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Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas con-
ventional vaccines are based on the administration of an antigen and an adjuvant in an 
independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and 
adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules 
that facilitate target-specific antigen delivery to certain antigen-presenting cell types or 
tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent 
on the modifications of the nanocarrier itself. One of these is the formation of a protein 
corona around NC after in vivo administration, which may potently affect cell-specific 
targeting and uptake of the NC. Understanding the formation and composition of the 
protein corona is, therefore, of major importance for the use of nanocarriers in vaccine 
approaches. This Mini Review will give a short overview of potential non-specific interac-
tions of NC with body fluids or cell surfaces that need to be considered for the design of 
NC vaccines for immunotherapy of cancer.
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inTRODUCTiOn

Immunotherapy of tumors has hit every day clinical practice in formerly hard-to-treat cancers due 
to the introduction of immune checkpoint modulators that block inhibitory, surface expressed mol-
ecules by antibodies (1). However, the use of antibodies against checkpoint inhibitors is not specific 
for a tumor antigen, since it reactivates pre-existing tumor immunity rather than priming novel 
T cell responses. This may result in insufficient clinical responses and in immune-related side effects 
due to unwanted autoimmunity in a substantial number of patients (2). The induction of tumor 
antigen-specific immunity remains a major goal of cancer therapy, targeting either overexpressed 
proteins or neoantigens that are unique to the individual tumor (3).

Tumor antigen-specific immunotherapy requires the delivery of the antigen—either as peptide, 
protein, DNA, or mRNA—to the correct cell type (4). Thus, targeting of antigen-presenting cells 
(APC), and concomitant induction of an appropriate APC activation status that enables immu-
nogenic antigen presentation, is crucial for the success of therapeutic vaccination approaches (5). 
Nanotechnology holds great promise to transfer a packaged, protected cargo (antigen plus adjuvant) 
in high concentrations into the desired cell type by using appropriate nanocarriers (NC) (6). Indeed, 
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FiGURe 1 | The functional design of NC and their protein interactions determine the character of cellular binding. Functional design: antibodies specific for receptors 
expressed by the target cell type are supposed to mediate cell type-specific targeting. In case of non-directed conjugation, the exposed Fc portion may result  
in binding to Fc receptor expressing cells. The adjuvant itself may mediate receptor specific binding as reported for toll-like receptor 9-activating CpG-rich 
oligonucleotides which target CD205 in vivo. Under standard culture conditions in vitro, however, oligonucleotides engage class A scavenger receptors (SR).  
The antigen may exert receptor-specific targeting, e.g., when mannosylated or in case of using a protein which constitutes a genuine receptor ligand. Protein 
interactions: recognition of the NC surface by components of the innate immune system like natural antibodies may yield Fc receptor binding and classical 
complement pathway activation. Direct recognition of the NC surface may trigger lectin-dependent/alternative complement pathways. Surface-deposited active  
C3 and C4 fragments mediate binding of complement receptors. Moreover, parameters of the NC surface like charge and hydrophobic/hydrophilic state determine 
the composition of the protein corona as well which in turn regulate subsequent cellular binding: albumin when adsorbed onto the NC surface in a denatured state 
enhances NC binding to SR. NC-adsorbed ApoH also elevates cellular binding. In contrast to these “opsonins” other factors like ApoA4, and (native) albumin as  
well as the “don’t eat me” signal protein CD47 and proteins found accumulated in the protein corona of PEGylated NC (e.g., clusterin) serve to reduce cellular 
interactions, and therefore were termed dysopsonins. The role of nanocarrier functionalizations and protein corona constituents for cellular binding is explained  
in more detail in Table S1 in Supplementary Material.
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vaccination studies using NC have demonstrated their great 
potential as universal vaccine platforms (7). Numerous strategies 
for specific targeting of NC to APC have been pursued, includ-
ing the use of antibodies or their derivatives, natural ligands for 
receptors on the APC surface, aptamers, cystine knot proteins, or 
by modifying biophysical characteristics of the NC such as size 
and surface charge.

However, appropriate targeting of systemically applied NC to 
APC can be affected by unintended interactions of the NC surface 
with components of blood plasma (8) and/or with cell surface 
structures (9) that are unrelated to the specific targeting structure. 
The “protein corona” around NC may affect their organ-specific 
or cell type-specific trafficking as well as endocytosis and/or func-
tional properties of the NC (10). Most importantly, the protein 
corona has been shown to interfere with targeting moieties used 
to induce receptor-mediated uptake of the NC, both inhibiting 
(11) and enhancing (12) internalization by specific cell types. 
Moreover, the protein corona is taken up by the target cell, which 

may alter their function. In this review, we will address various 
properties of the NC cargo and of the protein corona for targeted 
delivery of nanovaccines (Figure 1; Table S1 in Supplementary 
Material).

nAnOvACCineS

Conventional vaccines that include a tumor antigen and an adju-
vant do not specifically address specific types of APC. In addition, 
both components may dissociate and cause unwanted side effects. 
On the one hand, uptake of an antigen in the absence of an adju-
vant by endocytic/phagocytic APC, but also by tumor-promoted 
myeloid-derived suppressor cells and tumor-associated mac-
rophages (13) may cause tumor immune tolerance. On the other 
hand, stimulation of APC by an adjuvant alone may promote 
autoimmune reactions (14).

In general, nanovaccines can facilitate co-delivery of antigen 
and adjuvant. Earlier studies have shown that the stimulatory 
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activity of a given adjuvant was enhanced when applied as a par-
ticulate formulation (15). For example, CpG-rich oligonucleo-
tides, which engage endo/lysosomal Toll-like receptor 9 (TLR9) 
and are employed in clinical trials to boost anti-tumor responses 
(16), on an equimolar base exerted much stronger APC stimula-
tion when coupled to a NC (15). Moreover, more recently small 
molecular TLR7/8 imidazoquinoline agonists were shown to be 
effective vaccine adjuvants when coupled to nanogels that drain 
lymph nodes, whereas they failed to trigger an immune response 
against co-injected antigen when applied in soluble form (17, 18).

For a number of nanovaccines containing antigen plus adju-
vant, endocytic uptake by myeloid immune cell types has 
been reported, termed “passive targeting” (19). However, to 
prevent competitive uptake by unwanted phagocytically active 
myeloid cells (20), a specific targeting of APC which is capable 
to induce a (primary) anti-tumor response is essential. In this 
regard, dendritic cells (DC) are in the focus of nanovaccine 
development (21) since they are potently capable of priming 
naïve T cells (22). Most DC subpopulations present exogenous 
antigens rather exclusively via MHC-II. In order to obtain a 
profound antigen-specific CD8+ T cell response to directly kill 
malignant (or infected) cells, current approaches aim to target 
cross-presenting DC subpopulations (23, 24) which in mouse 
express surface receptors like CD205 (25), CLEC9a, and XCR1 
at high levels (26). To this end, natural ligands of these surface 
receptors including mannose (27) and XCL1 (28) were success-
fully tested for DC targeting. As an alternative, receptor-targeting 
antibodies have been used (25, 29).

The surface marker which is used to target specific cell popu-
lations can also trigger uptake and may determine the intracel-
lular route and ultimately the effectiveness of immune activation 
(30, 31). For example, using CD205 as a targeted surface marker 
seems to be favorable (32) as it enhances cross-presentation on 
MHC-I but also has a high amount of antigen peptides presented 
on MHC-II (25). We could recently show that a nanocarrier 
which co-delivered the model antigen ovalbumin (OVA) as 
well as an adjuvant (CpG-rich oligo) and was further decorated 
with a CD205-targeting antibody, yielded profound therapeutic 
activity in a mouse B16-OVA tumor model (12). In contrast, 
treatment of tumor-burdened mice with a nanovaccine formula-
tion that lacked the DC-targeting antibody had no therapeutic 
effect. Interestingly, CD205-targeted delivery does not always 
accumulate antigens to DC when compared to mannose targeting 
(33). Thus, intracellular processing is as important as the vaccine 
dose that is taken up. The speed of internalization has also been 
suggested to play a role as in some studies slower internalization 
may favor better the preservation of MHC-I epitopes (33). It has 
been hypothesized that early endosomes that are involved in 
slow uptake processes have a lower concentration of proteases 
and thus avoidance of late endosomes seems to be favorable in 
this context. Certainly, lysosomal degradation occurs later with 
slower transport processes and the amount of peptides not totally 
degraded should be higher if the transport toward the lysosome 
is reduced. Other interesting and promising surface targets are 
CD40, Clec9a, and Clec12a since they have been shown to change 
intracellular trafficking (24). What we lack at this stage is a well-
coordinated comparative study demonstrating the effectiveness 

of these different targeting vaccines in one animal model as most 
studies only imply none versus targeted antigens or compare two 
targeting pathways.

Altogether, these findings support the rationale to design mul-
tifunctional nanovaccines. However, we and others also observed 
that the largest fraction of systemically applied nanovaccine 
accumulated in the liver, irrespective of its formulation (34), 
which suggests general involvement of yet unknown factors that 
interfere with cell type-specific targeting.

THe PROTein COROnA AROUnD nC AS 
A COnFOUnDinG vARiABLe FOR 
eFFeCTive vACCine DeLiveRY

Despite their many advantages, NC are complex molecules that 
may interact with serum proteins and other components of body 
fluids in an unexpected manner, which may significantly alter 
their efficacy as vaccine carriers. One of these non-intended 
interactions is the spontaneous (ir-)reversible deposition of pro-
teins onto the NC surface in complex fluids, which is modified 
by multiple parameters, either related to the NC source or the 
composition of the protein environment. Some basic principles 
of this process were elucidated by mimicking in vivo NC protein 
interactions via in  vitro incubation with biological fluids (35). 
However, additional physiologically relevant factors (e.g., stabil-
ity and dynamics of protein coronae under shear stress during 
passage through the blood) are still poorly understood (36). 
Nevertheless, some relevant determinants of protein corona 
formation around NC have been defined and verified in murine 
models in vivo.

Physico-Chemical Properties and Surface 
Functionalization of nC as Determinants 
of Protein Corona Formation
Hydrophilic Versus Hydrophobic Surfaces
Due to their large surface areas in relation to their volume, 
nano-sized materials are highly affected by surface interactions 
with body fluids such as plasma or lymph (37). The chemical 
composition of the NC at the surface enables protein binding 
through hydrogen bonds, hydrophobic interactions, electrostatic 
interactions, and π-π stacking (38). Therefore, NC surface chem-
istry needs to be optimized to prevent particle aggregation under 
biologically relevant conditions. For instance, Lundqvist et  al. 
compared plain polystyrene NC with surface carboxy- or amine-
modified ones and identified both proteins that were common 
on all types of NC as well as some that were specifically enriched 
on each of the surfaces (39). In general, hydrophobic particles 
including non-functionalized polystyrene NC are not well-dis-
persible and stable in water or even protein-rich solutions over 
time, as they require surface active agents (surfactants) to reduce 
the large surface tension between the two phases (40). Usually, 
these surfactants are small molecular detergents or amphiphilic 
(co-)polymers that stabilize the interface molecularly. However, 
proteins which usually provide a hydrophilic surface and a hydro-
phobic core can also partially expose some of their hydrophobic 
residues which might compete with the surfactants and replace 
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them irreversibly. Therefore, a well-defined and stable interface 
with immobilized surfactants on a hydrophobic carrier surface 
would be advantageous to prevent NC protein aggregation (41).  
On the other hand, hydrophobicity can also be utilized to 
control protein adsorption on the nano-bio-interface specifi-
cally, as demonstrated by Zhang et al. who covalently deposited 
 (co-) polymers of varying amphiphilicity on gold NC and 
observed a variation in protein adsorption affording tailored 
cellular NC uptake (42).

Surface Charge
Besides hydrophobic interactions, proteins can undergo also 
charge-driven binding to the NC interface (as most protein 
surfaces are composed of charged amino acids) (43). Albumin as 
one of the most abundant proteins in blood plasma has a slightly 
negative net charge (44) and, therefore, instantaneously interacts 
with positively charged NC (8, 45). For instance, multi-angle 
dynamic light scattering in human blood plasma was applied as 
a highly sensitive method to monitor the binding of albumin on 
cationic nanohydrogel particles (46). Deposition of albumin onto 
nanogels was prevented by loading the nanogels with negatively 
charged siRNA oligonucleotides for RNA interference therapy 
and, thus, neutralizing the net charge of the nanogels and enhanc-
ing their circulation properties in the blood stream.

Yet, charge-neutral polymers can still adsorb proteins and 
influence the carriers’ in vivo performance. As an example, iron 
oxide NC coated with dextran yielded deposition of activated 
complement C3 and triggered complement receptors (CR)1/2-
mediated B  cell targeting which was further exploited for the 
treatment of allergic immune responses (12).

PEGylation of NC
To minimize protein interaction with polymer coatings and 
biomaterials, Whitesides and co-workers investigated different 
chemical structures on self-assembled monolayer interfaces 
and identified four basic principles [so-called “four Whiteside’s 
rules”] (47) that efficiently suppress protein adsorption (48, 49): 
(1) hydrophilicity, (2) no charges, (3) no hydrogen bond donors, 
and (4) only hydrogen bond acceptors. All these characteristics 
are fulfilled by poly(ethylene glycol) (PEG), one of the most 
frequently used polymer NC coatings to minimize—but not 
always completely abolish (see Composition of the Biological 
Fluids as Determinants of the NC Protein Corona)—protein 
adsorption but guaranteeing a stealth-like behavior for 
enhanced circulation properties after systemic administra-
tion (50–52). To that respect, we have recently shown that for 
PEGylated polystyrene NC the stealth effect is not due to the 
avoidance of protein adsorption, but rather the adsorption of 
specific proteins like clusterin or apolipoprotein A4 (ApoA4) 
(53). Still, the degree of PEGylation on the nano-biointerface 
as well as PEG density can modify the protein corona and its 
NC performance under biological conditions. For instance, 
Kataoka and co-workers recently showed that tethered PEG 
density with highly squeezed PEG chains on the interface of 
pDNA-polyplexes assured higher circulation properties to 
improve pDNA delivery (54, 55). For site-specific targeting 
of NC with ligands to manage selective interaction with the 

ligand-corresponding receptor, PEGylation is often the only 
way to reduce additional uncontrolled protein corona forma-
tion, which would counteract with the targeting groups (56). 
However, in some cases too dense PEGylation can also entrap 
a targeting ligand inside the PEG interface and suppress its 
interaction with its target receptor (57). Yet, in these cases PEG 
backfilling with shorter PEG chains can help to both reduce 
massive protein corona formation as well as assuring ligand 
accessibility to their receptors (58). While a better understand-
ing of the PEGylation process on the NC surface has become 
increasingly evident, controversial concern of use of PEG for 
biomedical purposes (59) has motivated the development of 
alternative stealth-like polymers (60) which might result in 
a better controllable protein corona formation on NC after 
administration into a biologically relevant environment.

Endotoxin Contamination
The formation of a NC protein corona was found to be further 
modulated by prior adsorption of the Gram-negative bacteria cell 
wall component lipopolysaccharide (LPS) (61). LPS is a frequent 
contaminant of proteins used for nanovaccine generation (e.g., 
antigen and targeting antibody), and of non-sterile lab environ-
ments. LPS was reported to bind various types of NC both via 
charge-driven interactions (negatively charged phosphate head 
groups interact with cationic nanoparticles) and by hydropho-
bic interactions (LPS lipid regions interact with hydrophobic 
domains on the nanoparticle) (62). LPS-contaminated NC stimu-
lated inflammatory responses by co-incubated toll-like receptor 
4-expressing immune cells (61). These observations underscore 
the absolute requirement to test NC for endotoxin contamina-
tions prior to functional testing.

Composition of the Biological Fluids as 
Determinants of the nC Protein Corona
Besides the physicochemical properties of the NC, the composi-
tion of the biological fluid it is immersed into is another relevant 
factor in the formation of the protein corona (63). In terms of 
in vitro studies, fetal bovine serum, human plasma, or serum are 
mainly utilized in order to investigate protein-NC interactions 
and their functional effect on the cellular level (64). The differ-
ence between serum and plasma is highly significant in terms 
of corona composition and ultimately affects the interaction of 
coated NC with immune cells (65). This difference is caused by 
the preparation procedure as blood is either naturally coagulated 
(serum) or supplemented with an anti-coagulant (plasma). Here, 
it has to be noted that also the choice of the anti-coagulant being 
either citrate, heparin, or EDTA additionally influences corona 
formation (63) and cellular outcome (66).

Bringing NC from pre-clinical studies toward the clinical 
application bears additional challenges. Differences in the corona 
composition between mice and humans (67) as well as inter-
individual variations in plasma protein composition, including 
dietary factors that affect, e.g., serum lipoprotein composition 
(“personalized protein corona”) have been recognized (68). 
On top of this, several reports could show that in vitro studies 
cannot fully reflect the situation in vivo (69, 70). The interaction 
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of NC in blood flow is highly dynamic, may be altered by shear 
stress and hereby strongly alter the composition of the protein 
corona pattern (71). Based on this, a better understanding of the 
in vivo protein corona formation and composition is still under 
investigation and is needed to eventually tune the NC properties 
for targeted cellular interaction.

CeLLULAR ReCePTORS FOR nC 
COROnA PROTeinS

The plasma protein corona around NC can significantly alter their 
biological behavior in vivo (9) and also affect specific targeting 
moieties that are being used to target NC to specific organs or 
cell types (11). In many cases, the protein corona may impair the 
targeting structure on the NC from binding to its receptor on the 
target cell. This may indeed occur much more frequently than 
reported, since unsuccessful attempts for targeted delivery of NC 
are typically not published. In some cases, however, NC corona 
proteins may also enhance binding of the NC to target cells which 
bear receptors that recognize specific NC corona proteins (12). 
As outlined below, among the receptors that bind NC surface 
molecules in a non-specific manner are CRs, scavenger recep-
tors (SR), immunoglobulin receptors, and lipoprotein receptors. 
Although not formally shown yet, other phagocytic receptors 
(72) may also be involved in NC recognition by leukocytes and 
endothelial cells.

Fc Receptors
Fc receptors bind immunoglobulins via their constant (Fc) 
region (73). There are specific receptors for IgG (FcγRI [CD64]), 
(FcγRIIA [CD32]), (FcγRIIB [CD32]), (FcγRIIIA [CD16a]), 
(FcγRIIIB [CD16b]), IgA (FcαRI [CD89]), and IgE (FcεRI and 
FcεRII [CD23]). These receptors bind immunoglobulins with 
differential affinity and also modify the functional state of the 
receptor-bearing cell. Especially for Fcγ receptors, different 
biological functions of various receptors are known, ranging 
from antibody-dependent cell-mediated cytotoxicity (73), to 
phagocytosis, and cell activation (74), or inhibition of cell activity 
(75). Receptor-specific antibodies are commonly used to enable 
targeting of NC. They are typically coupled to the NC surface in 
a non-oriented form (73). Thus, it is often arbitrary whether the 
antigen-binding Fab or the Fc portion of the molecule is exposed 
to the outer surface of the NC, resulting in potential binding of 
the antibody-coated NC to FcR carrying cells in  vivo (mostly 
macrophages and liver endothelial cells) (73). Likewise, immu-
noglobulins derived from plasma may also bind to NC, either 
in an epitope-specific form (thus “opsonizing” the NC) or via 
non-specific adsorption (76). It is tempting to speculate that this 
non-epitope-specific binding of antibody-coated NC may inter-
fere with any intended specific targeting of the NC via, e.g., the 
antigen-binding epitope of an NC-coupled antibody. In contrast, 
immunoglobulin binding to PLGA nanocarriers has also been 
demonstrated to inhibit non-specific interaction with endothelial 
cells in human blood flow (77). For clinical applications, it will 
be imperative to overcome uncontrolled FcR-mediated effects of 
antibody-targeted NC by using either antibodies coupled via the 

Fc part to the NC to prevent its unintended binding to the FcR 
(78) or antibody derivatives that lack the Fc portion (79).

Complement Receptors
Complement receptors (CR) are expressed mainly by leu-
kocytes and bind bacteria and other structures opsonized by 
complement factors as a consequence of classical, alternative, or 
lectin-mediated complement pathway activation (73). Opsonized 
material is recognized by CR 1–4. CR1 (CD35), CR3 (CD11b/
CD18), and 4 (CD11c/CD18) which mediate phagocytosis by 
mononuclear cells, whereas CR2 (CD21) is present only on B cells 
and serves as a co-receptor (80, 81). All types of NC investigated 
by us that carry glyco-structures on their surface (e.g., dextran 
and starch) avidly bound and activated the lectin-dependent 
complement pathway, whereas inorganic NC generally failed to 
do so (12). Ligation of C3-coated NC by CR2 resulted in efficient 
binding of iron oxide-dextran NC by murine B  cells, resulting 
in specific targeting of these NC to B cells in vivo (12). C3/CR2-
mediated B  cell engagement of the NC significantly surpassed 
antibody-mediated targeting, as NC that were additionally coated  
with an anti-CD205 antibody that is recognized by DC still bound 
much more abundantly to B cells than to DC in vivo. Thus, plasma 
protein corona components may re-direct NC to certain cell types 
in  vivo. This effect can be exploited in an immunotherapeutic 
fashion, as dextran-iron oxide NC that contained an antigen 
plus CpG as an adjuvant could be used to efficiently treat B cell-
mediated hypersensitivity reactions such as allergic asthma and 
anaphylaxis.

Scavenger Receptors
Scavenger receptors serve to endocytose diverse polyanionic 
ligands including modified endogenous (lipo)proteins like oxi-
dized low-density lipoprotein, but also pathogen-derived molecu-
lar patterns and endogenous misfolded proteins (82). Low-density 
lipoproteins are regularly identified in the protein corona of dif-
ferent nanoparticles (53, 83). Due to their interaction with different 
toll-like receptors, and their association with intracellular signaling 
complexes like mitogen-activated protein kinases, SR engagement 
was shown to alter the cellular activation state of DC (84) and mac-
rophages (85). Class A SR (SR-A) that contain a collagen domain 
were shown to bind negatively charged surfaces on dextran NC 
(86), polystyrene NC (87), silica NC (88), and superparamagnetic 
iron oxide NC (89) under standard culture conditions in vitro, i.e., 
at low serum concentration and in the absence of complement and 
immunoglobulin (53, 83).

Due to the compensatory capacity of single SR-A, binding of 
NC to this class of receptors is validated most often in blocking 
studies using fucoidan, Poly(I), and dextran sulfate as competitive 
high affinity SR-A ligands (90). In this regard, dextran sulfate-
based NC were shown to retain their SR-A binding affinity also 
in vivo, and were used to target activated macrophages in a model 
of murine arthritis (91).

Negatively charged NC surfaces, such as NC conjugated to 
short linear (anionic) oligonucleotides were efficiently inter-
nalized via SR-A in  vitro (92). Consequently, SR-A-mediated 
internalization of oligonucleotide-conjugated NC was exploited 
for efficient transfer of drugs and siRNA into different cell types  

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


6

Bros et al. Protein Corona Affects Nanoparticle Targeting

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1760

(93). Pre-incubation of such NC with serum dose- 
dependently inhibited cell binding, presumably due to shield-
ing of the negatively charged oligonucleotides by yet unknown 
serum factors (94).

OTHeR COROnA PROTeinS THAT 
AFFeCT nC ADSORPTiOn TO CeLLS

Besides corona proteins that mediate binding to classical phago-
cytosis receptors, other corona proteins also affect the cellular 
uptake of NC.

Dysopsonins
The main characteristic of “stealth” NC is their reduced interac-
tion with phagocytic cells, which results in a prolonged blood 
circulation time (95). Overall, stealth NC show less protein 
adsorption, however, protein corona formation cannot be 
completely prevented (96). Thus, in general, non-recognition of 
NC by immune cells is not only due to low amounts of proteins 
adhering to surfaces but can also dependent on the abundancy 
of certain corona proteins. Actually, we have identified distinct 
proteins which inhibit cellular interactions and hereby mediate 
stealth behavior (63, 97). Those proteins are refereed as “dysop-
sonins”, of which albumin and clusterin (apolipoprotein J) are 
the most prominent examples. Clusterin has been demonstrated 
to be required for the stealth effect of poly(ethylene glycol)- and 
poly(phosphoester)-coated polystyrene NC (53). Albumin, the 
most abundant protein in serum (98), is a prominent constituent 
of the protein corona of many types of NC (99). Takeuchi and 
co-workers (100) demonstrated recently that albumin specifically 
adsorbs to polymeric nanogels after in vivo administration, creat-
ing an albumin-rich corona which prolonged blood circulation.

Thus, pre-coating of different types of NC with albumin can  
improve their circulation half-life and biocompatibility (101). 
However, when misfolded, albumin coating of NC may also 
shorten their plasma half-life. Indeed, albumin underwent con-
formational changes of its alpha-helical domains after adsorption 
to layered silicate NC (102) and polystyrene NC with a cationic, 
amino-modified surface (103). In both studies, NC adsorbed 
with misfolded albumin effectively bound SR-A in  vitro. 
Likewise, albumin adsorption to inorganic NC (104–106) also 
resulted in an unfolding of alpha-helical domains, and similar 
conformational changes were also reported for other serum 
proteins like fibrinogen, gamma-globulin, histone, and insulin 
when adsorbed onto gold NC (107). Further studies need to 
elucidate whether NC may unintendedly bind SR in  vivo due 
to conformationally altered serum factors within their protein  
corona.

Apolipoproteins
In general, apolipoproteins were identified in high amounts on 
the surface of various NC formulations (108, 109). For example, 
ApoE was enriched on the surface of NC coated with the nonionic 
surfactant polysorbate 80 and hereby enabled the transport of 
NC across the blood–brain barrier via receptor-mediated endo-
cytosis (110). Additionally, recently adopted immuno-mapping 

techniques (111) offer the possibility to determine functional cell 
receptor-binding epitopes of corona proteins. Here, it was found 
that SiO2 NC are covered by ApoB100 which allows a recognition 
of NC via low-density lipoprotein receptor (112). Moreover, in 
another study Ritz and coworkers identified a variety of different 
proteins within the corona of differentially surface-functionalized 
polystyrene NC, and could correlate their relative abundance 
with an enhanced or decreased uptake by human mesenchymal 
stem cells (35). As demonstrated in that study, ApoA4 and C3 
were shown to decrease unspecific cell interaction whereas ApoH 
enhanced cellular uptake.

“Don’t eat Me” Signals
Viable cells, most notably erythrocytes and platelets, express 
surface receptors like CD31, CD47, and CD200 that interact 
with counter-receptors on myeloid immune cells to prevent their 
cytolysis [reviewed in Ref. (113)]. Furthermore, living cells show 
extensive sialic acid modifications of glycoproteins. Presentation 
of such “don’t eat me” signals has been used to prevent phago-
cytic clearance of NC. CD47 is ubiquitously expressed and binds 
SIRPα that is predominantly expressed on phagocytically active 
leukocytes (114). SIRPα engagement results in the activation of 
phosphatases that inhibit phagocytic activity. Rodriguez et  al. 
(115) demonstrated that CD47-derived peptides coupled to 
polystyrene beads reduced their uptake by macrophages, and 
prolonged their circulation in mice. In line, different types of NC 
(polystyrene, PLGA) conjugated with an ICAM-1 targeting anti-
body for endocytic uptake by activated endothelial cells showed 
clearly reduced unspecific liver accumulation when conjugated 
in addition with CD47 (116). In a different approach, NC were 
coated with cell membranes derived from red blood cells to 
exploit their endogenous high level surface expression of CD47 
and other “don’t eat me signals” [reviewed in Ref. (117)]. This 
concept has been broadened by transferring membranes of spe-
cific leukocyte populations to make use of the cell type-specific 
properties of their surface receptors like mediating cell–cell adhe-
sion and homing behavior.

nC DeSiGn—AvOiD OR eXPLOiT THe 
PROTein COROnA?

Concerning the design of APC targeting nanovaccines, it is nec-
essary to take into account potential intrinsic receptor binding 
properties of antigen and adjuvant. For example, short oligonu-
cleotides which engage DNA binding danger receptors like TLR9 
or STING and thereby activate APC (118) were demonstrated to 
effectively engage SR-A in a serum-poor environment (94). In 
vivo, however, CpG-rich oligos engage CD205 which is highly 
expressed by CD8+ DC in mouse (119). We showed that nanovac-
cines conjugated to this adjuvant retained both their CD8+ DC 
binding and activating properties in  vivo (120). Proteins used 
as a source of antigen may be recognized by receptors if they 
constitute genuine ligands (e.g., epidermal growth factor) or may 
bind via a protein modification as demonstrated for OVA which 
is endocytosed via the mannose receptor due to mannosylation 
of the protein (121). In order to prevent interactions of antigen/
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adjuvant with cellular receptors (or serum components), nano-
capsules may be preferable to shield and to protect the cargo of 
a nanovaccine (122). If the intrinsic binding properties of cargo 
components support the intended NC targeting other types of 
NC that expose their cargo may be employed.

To achieve cell type-specific targeting either antibodies or 
their fragments, synthetic ligands (e.g., aptamers, DARPins, 
and cystine-knot miniproteins), or natural ligands of endocytic 
surface receptors highly expressed by the target APC may be 
used. However, depending on the orientation of a NC-coupled 
targeting antibody binding of the exposed Fc part to Fc receptors 
is possible (73) and may limit cell type specificity. Similarly, a 
conjugated receptor ligand may bind different receptors as exem-
plified for mannose-derived oligosaccharides which may engage 
both the mannose receptor and DC-SIGN (123). Consequently, 
the efficacy and specificity of NC binding, uptake and subsequent 
biological effects need to be tested using cell populations com-
prising also non-target cell types (e.g., human PBMC, mouse 
spleen, and liver cells).

To predict the in vivo behavior of a NC by in vitro assays in 
a more reliable manner, it is necessary to allow formation of a 
protein corona in a controlled way. One strategy is to minimize 
adsorption of serum factors to the NC surface which may affect its 
intended targeting properties (see Physico-Chemical Properties 
and Surface Functionalization of NC as Determinants of Protein 
Corona Formation). On the contrary, however, the composition 
of the protein corona itself may support the biological function of 
a nanovaccine. For example, we have recently demonstrated that 
a lectin surface coating of NC resulted in activation of the lectin 
complement pathway and enabled specific NC targeting to B cells 
via CRs (12). Thus, the protein corona may inhibit or enable cell 
type-specific targeting.

SUMMARY

In summary, NC are versatile tools to deliver a high amount of 
antigen plus adjuvant(s) in a targeted manner to APC. Here, we 

point toward a variety of interesting receptors like CD205 or 
Clec9A that can focus delivery toward favorable immunological 
readouts. However, NC are almost inevitably coated with a pro-
tein corona after exposure to blood plasma or lymphatic fluid. 
This plasma protein corona can affect the trafficking of the NC 
within the body as well as their cellular targeting and uptake to 
a significant extent, potentially resulting in loss of the desired 
effects as well as altered functional properties of the NC. Often, 
antibodies are used as targeting moieties; yet, the interaction of 
their Fc part with receptors of other cells represents an undesired 
mistargeting and should be avoided for nanovaccines. On the 
other hand, the protein corona may also be exploited to extend 
NC plasma half-life, e.g., by attracting or preadsorbing clusterin, 
thereby optimizing cell-specific targeting and immunotherapeu-
tic effects, or even to direct NC to specific cell types or organs 
in vivo by exploiting (pre)adsorbed targeting moieties.
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