in 2:1 
to receive durvalumab or placebo irrespective of PD-L1 status. 
Median progression survival is 16.8 months in durvalumab group 
vs. 5.6 months in placebo group (16.8 months vs.), with 18-month 
PFS rate of 44.2 vs. 27.0%, respectively (113). Results from this 
study led to the FDA approval of durvalumab for the treatment of 
stage III NSCLC regardless of PD-L1 expression levels. The RT and 
immunotherapy combination is currently being evaluated in other 
tumor types, such as metastatic GI malignancies (NCT02830594) 
and metastatic breast cancer (NCT02730130) (Table 4).

Despite the encouraging finding from the PACIFIC trial, future 
research is urgently needed to define the immunoregulatory 
mechanisms that cross talk between RT, chemo, and immuno-
therapy, to design optimized combination strategies. Similar to 
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TABle 4 | Clinical trials of immune checkpoint inhibitors in combination with radiotherapy (RT).

Trial Tumor type Regimens Outcomes

Shaverdian  
et al. (112)

NSCLC 
(KEYNOTE-001)

Compared patients on pembrolizumab with previous RT 
to those who did not receive previous RT

Previous treatment with RT results in longer PFS and OS, with 
an acceptable safety profile

Antonia et al. (113) NSCLC Definitive ChemoRT → durvalumab
Definitive ChemoRT → placebo

Progression-free survival (PFS): 16.8 months
18 months PFS: 44.2%
PFS: 5.6 months
18 months PFS: 27.0%

Levy et al. (114) Inoperable or 
metastatic cancers

Concurrent durvalumab + RT Concurrent palliative RT with the anti-PD-L1 durvalumab was 
well tolerated

Tang et al. (115) Metastatic solid 
tumor

Ipilimumab + stereotactic ablative radiotherapy  
(SABR)

Combining SABR and ipilimumab was safe with signs of 
efficacy, peripheral T-cell markers may predict clinical benefit, 
and systemic immune activation was greater after liver irradiation

Hiniker et al. (116) Metastatic melanoma Palliative RT + ipilimumab Combination therapy was well tolerated without unexpected 
toxicities. Eleven patients (50.0%) experienced clinical benefit from 
therapy, including complete and partial responses

NCT03050554 NSCLC Stereotactic body radiation therapy (SBRT) in 
combination with Avelumab

Ongoing
Tolerability, RFS

NCT02658097 NSCLC Single fraction nonablative radiation in combination with 
pembrolizumab

Ongoing
RR and best OS

NCT03458455 Brain tumor Stereotactic radiosurgery plus ipilimumab, nivolumab, or 
pembrolizumab

Ongoing
Treatment response at 18 months

NCT03115801 Metastatic renal 
cell carcinoma and 
urothelial carcinoma

Nivolumab/atezolizumab
Nivolumab/atezolizumab plus RT

Ongoing
Best overall response rate, PFS, toxicities, OS

NCT03176173 NSCLC Radical-dose image guided radiation therapy daily for up 
to 10 days (within 2 weeks) while undergoing standard of 
care immunotherapy
Patients who decline to undergo radiation therapy receive 
standard of care immunotherapy

Ongoing
PFS
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other combination strategies discussed, the optimum sequencing 
of the RT and ICI combination has not been elucidated in avail-
able studies. In the KEYNOTE-001 study, irradiation prior to 
pembrolizumab therapy provided improved PFS and OS (112), 
while in another clinical report palliative RT-induced global 
disease control in a PD-1 antibody resistant patient (117). In a 
melanoma mouse model, the addition of adjuvant chemotherapy 
after ablative RT abrogated the RT-induced CD8+ T cell activa-
tion and tumor control, while the addition of immunotherapy 
can enhance the tumor response (98), suggesting that the treat-
ment modalities and the sequence of their combination need to 
be carefully investigated to achieve clinical success. In addition, 
research is needed to identify biomarkers with both predictive 
and prognostic values in RT-immunotherapy combination.

CONClUSiON

Modern cancer immunotherapies exert their tumor-killing activi-
ties through enhancing antitumor immunity while suppres sing 
the tumor-promoting immune process. However, since ICIs do 
not provide clinical benefits in the majority of cancer patients, it 
is crucial to design rational and efficacious synergic therapeutic 
approaches to increase clinical responses to ICI. The combination 
of chemotherapy, targeted therapy, and RT with ICIs has gained 

increased attentions from clinicians and researchers over the 
recent years, given their immunomodulatory effects and potential 
synergistic antitumor activities. Despite the encouraging clinical 
results from various clinical studies, further investigations are 
warranted to elucidate the exact molecular and cellular mecha-
nisms driving these clinical responses. More importantly, the 
optimal regimens, dose, timing, and schedule of the combination 
therapy for differently types of tumors are yet to be identified. 
Molecular interplay between different therapeutic modalities will 
need to be further investigated given the unlimited possibilities of 
combining currently available cancer treatments.
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