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Influenza virus replicates intracellularly exploiting several pathways involved in the 
regulation of host responses. The outcome and the severity of the infection are thus 
strongly conditioned by multiple host factors, including age, sex, metabolic, and redox 
conditions of the target cells. Hormones are also important determinants of host immune 
responses to influenza and are recently proposed in the prophylaxis and treatment. This 
study shows that female mice are less susceptible than males to mouse-adapted influ-
enza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher 
survival rate (+36%), milder clinical disease, and less weight loss. They also have milder 
histopathological signs, especially free alveolar area is higher than that in males, even 
if pro-inflammatory cytokine production shows slight differences between sexes; hor-
mone levels, moreover, do not vary significantly with infection in our model. Importantly, 
viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 
50%) are lower in PR8-infected females. An analysis of the mechanisms contributing 
to sex disparities observed during infection reveals that the female animals have higher 
total antioxidant power in serum and their lungs are characterized by increase in (i) the 
content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant 
enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression 
of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by 
high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both 
enzymes promoting viral replication. All these factors are critical for cell homeostasis and 
susceptibility to infection. Reappraisal of the importance of the host cell redox state and 
sex-related effects may be useful in the attempt to develop more tailored therapeutic 
interventions in the fight against influenza.
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inTrODUcTiOn

Viruses replicate in the living cells of their hosts and use many 
intracellular pathways for their own advantage. Consequently, 
host factors like age, general health, metabolic, and redox condi-
tions of the cells can have important repercussions on different 
steps of the virus life cycle (1–4). Furthermore, general redox state 
may also affect host immune response to viral replication (5–8). 
Cells containing high levels of thiols, e.g., glutathione (GSH) and 
cysteine content, or characterized by higher antioxidant defenses, 
as well as abundant expression of Bcl-2 proteins family, are less 
permissive to viral replication, including influenza (2). Moreover, 
our and other groups previously demonstrated that cells infected 
with influenza virus were characterized by low levels of GSH 
(2, 9–12) and by an increase of reactive oxygen species (ROS) 
production (10, 11, 13). During influenza virus infection, there is 
also a depletion of key antioxidant enzymes, due to their secretion 
or because of virus-induced loss of lung cells (14, 15). The oxida-
tive stress is useful for the virus since many pathways involved 
in the regulation of viral replication and host responses to viral 
infection are highly responsive to even transient changes in the 
redox state of the cytoplasmic environment (16). In fact, some 
enzymes like protein disulfide isomerase (PDI) or NADPH oxi-
dase 4 (NOX4) regulate specific steps of virus life cycle, including 
the folding and maturation of viral glycoprotein hemagglutinin 
(10) and the nuclear-cytoplasmic export of viral nucleoprotein 
(NP) (11, 17, 18).

Sex and gender, that refer to biology and behavior, respectively 
(19), also impact viral infections. Analysis of several epidemio-
logical studies has highlighted that disease severity and fatality 
following exposure to influenza A viruses are generally higher 
in women than men (19, 20). The mechanisms underlying this 
sex/gender difference are several and tightly interconnected; 
behavioral, immunological, hormonal, and genetic factors are 
all included (20). Focusing on biological factors, it is known that 
females mount a higher immune response than males, which can 
accelerate virus clearance and reduce virus load, but can also make 
females more prone to immunopathology and to development of 
autoimmune disease (21). Klein et al. (20, 22, 23) reported that the 
exaggerated immunity and consequent immunopathology lead 
females to greater morbidity and mortality with respect to males. 
Such a response can be modulated by hormone concentrations, 
and so age may also affect the sex-related variability (24, 25).  
Epidemiological studies in which results were stratified by age 
in fact, report that hospitalization and morbidity rates due to 
influenza A viruses are higher in males than in females from birth 
to 15–19 years (26–31). Non-endocrine factors, as genetic ones, 
could prevail in the latter case. It has been shown that genetic 

variation in chromosome Y regulates susceptibility to influenza 
A virus, making specific variants in males mice more susceptible 
to infection (32).

Interesting parameters that also differently characterize cells 
isolated from male and female animals were the redox ones (33, 34).  
Malorni et al. (35) reported differences between vascular smooth 
muscle cells (VSMC) from male and female rats in terms of “basal” 
redox balance. Either H2O2 or O2

− levels were significantly lower 
in VSMC from females than those from male rats. Moreover, 
the intracellular GSH content was higher in female than in male 
rats. The same authors found that antioxidant enzyme activity 
was significantly higher in VSMC from female than in male, 
independently from the stimuli that induced stress (35, 36). Many 
redox-sensitive cell-signaling pathways are differently activated 
in both sexes (37).

On the basis of this evidence, in this study, we verified the 
hypothesis that host redox state plays a role in sex disparities 
in the outcome of influenza virus infection. To evaluate viral 
replication in male and female mice, we chose the Balb/c strain, 
which is considered a Th2-type strain (38), to better highlight 
the effect of the virus (as opposed to the immune response). 
Female and male mice were infected with a mouse-adapted 
strain of influenza A (H1N1) and the progression of disease 
was monitored by measuring some redox parameters usually 
altered during infection. We found that in terms of both survival 
and clinicopathological parameters of disease, the female mice 
displayed higher resistance to the infection, due to significant 
differences in the systemic and pulmonary “redox profiles” 
between female and male mice.

MaTerials anD MeThODs

In accordance with national law, the experiments described in 
this manuscript were approved by the Italian Ministry of Health, 
which verified the ethical and scientific appropriateness of the 
research. All animals received humane treatment, and every 
effort was made to minimize their suffering. Unless otherwise 
stated, all commercial products cited were used in accordance 
with the manufacturers’ instructions.

Mice and Virus infection
Balb/c 6-week-old mice [400 females, body weight (bw) 
range =  15–19 g; 400 males, bw =  19–23 g] were purchased 
from Harlan Laboratories (Milan, Italy). Animals were housed 
under specific pathogen-free conditions (5/cage, SmartFlow 
IVC Rack, Tecniplast, Varese, Italy) at 12:12 h light:dark cycle, 
and ad  libitum access to food and water. After 1  week, each 
mouse was individually weighed and randomly assigned to an 
experimental group.

A mouse-adapted strain of influenza A/Puerto Rico/8/34 
(H1N1; PR8) was used. In our experiments, 1 plaque-forming unit 
(PFU) of PR8 stock was equivalent to 2.9 × 103 genome copies, 
approximately 2.0 × 103 genome copies/tissue culture infectious 
dose 50% (TCID50) according to the relationship between TCID50 
and PFU provided by the American Type Culture Collection. 
The 50% mouse lethal dose (MLD50) was determined in female 
and male mice that had been lightly anesthetized by isofluorane 

Abbreviations: BALF, broncho-alveolar lavage fluid; CAT, catalase; Gapdh,  
glyceraldehyde-3-phosphate dehydrogenase; Gusb, glucuronidase beta; GCL, gluta-
mate cysteine ligase; GR, glutathione reductase; GSS, glutathione synthase; GSHPx, 
glutathione peroxidase; H&E, hematoxylin & eosin-stained; MLD50, 50% mouse 
lethal dose; NOX4, NADPH oxidase 4; NP, nucleoprotein; GSSG, oxidized glu-
tathione; PRDX, peroxiredoxin; PFU, plaque-forming unit; PDI, protein disulfide 
isomerase; ROS, reactive oxygen species; GSH, reduced glutathione; Rpl13a, ribo-
somal protein L13A; SOD, superoxide dismutase; TCID50, tissue culture infectious 
dose 50%; TAC, total antioxidant capacity; VSMC, vascular smooth muscle cells.
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(Esteve, Milan, Italy) inhalation and intranasally inoculated with 
PR8 at different doses (0.01–10 PFU/animal).

For assessment of morbidity and survival related to seasonal-
like influenza infections, the inoculum consisted of 50  µl of 
sterile phosphate-buffered saline (PBS), alone (mock-infected 
controls) or containing 0.5  PFU/mouse of PR8 (infected 
animals).

Infected and control animals were daily monitored up to 
21 days post-infection (p.i.). Each animal was weighed, its rectal 
temperature was measured (Temp Thermocouple Meter, Oakton, 
USA), and the clinical severity of disease was scored using the 
following scale (39, 40): 0 = no visible signs of disease; 1 = slight 
ruffling of fur; 2  =  ruffled fur, reduced mobility; 3  =  ruffled 
fur, reduced mobility, rapid breathing; 4 = ruffled fur, minimal 
mobility, huddled appearance, rapid and/or labored breathing 
indicative of pneumonia.

At the end of the experiments, the mice were euthanized 
with an overdose of tiletamine/zolazepam (Virbac, Milan, Italy) 
(800 mg/kg bw) and xylazine (Bayer, Milan, Italy) (100 mg/kg bw).  
Specimens for analysis [blood, broncho-alveolar lavage fluid 
(BALF), and lungs] were then collected as described below.

Blood
Serum Total Antioxidant Capacity (TAC) Assay
On p.i. days 3, 6, 9, and 21, blood was collected from the retro-
orbital venous sinuses of control and PR8-infected mice. The 
recovery was made with a Pasteur pipette after ocular instillation 
of oxybuprocaine (1 drop/eye) (Novartis, Siena, Italy). The sample 
was allowed to clot for 45 min (to facilitate removal of all platelets 
and precipitates) and then centrifuged at 10,000 × g for 15 min at 
+4°C. The serum was stored at −80°C prior to assay with the TAC 
Kit (JaICA, Florence, Italy), which measures the sample’s capacity 
to convert Cu+2 to Cu+1.

Sex Hormone Quantification
Testosterone and estradiol quantification was performed using 
a colorimetric competitive enzyme immunoassay kit purchased 
from Enzo Life Sciences (3V Chimica, Rome, Italy), according to 
the manufacturers’ instructions.

Broncho-alveolar lavage Fluid (BalF)
Mice were euthanized, and a sterile 23-G catheter was inserted into 
the exposed tracheal lumen. Two instillations of sterile PBS (0.8 ml) 
containing protease inhibitors (Sigma-Aldrich, Milan, Italy) were 
injected through the catheter and aspirated as previously described 
(41). The BALF samples were centrifuged at 1,000 × g for 15 min at 
+4°C and the supernatant stored at −80°C prior to analysis.

Total Protein Content
For assessment of lung damage, the total protein content of each 
BALF specimen was measured with a standard Micro BCA Kit 
(Pierce, Monza, Italy). BALF samples (150 µl) were pipetted into 
a microplate well, working reagent (150 µl) was added, and the 
plate was incubated at 37°C for 2 h and cooled to room tem-
perature. The optical density of each solution was measured at 
570 nm with a Multiskan Ex Reader (Thermo Fisher Scientific, 
Monza, Italy).

Cytokine Quantification
A multiplex assay was used to measure cytokine (IL-1, IL-6, TNF-α,  
IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1) levels in each BALF 
sample. Plates were read on a Bio-Plex MAGPIX instrument, 
and data were analyzed with Bio-Prosoftware (Bio-Rad, Milan,  
Italy).

lungs
Assay of Viral Titers
Whole lungs isolated from infected female and male mice were 
removed, weighed, frozen, and stored at −80°C. For the quanti-
fication of viral M1 RNA copies, total RNA was extracted from 
thawed lungs that had been homogenized in TRI Reagent (Sigma-
Aldrich, Milan, Italy) (1  ml/75  mg of tissue) with a Polytron 
homogenizer. The RNA pellet was washed with 1  ml of 75% 
ethanol (7,500 × g for 5 min at +4°C) and air-dried for 30 min. 
Diethylpyrocarbonate water (100  µl) was added, and tube was 
heated to 55°C for 15 min to facilitate dissolution. The isolated 
RNA was treated with DNase I (Invitrogen, Life Technologies, 
Monza, Italy), and its quality and quantity were verified spec-
trophometrically (Pearl Nanophotometer, IMPLEN, Munich, 
Germany). The number of viral M1 RNA copies was determined 
by quantitative real time RT-PCR using the One Step Influenza 
A/B r-gene and Quanti FluA kits (BioMérieux, Florence, Italy). 
For the evaluation of TCID50, lungs were homogenized in RPMI 
1640 medium, and homogenates were subjected to TCID50 assay 
on MDCK cells. The number of wells showing positive cytopathic 
effects was scored, and the titer was calculated as previously 
described (42).

Histologic Examination
Lung histology was evaluated in female and male infected mice 
(n = 25/group). Mock-infected mice were used as controls. Mice 
were sacrificed at 3, 6, 9, and 21 days p.i. Each sacrifice was fol-
lowed by complete necroscopy with macroscopic and microscopic 
examinations of the lungs.

For the histopathological and morphological examination, 
each lung was fixed in buffered formalin at room temperature for 
48 h and embedded in paraffin with a melting point of 55–57°C. 
Sections (3-μm thick) were stained with hematoxylin and eosin 
and Masson’s trichrome.

The samples were evaluated independently and blindly by three 
investigators (Caterina Loredana Mammola, Antonio Franchitto, 
and Romina Mancinelli), and necroinflammatory changes were 
scored as follows (43, 44): 0 = no lesions; 1 = mild focal inflam-
mation; 2 = moderate–severe inflammation or necrosis affecting 
less than 25% of lung tissue examined; 3 = severe inflammation 
with necrosis or severe inflammation affecting 25–50% of lung 
tissue examined; 4 = severe inflammation with necrosis affecting 
more than 50% of the lung tissue examined. For each lung, at 
least five slides were analyzed. Briefly, serial paraffin sections were 
obtained per animal. For each sample, 10 fields were analyzed 
per  section. Alveoli were identified and bordered to calculate 
the corresponding areas. All ambiguous structures, airways, and 
vascular structures were excluded. The tissue and airspace areas 
were tabulated using the IAS Delta Sistemi software (Rome, Italy) 
(10, 45–47).
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Assays of Thiols Levels and Antioxidant  
Enzyme Activities
A sterile 23-G butterfly needle was inserted into the euthanized 
mouse’s right ventricle and connected to a peristaltic pump 
(Generalcontrol, Milan, Italy). The lungs were then perfused with 
PBS containing 50  U/ml heparin (Sigma-Aldrich, Milan, Italy) 
to remove erythrocytes and clots. Cuts were made in the liver to 
facilitate perfusate outflow. The lungs were then removed, weighed, 
frozen in liquid nitrogen, and stored at −80°C until assayed.

Intracellular glutathione (GSH) and oxidized forms [oxidized 
glutathione (GSSG)] were measured in lung homogenates with 
the Glutathione Assay Kit (Cayman Chemical, Florence, Italy) 
following the manufacturer’s instructions, after deproteinization 
with metaphosphoric acid of the samples. For GSSG quantifica-
tion, an aliquot of deproteinized samples was first incubated with 
2-vinylpyridine to derivatize GSH. Reduced GSH levels were 
obtained by differences between total GSH and GSSG.

The total amount of free thiols in deproteinized samples from 
lung homogenates and in serum were measured by a standard 
colorimetric assay using Ellman’s reagent (48).

Catalase (CAT), superoxide dismutase (SOD), and glutathione 
peroxidase (GSHPx) activities were also measured with specific 
kits (Cayman Chemical, Florence, Italy). Calculation of enzy-
matic activity was determined following the manufacturer’s 
instructions.

RT-PCR Analysis of Pulmonary mRNA Levels
Total RNA was isolated from the lungs as described above and 
used as a template for generating cDNA (iScript cDNA Synthesis 
Kit, Bio-Rad, Milan, Italy). An aliquot of the cDNA was subjected 
to 40 cycles of RT-PCR amplification (95°C, 10  s; 60°C, 30  s) 
using iQ SYBR Green Supermix and a LightCycler iQ 5 (Bio-Rad, 
Milan, Italy). To ensure that the primers produced a single and 
specific PCR amplification product, a melting curve analysis was 
carried out at the end of the PCR cycle. The housekeeping genes 
glucuronidase beta (Gusb), ribosomal protein L13A (Rpl13a), 
and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) were 
used for normalization. Relative quantitative evaluation was 
performed by the comparative ΔΔCt method.

The following forward and reverse primers were used: 
glutathione reductase (GR) (TTCAGTTGGCATGTCATC for-
ward; CCGTGGATAATTTCTATGTGA reverse), glutathione 
synthase (GSS) (GTGCTACTGATTGCTCAA forward; ACATG 
GATCTTCCTGTCT reverse), glutamate cysteine ligase (GCL) (AA 
GTCCCTCTTCTTTCCA forward; CCTTGAATATTGGCAC 
ATTG reverse), Bcl-2 (CCTACGGATTGACATTCTC forward; AT 
ACATAAGGCAACCACAC reverse), Rpl13a (ATGGGATGAAT 
CAGTTGAG forward; ATAGGGTACTTGGTCAGG reverse),  
Gapdh (TGCGACTTCAACAGCAACTC forward; ATGTAG 
GCCATGAGGTCCAC reverse), Gusb (GTACTCCTTGGAG 
GTGAA forward; TGAATCCTCGTGCTTATTG reverse). The 
results are presented as fold increases relative to levels observed 
in mock-infected control mice.

Western Blot Analysis
Whole lungs of female and male infected mice (n  =  9/group) 
were homogenized in RIPA lysis buffer [20  mM Tris–HCl pH 

7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGDA, 1% NP-40, 
1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM 
β-glycerophosphate, 1% Triton X-100, and 0.1% sodium dodecyl 
sulfate (SDS)] supplemented with phenylmethylsulfonyl fluoride, 
protease inhibitor mixture, and phosphatase inhibitor (Sigma-
Aldrich, Milan, Italy). Lung lysates were incubated for 30 min on 
ice and then centrifuged at 13,000 × g for 30 min. The protein 
concentration of the supernatants was determined with the Micro 
BCA Protein Assay Kit (Pierce, Monza, Italy). Samples were 
separated by SDS-PAGE, blotted onto nitrocellulose membranes, 
blocked with 10% non-fat dry milk, and stained with primary 
(see below) and secondary antibodies peroxidase-conjugated 
(Jackson ImmunoResearch, Milan, Italy). Blots were developed 
with the ECL-Plus Detection System (GE Healthcare, Milan, 
Italy) and subjected to densitometry with the Quantity One 
Program (Bio-Rad, Milan, Italy).

Primary antibodies included rabbit polyclonal anti-NOX4, 
anti-phospho-p38, anti-Bcl-2 (Santa Cruz Biotechnology, Dallas, 
TX, USA); rabbit polyclonal anti-PRDX1 (Abcam); and mouse 
monoclonal anti-actin (Sigma-Aldrich).

statistical analyses
The long-rank test was used to assess the difference in the overall 
Kaplan–Meier survival curves. Variations on bw and tempera-
ture were assigned by using a linear mixed model for repeated 
measures adjusted by baseline value followed by post hoc analysis 
(Bonferroni’s correction). The Wilcoxon test was performed to 
compare the values of Glutathione, viral M1 RNA copies, and 
protein concentrations in BALF in the two groups (all statistical 
analyses were performed using R version 3.3).

Unpaired two-tailed Student’s t-test or one-way ANOVA test 
were used for antioxidant enzyme activity; gene and protein 
expression; cytokine levels; alveolar area in both sexes (statistical 
analysis was performed using GraphPad Prism™ software ver-
sion 6.0).

p-Values of less than 0.05 (p ≤ 0.05) were considered statisti-
cally significant.

resUlTs

Female Mice are More resistant to 
influenza Virus infection Than Males
Female and male Balb/c mice were infected intranasally with 
0.5  PFU/mouse and clinical signs of infection, bw, body tem-
perature, and survival were monitored daily until 21 days after 
infection. The clinical responses and survival rates observed in 
female and male mice up to 21 days p.i are shown in Figure 1. The 
first symptoms of disease (piloerection, reduced food intake, and 
lethargy) appeared in both sexes 4 days p.i. and increased rapidly 
in intensity. The males exhibited more pronounced horripilation 
(as the first sign of pain) than the females and higher clinical 
scores at peak disease intensity (on p.i. days 6–12) (Figure 1A). 
In addition, the percentage of bw decreased rapidly in each male, 
whereas for some females the bw did not decrease considerably. 
The overall trend of bw loss at day 9 p.i. was higher in males than 
in females (26.6 and 23.2%, respectively), even if no statistically 
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FigUre 1 | Female mice are more resistant than males to PR8 infection. Female and male mice were monitored for 21 days after intranasal inoculation with 0.5 
plaque-forming unit of mouse-adapted influenza A virus (PR8). (a) Clinical scores: the graph represents the combined results of two separate experiments, each performed 
with 10 male and 10 female animals. Scores ranged from 0 (no disease) to 4 (signs and symptoms that are indicative of pneumonia). See Section “Materials and Methods” 
for details. (B) Spaghetti plot of the daily body weight (expressed as percentage respect to day 0); the bold lines represent the overall trend. (c) Kaplan–Meier overall 
survival curves. Results represent data pooled from four independent experiments, each performed with 10 males and 10 females (n = 40/sex), ***p-value = 0.001.
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substantial differences were detected (Figure 1B; Figure S1A in 
Supplementary Material). In terms of body temperature, no dif-
ferences were observed in the two groups as well (Figure S1B in 
Supplementary Material).

Nevertheless, the percentage of survival following infection was 
significantly lower among males in comparison to females (53.8 
and 90%, respectively, log rank ***p-value = 0.001) (Figure 1C). 
Furthermore, the average day of death occurred earlier in male 
than in female group (on p.i. day 7 vs. on p.i. day 10).

influenza Virus causes More severe  
lung Damage in Male Mice
To look at the damage caused by PR8 infection in the lungs 
of mice, the animals were euthanized and lungs fixed in 10% 

buffered formalin prior to sectioning at 3 µm and staining with 
hematoxylin & eosin-stained (H&E) and Masson’s trichrome as 
described in Section “Materials and Methods” (Figure 2).

The observation of lung tissues from uninfected control mice 
(n  =  5/sex) did not highlight lesions in any of the sacrificed 
animals. No changes were found in the normal architecture of 
pulmonary parenchyma, as well as in the normal morphology 
of airways, alveolus, and alveolar septa. The free alveolar area for 
these animals (Ctr) compared with that measured in infected 
mice (I) is reported in Figures 2 and 3A. Results are shown for 3, 
6, and 9 days p.i., since on day 21 p.i. both female and male mice 
that survived did not show significant differences. As reported on 
the table under the graph (Figure 3A), the percentage of reduc-
tion of free alveolar area in males was higher than in females.
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FigUre 2 | Influenza A virus produces more severe lung damage in male mice. Hematoxylin & eosin-stained section of the female (a) and male (B) pulmonary 
tissues from mock-infected (Ctr) or infected mice with influenza A virus and sacrificed at different times (3, 6, and 9 days). Early structural changes caused by 
influenza virus in the epithelium of the lower airway are variable, with cytonecrosis involving shrinkage, decreasing in alveolar surface, followed by desquamation of 
these cells into the luminal space. In addition, there is necrosis of the bronchiolar wall, with submucosal edema and vascular congestion. These structural changes 
are irregularly distributed among male and female mice. In fact, the female mice (a) sacrificed after 3 days still show an higher amount of alveolar surface (see the 
asterisks) with some initial alterations, such as thickening of the alveolar septa and inflammatory infiltration (see yellow arrows) compared to the control and the 
corresponding male samples (B). After 6 days, we found an increase in inflammation both in male and female mice, the epithelial layer is desquamating, and 
necrotic epithelial cells are present in the lumen (see green arrows). But, in male (B), massive pulmonary edema and hemorrhage with the alveolar air spaces fill of 
edema fluid and erythrocytes are also present. After 9 days, the male tissue presents a slight worsening of the previous features, whereas the female lungs start to 
display the same aspects, maintaining a greater alveolar area (original magnification 10×).
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In details, in PR8-infected male mice (n = 5) sacrificed after 
3 days p.i. (Figures 2B and 3A), we described initial alterations 
of lungs parenchyma; alveolar area resulted slightly reduced 
compared with control lungs with thickened alveolar septa. In 
addition, all samples showed peripheral edema and alteration of 
epithelium with inflammatory cells adhering to the surface of 
bronchioles. The mean ± SD of free alveolar area was 975 ± 235 
with a % reduction respect to Ctr of 32 ± 16. Female mice lungs 
(n =  5) at 3 days p.i. (Figures 2A and 3A) displayed a similar 
histopathological damage and the mean ± SD of alveolar area was 
1,204 ± 238 with a % reduction of 18 ± 16.

In infected male mice (n  =  5) sacrificed after 6  days p.i. 
(Figures 2B and 3A), we found widespread impairment of pul-
monary parenchyma; the pictures of interstitial pneumonia were 
characterized by the presence of higher inflammatory exudate 
(interstitial and alveolar) with inflammatory cells, fibrin, cellular 
debris, and obvious vascular congestion and areas of necrosis. 

The alveolar area is greatly decreased if compared with the control 
lungs and strikingly, the lungs of the male mice displayed signs 
of more severe damage than those of the females consisting of 
bronchiolitis, peri-bronchiolitis, interstitial edema, alveolar 
wall thickening, dense interstitial granulocyte, and lymphocyte 
infiltrates, and the alveolar area was 708 ± 212 with a % reduction 
of 51 ±  14.8. By p.i. day 6, these lesions already involved over 
25% of the considered parenchyma, and similar involvement 
was observed in survivors sacrificed 9  days p.i. Female mice 
lungs (n = 5) at 6 days p.i. (Figures 2A and 3A) showed similar 
histopathological alterations from a qualitative point of view, 
but larger preserved parenchymal areas; therefore, the alveolar 
area was significantly higher than male mice and this difference 
persisted for the duration of the experiment, indicating that 
the virally induced inflammation had a lower impact on lung’s 
female (alveolar area: mean ± SD 996 ± 286 with a % reduction 
of 32 ± 19.5).
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FigUre 3 | Male mice display reduced alveolar area compared with females. (a) Morphometric analysis at different days post-infection in female (F) and male (M) 
mice infected as described in Figure 2. The graph shows box-plots of alveolar area (μm2) of PR8-infected (I) and mock-infected mice (Ctr). **p-Value <0.01 
females vs. males (unpaired t-test); ***p-value <0.001 Infected vs. Ctr (One-way ANOVA Bonferroni multiple comparisons test). On table below the graph, the 
percentage of reduction of free to air exchange vs. mock-infected (considered 100%), and the score of inflammation and necrosis (NI score) are shown. #Relevant 
reduction of the alveolar area, thickening of the alveolar septa, vascular congestion. (B) Box-plots of protein concentrations in the BALF from mock-infected (Ctr) 
and PR8-infected female and male mice at the time points indicated. Results represent data pooled from three separate experiments. In details, mock-infected 
mice were 10 (5/sex), infected mice on p.i. day 3 were 19 (9 females and 10 males), on p.i. day 6 were 19 (10 females and 9 males), on p.i. day 9 were 18 (9/sex), 
**p-value = 0.006.
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In infected male mice lungs (n = 5) at 9 days p.i. (Figures 2B 
and 3A), diffuse impairment of pulmonary parenchyma was 
observed. The “alveolar area” was greatly reduced compared with 
the lung of the controls but lightly reduced compared with the 
animals after 6 days p.i. (free alveolar area 625 ± 213 with a % 
reduction of 56 ± 14.9). Mice female lungs (n = 5) at 9 days p.i. 
(Figures 2A and 3A) presented chronic flogistic infiltrate with 
prevalent interstitial localization activated by epithelial/endothe-
lial lesions: the picture is similar to that of male animals, but there 

are a lower incidence of collagen and exudative deposition and 
necrosis; moreover, reconstitution areas of the alveolar epithe-
lium is observed in female lungs (free alveolar area 837 ± 230 with 
a % reduction of 43 ± 15.7).

Finally, as an indirect measure of the diffuse alveolar damage, 
protein concentrations in BALF samples from PR8-infected mice 
and mock-infected controls (Ctr) were assessed. As shown in 
Figure 3B, increases were observed on p.i. day 6 in infected ani-
mals of both sexes. By p.i. day 9 (when maximal lung damage was 
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FigUre 4 | Inflammatory cytokine production in infected mice. BALF concentrations of IL-1, IL-6, TNF-α, IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1 were 
measured in male (M) and female (F) mice from the mock-infected (Ctr) and PR8-infected groups. The data (mean ± SEM) are represented as the concentration of 
cytokines at days 3, 6, and 9 p.i. relative to Ctr. Results are obtained from five different experiments, each performed with seven male and seven female mice. 
*p-Value <0.05 (female vs. male group); ap-value <0.05 (differences within a sex across time-points p.i.).
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noted in lung sections), BALF protein levels were significantly 
higher in the male group (**p-value = 0.006).

From a molecular point of view, a panel of different inflam-
matory cytokines and chemokines (IL-1, IL-6, TNF-α, IL-10, 
IFN-γ, CCL2-MCP1, and CCL3-MIP1) was evaluated in 
BALF from males and females mice. As shown in Figure  4, 
both sexes produced all the cytokines and their levels were 
higher than those measured in mock-infected mice. In fact, 
the pro-inflammatory cytokines IL-6, TNF-α, and IL-1 were 
increased in both sexes, the latter particularly in males. Instead, 
IFN-γ cytokine levels resulted more pronounced in females. 

Regarding chemokines CCL2-MCP1 and CCL3-MIP1, an 
increase was observed in both sexes, with MIP-1 higher in 
males. The immunosuppressive cytokine (IL-10) was increased 
in males on day 6 p.i.

These results apparently contradicted most of the literature 
that report that adult female mice experienced a greater mor-
bidity and mortality after influenza virus infection than males, 
and this was correlated to immunopathology (24, 49); because 
hormones affect the immune response to viral infection, we 
wondered what are the hormonal levels in our model. We found 
plasma estradiol levels of 39.75 ± 18.6 pg/ml in control female 
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FigUre 5 | Viral M1 RNA copies are highly produced by infected males. (a) Box-plots of the viral M1 RNA copies measured by quantitative RT-PCR in 
homogenates of lungs collected on p.i. days 3, 6, and 9. Results represent data pooled from four independent experiments, each performed with five females  
and five males for each time-point (n = 20/sex), **p-value = 0.004. (B) Box-plots of the viral M1 RNA copies in BALF measured by RT-PCR on p.i. days 3, 6,  
and 9. Data shown are from one of the three experiments performed (each with five male and five female mice).
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mice and 30.3 ± 9.5 pg/ml in infected females (p.i. day 6); regard-
ing testosterone, we measured 18.74 ± 6.2 ng/ml in control males 
and 15.12 ± 1.6 ng/ml in infected males (p.i. day 6); therefore, no 
significant differences in hormone level between uninfected and 
infected mice were detectable.

As the lung damage appeared less severe in females and on 
the basis of the results from hormone quantification, which 
seemed not to change during infection, we finally looked at 
the viral replication. As displayed in Figure 5A, viral M1 RNA 
copies in lung homogenates were consistently higher in the male 
group, and this difference was statistically significant on p.i. day 
6 (**p-value = 0.004). Similarly, viral M1 RNA copies measured 
in BALF samples were also considerably higher in males than 
in females, during peak illness (Figure 5B). Accordingly, on p.i. 
day 6, the TCID50 measured on lung homogenates obtained from 

infected male mice was higher than in female mice (1,582 ± 457 
and 654 ± 32 U/ml, respectively).

Therefore, collectively these data suggest that the higher mor-
bidity and, consequently, the lower survival, as well as the more 
severe and extended lung damage exhibited by PR8-infected male 
mice, may be the result of a higher replication of influenza virus 
in the lungs of the male mice.

enhanced systemic antioxidant  
Power Protects Female Mice  
During Viral infection
Influenza virus infection is known to be strongly conditioned 
by host redox environment, including the intracellular GSH 
content, antioxidant defense, and expression of redox-regulated 
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FigUre 6 | Antioxidant defenses are higher in infected female mice.  
(a) Serum from mock-infected (Ctr) and PR8-infected mice was collected  
on p.i. days 3, 6, 9, and 21 and assayed with the potential antioxidant test, 
which measures the total antioxidant power in terms of the sample’s ability to 
reduce copper. (B) Lung homogenates from Ctr and PR8-infected mice were 
assayed for CAT activity at the same time points than in panel (a). Each  
value reported represents the mean ± SD of results from two separate 
experiments, each performed in duplicate (n = 4), *p-value <0.05 and 
**p-value <0.01. (c) Peroxiredoxin (PRDX)1 protein expression was analyzed 
by western blotting in the lungs of infected female and male mice. Actin was 
used as loading control. Blot shows three animals for each sex (*p-value 
≤0.05) and is representative of three independent experiments performed.
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cell pathways (2, 9–13, 17, 18). To determine whether these 
factors contributed to the sexual disparities in susceptibility to 
PR8 infection observed in our model, we first compared the 
TAC of female and male mice. The TAC reflects the abundance 
of antioxidant molecules and enzymes available in the blood to 
counteract the effects of ROS/reactive nitrogen species, such as 
those produced during viral infection. As shown in Figure 6A, 
mock-infected female mice displayed appreciably higher TAC 
than their male counterparts. More striking sex-related differ-
ences were seen in PR8-infected mice. The reduction potential 
of serum from female mice remained high (near baseline 
levels) throughout the viral infection, whereas that of the males 
dropped significantly. On p.i. days 3 and 6, the TAC recorded 
for the males was significantly lower than those of the females 
(unpaired t-test **p-value <0.01). By p.i. day 21, TAC of surviv-
ing animals had returned to their respective baseline levels, 
which were once again lower in males. Accordingly, the analysis 

of free thiols in serum and lung homogenates from infected 
and mock-infected mice showed a slight reduction in infected 
males compared with mock infected, while no differences were 
detectable between infected and non-infected females (data not 
shown).

Next, we assessed antioxidant enzyme activities in lung 
homogenates. As shown in Figure 6B in mock-infected controls, 
CAT activity did not significantly differ among males and females. 
After PR8 infection, however, CAT activity in the lungs of male 
mice dropped substantially, reaching levels on p.i. days 3 and 6 
that were significantly lower than those of the female group, which 
remained stable throughout the viral infection (unpaired t-test 
*p-value <0.05).

Activity of SOD increased appreciably in both sexes on 
p.i. day 3, but this change was not statistically significant. 
Essentially, PR8 infection was not associated with any sig-
nificant change in pulmonary SOD activity in either the female 
or male mice, and no significant sex-related differences were 
observed at any of the time points (Figure S2 in Supplementary 
Material). Furthermore, we measured GSHPx activity, find-
ing that it decreased significantly in both sexes but in greater 
extent in infected male mice than female. To note that female 
mock-infected mice showed significantly higher basal activity 
of this enzyme (Figure S3 in Supplementary Material). Finally, 
the expression of another antioxidant enzyme, peroxiredoxin 
(PRDX)1, was analyzed by western blot in lung of infected 
female and male mice at p.i. days 3 and 6 (time when the maxi-
mal difference in redox conditions was observed). As shown in 
Figure 6C, the expression of this enzyme was higher in females 
than in males. The densitometric analysis of ratio PRDX1/actin 
of three animals for each sex at 3 and 6 days p.i. was 1.5- and 
3-fold higher, respectively, unpaired t-test *p-value ≤0.05, sug-
gesting that females are more protected by influenza for the 
presence of reducing conditions.

The intracellular content and Biosynthesis 
of gsh are Preserved in infected  
Female Mice
Influenza virus infection is associated with reductions in the 
GSH content of infected cells, which facilitate viral replica-
tion (2, 9–12). As shown in Figure  7A, basal levels of GSH 
in lung homogenates from the mock-infected control group 
were slightly higher and less variable in females than in males.  
As expected, levels decreased in both sexes after infection, but 
on p.i. day 6, there was a sharp drop in the GSH content of 
male lungs, which resulted in significantly lower levels than 
those found in females (*p-value  =  0.034). Interestingly, this 
drop coincided with the time of viral loads peak in the lungs of 
the male mice.

Reduced glutathione depletion may be due to its buffering role 
against ROS that, during viral infection, essentially derive from 
NOX4 (11). Therefore, we evaluated the expression of this enzyme 
in the lung homogenate of females and males. Densitometric 
analysis of three animals for both sexes demonstrated that NOX4 
was less expressed in females than in males (3 and 6 days p.i., 
1.5-fold lower, unpaired t-test *p-value ≤0.05; Figure 7B).
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FigUre 7 | Pulmonary intracellular reduced glutathione (GSH) levels are higher in females than in males. (a) GSH content was measured in the lungs of mock-
infected (Ctr) or infected (I) female and male mice sacrificed at indicated time points. Results represent data pooled from four separate experiments. In details, 
mock-infected mice were 12 (6/sex), infected mice on p.i. day 3 were 12 (6/sex), on p.i. day 6 were 30 (15/sex), on p.i. day 9 were 25 (13 females and 12 males) 
*p-value = 0.034. (B) NADPH oxidase 4 (NOX4) expression was analyzed by western blotting in the lungs of infected female and male mice. Actin was used as 
loading control. Blots shown are one representative experiment of three performed (three animals for each sex, *p-value ≤0.05). (c) RT-PCR quantification of 
enzymes responsible for recycling and biosynthesis of GSH [glutathione reductase (GR), glutamate cysteine ligase (GCL), and glutathione synthase (GSS)]. Gene 
expression was measured in lung homogenates of animals sacrificed on p.i. days 3, 6, and 9. Box-plots represent the fold increases relative to levels observed in 
mock-infected controls (n = 8/sex). Unpaired t-test *p-value ≤0.05.
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Intracellular GSH is regenerated from the oxidized form 
(GSSG) by GR or synthesized ex novo by the consecutive actions 
of GCL and GSS (50). Our next step was thus aimed at determin-
ing whether the sex-related differences in pulmonary GSH levels 
were also associated with differences in transcriptional expres-
sion of these three enzymes. As shown in Figure 7C, compared 

with their male counterparts, female PR8-infected mice showed 
a greater upregulation of GCL and GSS expression, suggesting 
more efficiency in counteracting PR8-induced GSH depletion 
(unpaired t-test *p-value <0.05). Collectively, these results 
indicate that female mice have an intrinsically higher antioxidant 
capacity, and during PR8 infection they are also capable of more 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 8 | Female mice respond to PR8 infection with marked upregulation 
of Bcl-2 expression. (a) p-p38MAPK expression was analyzed by western 
blotting in the lungs of infected female and male mice at 3 days p.i. (three 
animals for each sex, *p-value = 0.02). (B) RT-PCR quantification of bcl-2 
gene expression in the lung homogenates of infected mice euthanized on  
p.i. days 3 and 6. Box-plots represent the fold increases relative to levels 
observed in mock-infected controls (n = 8/sex), unpaired t-test  
**p-value = 0.0018; ***p-value = 0.0002. (c) Bcl-2 protein expression was 
analyzed by western blotting in the lungs of infected female and male mice. 
Actin was used as loading control. Blots shown are one representative 
experiment of three performed (three animals for each sex, *p-value ≤0.05).
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efficient restoration of the physiological redox milieu in terms of 
GSH content that could be due to the upregulation of its synthesis.

lung homogenates From Females 
contain higher levels of the  
anti-apoptotic Bcl-2 Protein
Several intracellular redox-regulated pathways are involved in 
regulation of influenza virus replication, particularly the kinase 
p38MAP that is activated by NOX4-derived ROS (11). In cells 
that are highly permissive to viral infection, activated p38MAPK 
is entirely addressed to the nucleus, in which it participates effi-
ciently in vRNP phosphorylation. In cells that are characterized by 
high levels of GSH and abundant expression of the anti-apoptotic 
protein Bcl-2, influenza virus replication is reduced (2). The 
inhibition is due to co-localization of activated p38MAPK with 
its cytosolic substrate (Bcl-2) and block of its translocation to the 
nucleus. As a consequence, NP is retained in the nucleus and viral 
replication is inhibited (18). Thus, we decided to evaluate whether 
the differences in viral load observed between the two sexes were 
also related to differences in p38MAPK activation and in Bcl-2 
expression in the lungs. We found that p38MAPK was early acti-
vated in both groups on p.i. day 3 (Figure 8A). However, densito-
metric analysis of three different animals revealed that the kinase 
was more activated (almost twofold) in males compared to three 
homogenates of females (unpaired t-test *p-value = 0.02), thereby 
indicating more efficiency of p38MAPK in males. Afterward, we 
evaluated the expression of Bcl-2 (both mRNA and protein) in 
the lungs of females and males on p.i. days 3 and 6. We found that 
during viral infection, female mice exhibited more substantial bcl-2 
gene upregulation compared with males (Figure  8B unpaired 
t-test: **p-value  =  0.0018; ***p-value  =  0.0002). Specifically, 
bcl-2 transcript levels in females were approximately two times 
as high as those found from mock-infected controls. On the 
contrary, there was no significant upregulation in the male mice. 
At the same time, densitometric analysis three different animals 
revealed that Bcl-2 protein levels found in the lung homogenates 
were also clearly higher in the female group (Figure 8C, 3 and 
6 days p.i., unpaired t-test *p-value ≤0.05).

All these results indicate that during PR8 viral infection, 
females activate transcriptional processes to maintain high levels 
of Bcl-2 protein. This event might contribute to keep p38MAPK 
in the cytosol and to inhibit NP traffic and viral replication.

DiscUssiOn

In this article, we focused on one of the in vivo mechanisms con-
tributing to sex-related disparities in influenza virus infection.  
In particular, we pointed at systemic and organ redox state as 
critical determinant for influenza virus replication. We found 
that female mice infected with PR8 displayed a higher survival 
rate, milder clinical disease, and lower pulmonary viral loads 
than their male counterparts. These sex-based disparities cor-
relate largely on differences between the redox conditions in the 
female and male animals. Mock-infected female mice have an 
intrinsically higher antioxidant capacity, measured as total serum 
antioxidant power and GSH content in lung homogenates. These 

better physiological conditions persist during viral infection 
when we observed: upregulation of enzymes responsible for GSH 
biosynthesis, higher level of PRDX1, maintenance of CAT activ-
ity, and a less decrease of GSHPx activity. Infected females display 
also higher expression (at the mRNA and protein levels) of the 
anti-apoptotic protein Bcl-2, which is involved in the regulation 
of specific steps of influenza virus replication (2, 18). On the other 
hand, infected male mice displayed high expression of NOX4 
enzyme, and increased levels of phosphorylated p38MAPK.

The impact of sex on susceptibility to viral infections has 
been hypothesized several years ago (51). Generally, females and 
males of various species respond differently to many DNA and 
RNA viruses. The mechanisms underpinning sex differences in 
response to viral infections are controversial, and roles for immu-
nological, hormonal, behavioral, epigenetic, and genetic factors 
have all been proposed (20, 52).
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It has been shown that females generate stronger innate and 
adaptive immune responses than males, with immune cells higher 
in number and activity, as well as with higher antibodies levels 
than males (21–23). This immunological advantage contributes 
to virus clearance, but on the other hand it makes females more 
prone to autoimmune diseases and to infectious disease-derived 
immunopathology (21–23). In fact, infectious diseases pathogen-
esis derives both from the pathogen and from the host immune 
response (22, 23). Influenza viruses can cause severe disease as 
interstitial pneumonia and bronchiolitis, characterized by typical 
inflammatory anatomical–pathological lesions and sometimes, 
massive hemorrhage, with interstitial, bronchiolar, and alveolar 
localization (53).

In addition to a massive cell infiltrates in the infected lungs, 
there is an overproduction of several pro-inflammatory cytokines 
and chemokines (54, 55). In fact, in this study, we observed his-
topathological alterations relative to interstitial pneumonia and 
in line with this observation, we found high levels of IL-1, IL-6, 
TNF-α, IL-10, IFN-γ, CCL2-MCP1, and CCL3-MIP1 in infected 
mice of both sexes.

However, the picture in female mice appeared different because 
of larger preserved parenchymal areas and a consequently total 
alveolar area significantly higher than in male mice. This differ-
ence persisted during the infection, suggesting that the virally 
induced inflammation had a lower impact on lung’s female. 
Hormones exert a complex role in inflammation, in particular, 
estradiol enhances inflammation at low doses, but reduces it at 
higher concentrations (56), while low concentration of testos-
terone has reported to have a negative impact on the outcome 
of influenza disease (57). In our model, we found basal levels of 
estradiol, which did not significantly change with the infection, 
similar to that reported by Robinson et al. (24). Although a slight 
decrease, testosterone as well did not significantly vary with the 
infection. Therefore, in the attempt to explain the less severe lung 
damage that we observed in females, especially between 6 and 
9 days p.i., we looked at the pathogen: we found lower viral titer 
in lung homogenates and BALF from female mice, with a lower 
infectivity, as shown by TCID50. So, these results lead us to argue 
that the lower impact observed in females is related to a less extent 
of virus replication and spread, more than a host immune effect.

With this hypothesis our attention focused on viral replica-
tion and the possible redox-related mechanisms underlying 
sex disparity. Female and male mice differed remarkably in 
terms of their basal redox state and their ability to counteract 
virus-associated oxidative imbalance. Prior to inoculation, more 
reducing conditions were found in the female animals in terms 
of GSH levels in the lungs and the TAC. These differences are 
in line with those reported in VSMC isolated from the aortas of 
male and female rats (35). In vitro data suggest that this sexual 
dimorphism can be maintained after the induction of oxidative 
stress, which results in females displaying greater resistance 
to oxidative injury and an increased capacity to counteract it 
(35). For example, some authors report different sex-dependent 
susceptibility to cytotoxic agents and treatments that is related 
to the incapacity of XY neurons to maintain GSH intracellular 
levels (58). Our in  vivo findings support this view: during the 
course of influenza virus infection, the intrinsic redox balance, 

i.e., reducing conditions, was more effectively maintained in the 
female mice. In these animals, inoculation was promptly followed 
by the activation of enzymes involved in biosynthesis of GSH 
aimed at counteracting the GSH depletion induced by the virus. 
The period of upregulated GSH synthesis and higher levels of 
GSH in the females coincided with the period characterized by 
peak viral loads in males.

Thiols are key players in conditions of oxidative stress. Most 
non-protein antioxidants as well as antioxidant enzymes are thiol 
based (59). GSH acts as radical scavenger by directly neutralizing 
a variety of reactive molecules, like superoxide anion and hydrox-
ylradicals (60), and indirectly through enzymatic reactions being 
a cofactor of GSHPx (61). Here, we found in male mice, higher 
levels of NOX4, one of the major enzymes producing ROS, thus 
suggesting that GSH depletion in males might be due to its 
consumption for its ROS buffering function. In fact, we have pre-
viously demonstrated that inhibition of NOX4 activity through 
chemical inhibitors or RNA silencing blocks the influenza virus-
induced ROS increase, restores the content of GSH, and inhibits 
viral replication (11). Interestingly, several studies demonstrate 
that estrogens inhibit ROS production (56) by modulating anti-
oxidant enzyme activities (62); estrogen levels have been shown 
also to be positively correlated to GSHPx activity in women, while 
no significant correlation was observed with SOD (63, 64) that 
in our model did not change between sexes. Moreover, estradiol 
has been shown to increase expression of GCL (65), that is the 
rate-limiting enzyme for the synthesis of GSH (60) and therefore, 
together with GSS and GSHPx, closely linked to the GSH levels. 
On the contrary, testosterone has been shown to have pro-oxidant 
effect (66, 67) and so we cannot exclude that it could contribute to 
viral replication in males by activating redox-sensitive pathways. 
We also found a drop in CAT activity in infected males, especially 
when the viral replication peaked at 6  days p.i. Accordingly, a 
time-dependent decrease in CAT activity has been observed in 
parallel to increase in influenza NS1-protein expression (13).

Several authors report that by restoring reducing conditions, 
viral replication and virus-induced host damage are inhibited, 
suggesting antioxidant therapy as a potential antiviral strategy 
(8, 9, 68–70). Indeed, various synthesized or natural compounds 
characterized by antioxidant activity have been proposed as 
anti-influenza agents (17, 71–76). For example, our group has 
shown that GSH treatment strongly inhibits viral replication by 
impairing glycoprotein folding (10); on the other hand, we have 
recently shown that GSH depletion increased influenza virus 
replication by preventing activation of innate antiviral response 
(7). Indeed, the role of GSH in modulating immune response is 
well known (8, 77–79). For example, in antigen-presenting cells, 
GSH depletion correlates with defective antigen processing and 
reduced secretion of T helper 1 (Th1) cytokines, thus favoring 
polarization from the typical Th1 profile toward a Th2 response 
(8). Furthermore, in T  lymphocytes, intracellular GSH content 
is critical for their proliferation as well as extracellular thiols for 
their activation and function. Angelini et al. (80) demonstrated 
that exogenous thiols, i.e., free cysteine and thioredoxin, were 
released by monocyte-derived human dendritic cells (DCs) in 
the extracellular space to provide a reducing microenvironment 
required for T  lymphocyte activation and an efficient immune 
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response. In our study, we found a slight decrease of free thiols 
in the lung homogenates and serum of infected males, while no 
changes were observed in infected females compared with con-
trol. It would be interesting to investigate whether the observed 
decrement in males is due to a dysfunction of DCs and to impair-
ment in T lymphocyte activation.

The imbalance in the redox state is fundamental for the 
activation of many cell factors, involved in the regulation of host 
response and in the control of influenza virus life cycle (16). 
Among them, MAPKs and Bcl-2 protein regulate the intracellular 
trafficking of the viral NP (18). In this study, we found that phos-
phorylation of p38MAPK is highly expressed in lung homogenate 
of males, suggesting that this phenomenon could explain in part 
the high viral load measured in males. Conversely, we found Bcl-2 
to be highly expressed in the lungs of infected female mice, at 
both transcriptional and translational level. Furthermore, over-
expression of Bcl-2 protein has been hypothesized to be associated 
with increased GSH levels (81, 82), and these characteristics have 
been found in lung homogenates of female infected mice. Based 
on this evidence, we can hypothesize that in females the more 
resistance to oxidative damage during PR8 infection may impair 
virus replication probably by blocking viral protein maturation 
and vRNP complex formation.

A final point to be considered in this scenario concerns the 
hypothesized role of autophagy, a cytoprotective host process that 
is subverted by the influenza virus to ensure its own replication 
(83). Metabolic stress appears to bolster a stronger, more sustained 
autophagic response in cells from females than in those collected 
from males (84). Therefore, we cannot exclude the possibility 
that more effective autophagic cytoprotection in lung cells from 
female mice led to a “weaker” cytopathological cascade.

In conclusion, our data suggest that the mechanisms under-
lying the sexual disparities observed in the host response to 
influenza can be ascribed in part to differences in their capacity 
to maintain redox homeostasis. In fact, in our model, we have 
found that females are more resistant to the influenza virus due 
to their ability to maintain reduced conditions during infec-
tion, thereby hindering completion of the virus life cycle and 
inhibiting viral replication. Therefore, although further studies 
are needed to fine characterize redox mechanisms underlying 
sex disparities in infections, i.e., the use of different antioxidants 
like N-acetylcysteine, GSH, or natural polyphenols, as well as the 
silencing of antioxidant enzymes that regulate viral replication, 
our findings may contribute to the identification of new targets 
for sex-based antiviral therapies. Indeed, generally, sex-related 
differences are not considered in current strategies for the preven-
tion, management, and treatment of many diseases (85). Instead, 
a more detailed knowledge of the metabolic conditions that 
characterize the two sexes could ultimately improve our ability to 

provide patients with individualized therapies and cost-effective 
solutions.
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FigUre s1 | Body weight (bw) and temperature in female and male infected 
mice. (a) Spaghetti plot of the daily bw (expressed in grams); the bold lines 
represent the overall trend. (B) Spaghetti plot of the daily body temperature,  
the bold lines represent the overall trend. Results represent data pooled from  
4 independent experiments, each performed with 10 males and 10 females 
(n = 40/sex).

FigUre s2 | No differences in superoxide dismutase (SOD) activity were 
observed in infected female and male mice. Lung homogenates from Ctr and 
PR8-infected mice were assayed for SOD activity on p.i. days 3, 6, 9, and 21. 
Each value reported represents the mean ± SD of results from two separate 
experiments, each performed in duplicate (n = 4).

FigUre s3 | Glutathione peroxidase (GSHPx) activity is less reduced in infected 
female mice. Lung homogenates from Ctr and PR8-infected mice were assayed 
for GSHPx activity on p.i. day 6. Each value reported represents the mean ± SD 
of results from 3 mice/sex, each performed in triplicate (n = 9). One-way ANOVA 
test **p-value <0.01; ***p-value <0.001.
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