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A fundamental benefit of immunological memory is the ability to respond in an 
enhanced manner upon secondary encounter with the same pathogen. Tissue-resident 
memory CD8 T (TRM) cells contribute to improved protection against reinfection through 
the generation of immediate effector responses at the site of pathogen entry. Key to 
the potential of TRM cells to develop rapid recall responses is their location within the 
epithelia of the skin, lungs, and intestines at prime entry sites of pathogens. TRM cells 
are among the first immune cells to respond to pathogens that have been previously 
encountered in an antigen-specific manner. Upon recognition of invading pathogens, 
TRM cells release IFN-γ and other pro-inflammatory cytokines and chemokines. These 
effector molecules activate the surrounding epithelial tissue and recruit other immune 
cells including natural killer (NK) cells, B cells, and circulating memory CD8 T cells to 
the site of infection. The repertoire of TRM effector functions also includes the direct 
lysis of infected cells through the release of cytotoxic molecules such as perforin and 
granzymes. The mechanisms enabling TRM cells to respond in such a rapid manner 
are gradually being uncovered. In this review, we will address the signals that instruct 
TRM generation and maintenance as well as the underlying transcriptional network that 
keeps TRM cells in a deployment-ready modus. Furthermore, we will discuss how TRM 
cells respond to reinfection of the tissue and how transcription factors may control 
immediate and proliferative TRM responses.

Keywords: T  cell diferentiation, tissue-resident memory T  cells, transcription factors, homolog of Blimp-1 in 
T cells, BLiMP-1, Notch, RUNX3, secondary responses

iNTRODUCTiON

CD8 T cell responses are an essential component of the adaptive immune system that serves to 
achieve sterile clearance after infection with intracellular pathogens as well as long-term protec-
tion against reinfection. To enable protective CD8 T  cell responses against a wide spectrum of 
microbial threats, an extensive repertoire of naïve CD8 T cells is maintained. The diversity within 
the T cell repertoire is so large that, despite the millions of naïve CD8 T cells, each T cell specific-
ity is only represented by a population in the order of 100–1,000 cells in mice (1–3). Strikingly, 
these few precursor cells are able to mount robust T cell responses that eliminate virally infected 
cells to completion within about 1–2 weeks. The efficiency of CD8 T cell responses depends on 
the highly effective recruitment of naïve CD8 T cells (4), their rapid proliferation resulting in a 
more than 1,000-fold expansion in about a week (5), and in the acquisition of effector functions 
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by the differentiation into effector CD8 T  cells (6). Important 
effector functions of CD8 T cells include the production of the 
pro-inflammatory cytokine IFN-γ and the cytotoxic mediators 
perforin and granzyme B. These effector molecules assist in the 
activation and recruitment of other immune cells as well as in 
the elimination of infected cells, respectively. After resolution of 
infection, most of the effector CD8 T cells undergo apoptosis, 
resulting in contraction of the CD8 T cell response into an about 
10-fold reduced population of memory cells (7, 8) that can be 
maintained for decades in men. Specific memory CD8 T cells are 
maintained at a higher frequency than naïve CD8 T cells, which 
enables them to establish secondary CD8 T cell responses with 
faster kinetics and of larger magnitude. In this manner, memory 
CD8 T  cells can provide up to life-long protection against re-
encounter with the same pathogen (6). Memory CD8 T  cells  
do not only have a numerical advantage, they also display supe-
rior qualitative characteristics to provide improved protective 
immunity compared to naïve T cells (9).

Subsets of Memory CD8 T Cells
Distinct subsets of memory CD8 T cells have been recognized 
that contribute to enhanced recall responses in different ways and 
at separate sites (10). Central memory CD8 T (TCM) cells express 
lymph node (LN) homing molecules such as the CC-chemokine 
receptor 7 (CCR7) and adhesion molecules such as L-selectin 
(CD62L) that provide access to secondary lymphoid organs. 
Due to these properties, TCM cells retain the capacity of naïve 
CD8 T cells to survey the secondary lymphoid organs for cog-
nate antigens. In contrast, effector memory CD8 T (TEM) cells 
express low levels of CCR7 and CD62L and gain access to the 
non-lymphoid tissues (11), which enables these memory CD8 
T  cells to directly patrol the peripheral tissues for immune 
surveillance. TCM and TEM cells continually recirculate through 
blood and lymph to survey LN and peripheral tissues, respec-
tively. Recent evidence suggests further heterogeneity within 
the circulating memory CD8 T  cell pool, where expression of 
the fractalkine receptor CX3CR1 identifies three subsets with 
distinct migratory properties (12). These include CX3CR1low TCM 
cells, CX3CR1int peripheral memory T (TPM) cells, which survey 
peripheral tissues, and CX3CR1high TEM cells, which are largely 
confined to the vasculature (12). Upon recognition of reinfec-
tion, TCM, TPM, and TEM cells mount secondary responses, which 
involve proliferation and differentiation into secondary effector 
cells to target the re-invading pathogen.

Next to TCM, TPM, and TEM cells, a fourth subset of memory 
CD8 T cells, tissue-resident memory CD8 T (TRM) cells, has been 
identified. In contrast to the circulating memory populations, 
TRM cells permanently reside within the peripheral tissues after 
infection without accessing the blood or the lymph (13, 14). 
The non-recirculating nature of TRM cells has been experimen-
tally demonstrated in different ways. Intravascular antibody 
injection does not label TRM cells within skin, lungs, and small 
intestine in contrast to circulating memory CD8 T cells within 
the bloodstream (15, 16). However, intravascular labeling cannot 
distinguish circulating memory CD8 T cells transiently passing 
through the tissues from TRM cells that permanently reside in 
these tissues. Another exception in this context are liver TRM 

cells, which reside on the inside of the liver sinusoids in direct 
contact with the blood (17, 18). Further experiments employing 
parabiosis, in which the bloodstream of two mice is conjoined, 
demonstrated that, while circulating memory CD8 T cells rap-
idly establish equilibrium, TRM cells are permanently retained in 
peripheral tissues within their host (14, 19–21). The inability of 
TRM cells to exit donor tissue upon engraftment into recipients 
has also provided experimental evidence of tissue residency of 
memory CD8 T cells (13). Quantitative microscopy has shown 
that TRM cells are more prevalent than circulating memory cells 
in the non-lymphoid tissues, suggesting that TRM cells form a sub-
stantial fraction of the memory repertoire (21). TRM cells do not 
contribute to systemic immune surveillance, but they establish 
residence at strategic locations, such as sites, where the primary 
infection has occurred, positioning them at the frontline of the 
antimicrobial defense. In this manner, TRM cells are able to medi-
ate border patrol for improved protection against reinfection 
within the peripheral tissues.

Phenotype of TRM Cells
Tissue-resident memory CD8 T cells can be distinguished from 
their circulating counterparts through the expression of key cell 
surface molecules that include CD69 and the αE integrin, CD103 
(Figure 1). CD69 is ubiquitously expressed early after activation 
on T  cells, but exclusively TRM cells are able to constitutively 
maintain CD69 expression under steady state conditions. The 
majority of TRM cells throughout different tissues express CD69, 
but parabiosis studies have demonstrated the existence of TRM 
populations that lack CD69 expression (21, 22). CD69 contri-
butes to the establishment of tissue residency by interfering with 
spingosine-1 phosphate receptor (S1PR1) function (23, 24).  
To maintain residency, TRM cells limit expression of tissue exit 
receptors such as the S1PR1 (25, 26). S1PR1 responds to its ligand 
S1P that is released by endothelial cells in blood and lymph to 
attract circulating memory T  cells from the tissues into the 
circulation. In TRM cells, CD69 mediates the internalization and 
degradation of S1PR1, which results in removal of S1PR1 from 
the surface and limits the migratory capacities of these memory 
cells (Figure 1). TRM cells do not form upon forced expression of 
S1PR1, demonstrating the incompatibility of this pathway with 
establishment of tissue residency in memory CD8 T cells (26). 
Expression of CD103 appears to be enriched in TRM cells within 
mucosal compartments, including the skin, lungs, reproductive 
tract, salivary glands, and small intestine (25, 27–29). A large 
fraction of CD103+ TRM cells within these tissues locates near 
or within the epithelium. Epithelial cells express the adhesion 
molecule E-cadherin, and interaction between CD103 (as part 
of the αEβ7 integrin) and E-cadherin has been shown to mediate 
the adhesion between T lymphocytes and epithelial cells (30, 31), 
suggesting an important role in the retention of TRM cells within 
epithelial tissues (Figure 1). TRM cells are present outside of the 
epithelia within a wide array of tissues, including the lamina 
propria of the small intestine, parenchyma of internal organs, 
such as the brain, kidney, liver, and within the secondary lym-
phoid organs (32–34). TRM cells within these tissues largely lack 
expression of CD103 and may employ other adhesion molecules 
for retention within the tissues. For instance, TRM cells within the 
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FigURe 1 | General features of tissue-resident memory CD8 T (TRM) cells. Generation and maintenance of TRM cells is regulated by a distinct set of transcription 
factors, including Runx3, Blimp-1, and its homolog of Blimp-1 in T cells as well as the transcriptional activator Notch. These transcription factors instruct a 
tissue-residency program that allows for the long-term retention and maintenance of TRM cells within peripheral tissues. TRM cells across tissues maintain  
expression of CD69, which promotes tissue residency by interfering with spingosine-1 phosphate receptor (S1PR1) function. S1PR1 mediates egress of T cells  
into the circulation and its downregulation is a core characteristic of TRM cells. In many tissues, TRM cells also express high levels of CD49a, an adhesion molecule 
binding to collagen (in complex with β1 integrin) to establish tissue residency. The αE integrin CD103 is expressed by mucosal TRM cells and may contribute to tissue 
retention by interaction with E-cadherin on the surrounding epithelial cells. In liver sinusoids, local TRM cells upregulate LFA-1, which supports their tissue residence 
by binding to ICAM-1 on liver sinusoidal endothelial cells. In addition to these adhesion molecules, TRM cells in many tissues are characterized by elevated transcript 
levels encoding for pro-inflammatory cytokines, e.g., IFN-γ and TNF-α, and protein expression of the cytotoxic serine protease granzyme B. Abbreviations: Runx3, 
Runt-related transcription factor 3; Blimp-1, B lymphocyte-induced maturation protein-1; Hobit, homolog of Blimp-1 in T cells; RBPJ, recombining binding protein 
suppressor of hairless; LFA-1, lymphocyte function-associated antigen-1; ICAM-1, intercellular adhesion molecule 1; IFN-γ, interferon γ; TNF-α, tumor necrosis 
factor α.
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liver express lymphocyte function-associated antigen-1 (LFA-1), 
which is essential for these cells to mediate interactions with 
intercellular adhesion molecules on liver sinusoidal endothelial 
cells (18) (Figure  1). Many TRM cells throughout tissues also 
express high levels of CD49a, which, in complex with β1 integrin, 
binds collagen within the extracellular matrix to establish tissue 
residency (35) (Figure 1). Therefore, elevated expression of adhe-
sion molecules, such as CD103, LFA-1, and CD49a characterizes 
populations of TRM cells and distinguishes them from circulating 
memory CD8 T cells.

The identification of human TRM cells largely relies on pheno-
typic markers, due to difficulties in experimentally addressing the 
migratory behavior of human memory T cells in vivo. Considerable 
numbers of TRM-type memory CD8 T cells co-expressing CD69 

and CD103 have been found within human tissues, including skin, 
lung, liver, and intestines (33, 36–38), suggesting that humans 
also contain a resident compartment of memory CD8 T  cells. 
These human TRM cells share characteristics with their murine 
counterparts (33, 39, 40), as determined by transcriptional and 
phenotypic profiling. Similar to the transcriptional profile of 
murine TRM cells, the core signature of human TRM cells includes 
upregulated genes associated with the establishment of tissue 
residency such as CD49a and downregulated genes associated 
with tissue egress, e.g., S1PR1 and CCR7 (40).

Tissue-resident memory CD8 T  cells are essential and suf-
ficient to establish immediate protection against reinfection with 
pathogens (20, 41, 42). The remarkable effectiveness of TRM cells 
to achieve clearance of infection and their potential protective 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


4

Behr et al. Transcriptional Regulation of Tissue-Resident Memory T Cells

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1770

capacities in anti-tumor responses have spurred investigation 
into the regulatory mechanisms underlying the differentiation, 
maintenance, and effector functions of these memory CD8 
T cells. Transcription factors play important roles in the regula-
tion of memory T  cells through their ability to modulate gene 
expression. Recently, we have identified homolog of Blimp-1 in 
T cells (Hobit) as a TRM-specific transcription factor that together 
with related Blimp-1 essentially contributes to the differentiation 
and/or maintenance of TRM cells (43). Besides Hobit and Blimp-1, 
other factors, including Runx3, Notch, aryl hydrocarbon recep-
tor (Ahr), and NR4A1 are involved in the regulation of TRM cells 
(Figure 1), suggesting that these cells are under the control of a 
network of transcription factors (37, 44–46). In this review, we 
will focus on the role of transcription factors during the differ-
ent stages of TRM differentiation and during the reactivation of  
TRM cells upon pathogen re-challenge.

FROM NAÏve TO MeMORY CeLL—
DiFFeReNTiATiON OF TRM CeLLS

The development of naïve CD8 T cells into effector T cells and 
subsequently into TRM cells involves priming in the LN, migration 
from the LN to the peripheral tissues and the acquisition of a 
TRM phenotype to establish local retention. Here, we will discuss 
the cell intrinsic signals and tissue-derived cues that instruct the 
generation and maintenance of TRM cells.

Heterogeneity in effector CD8 T Cells—TRM 
Precursors
The “one cell, multiple fates” hypothesis describes the potential 
of a single naive CD8 T cell to generate diverse subsets of effector 
and memory CD8 T cells (47, 48). Studies using genetic barcod-
ing and adoptive transfers of single naïve T cells have demon-
strated that TCM and TEM cells can differentiate from the same 
naïve CD8 T cell. However, it was not addressed whether TRM 
cells originate from the same naïve T cells as TCM and TEM cells. 
More recent studies using deep sequencing of the T cell receptor 
(TCR) β repertoire have revealed substantial overlap in TCR 
usage between TCM and TRM populations in a skin immunization 
model (49), suggesting that TCM and TRM cells may develop from 
a common progenitor. However, given that the naive CD8 T cell 
population may contain multiple clones bearing identical TCRs, 
the development of TCM and TRM cells from different precursors 
cannot be completely excluded.

After recognition of cognate antigen, naïve CD8 T cells first 
differentiate into effector CD8 T cells. Effector cells diversify into 
different subsets that include terminal effector cells (TECs) and 
memory precursor effector cells (MPECs). TECs are character-
ized by surface expression of killer cell lectin-like receptor G1 
(KLRG1) (50). In contrast, memory precursors express very low 
amounts of KLRG1, but maintain expression of IL-7Rα (CD127) 
(51). The IL-7Rαhi MPECs differentiate into long-lived memory 
CD8 T cell populations, whereas the majority of TECs undergoes 
apoptosis after clearance of the infection. While these studies 
showed that circulating memory cells develop from MPECs, it 
was not addressed whether this is the case for TRM cells. Similar to 

the spleen, peripheral organs such as the skin and small intestine 
contain KLRG1+ and KLRG1− fractions within the virus-specific 
effector CD8 T cell population after infection (25, 29). The cells 
that remain within the skin and small intestine at the memory 
stage lack expression of KLRG1, suggesting that tissue-residing 
TRM cells develop from MPECs. Indeed, adoptive transfer of 
the KLRG1+ and KLRG1− fractions confirmed that TRM cells 
preferentially arise from KLRG1− MPECs (25). A regulatory 
role has been reported for transforming growth factor (TGF) 
β in controlling TEC cell numbers under acute inflammatory 
conditions (52). Therefore, local TGF-β signaling may drive the 
preferential development of MPECs in the small intestine, by 
selectively inducing apoptosis of the TEC fraction during clonal 
expansion. Recently, Klrg1 lineage reporter mice have been 
developed to track the memory offspring of KLRG1+ cells after 
Listeria infection. Fate mapping using the KLRG1 reporter mice 
showed that approximately half of the TRM cells in the liver and 
small intestine originate from KLRG1+ precursors (53). These 
findings suggest that the TRM precursor population may contain 
MPECs that transiently expressed KLRG1 besides MPECs that 
never expressed KLRG1.

While TCM, TEM, and TRM cells all appear to develop from 
MPECs, the timing of branching into the different memory 
subsets remains unclear. Single cell sequencing data of effector 
CD8 T cells after the first cell division have revealed only two 
separate populations that correspond to TECs and MPECs (54), 
suggesting that at this early stage MPECs form a uniform popula-
tion. It is conceivable that heterogeneity within MPECs arises 
at later stages. Adoptive transfer experiments have shown that 
as early as 7 days after viral infection, effector cells within the 
spleen have lost the potential to contribute to TRM formation in 
the intestinal epithelium, while these cells retain the potential 
to form circulating memory cells (14). These experiments sug-
gest separation between the TCM, TEM, and TRM lineages at the 
peak of the effector response. Consistent with this time frame 
of TRM commitment, kinetic analysis of the upregulation of TRM-
associated molecules, e.g., CD69 and CD103, during CD8 T cell 
responses demonstrated that pathogen-specific CD8 T  cells 
within the small intestine and skin acquire a TRM phenotype 
between 1 and 2 weeks after infection (25, 29, 44, 55). In fact, 
transcriptional profiling of effector CD8 T cells in the small intes-
tine after lymphocytic choriomeningitis virus (LCMV) infection 
has shown that the TRM-associated program is largely established 
within 1 week (44).

Signals Driving TRM Differentiation
Sensing of inflammation and tissue damage during prim-
ing of T  cells provide important cofactors for the generation 
of TRM cells. Activated CD8 T  cells home to inflamed tissues 
and can subsequently form TRM cells at these locations, even 
when antigen is not present locally (41). In vitro experiments 
suggest that inflammatory stimuli may also induce TRM dif-
ferentiation in the peripheral tissues. Inflammatory cytokines, 
including type I IFN, IL-33, and tumor necrosis factor-α 
(TNF-α), downregulate expression of the transcription factor 
Krüppel-like factor 2 (KLF2) and the tissue exit receptor S1PR1 
and upregulate expression of CD69 on CD8 T  cells (26, 56). 
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In vivo evidence supports such a role for pro-inflammatory 
cytokines including type I IFN and IL-12 in TRM differentiation 
(57). Local inflammatory cues might contribute differently to 
the generation and persistence of mucosal and non-mucosal 
TRM cells. Inflammatory cytokines such as IFN-β and IL-12 
counter-regulate the induction of CD103 by TGF-β during CD8 
T  cell priming and support the formation and persistence of 
CD103− CD69+ TRM cells in the small intestine (58). Binding of 
pSTAT4, which can be induced by IL-12 or type I IFN, to the 
CD103 encoding gene suggests that sensing of inflammation 
might directly affect CD103 expression (58).

These inflammatory signals might guide TRM generation at 
different stages of CD8 T  cell differentiation, with initial cues 
for commitment to the TRM lineage already being provided in the 
lymph node. A specialized population of lymph node residing 
and crosspresenting CD8α+ DCs can provide signals, including 
IL-12, IL-15, and co-stimulation via CD24, which contribute 
to optimal generation of TRM cells (59). Circulating memory 
CD8 T cells do not share this requirement for CD8α+ DCs in 
the early stages, suggesting that these DCs specifically drive 
the formation of TRM cells. Following these early events during 
priming, effector T cells are recruited to the infected tissue. The 
inflammatory chemokine receptors CXCR3 and CCR5 have 
been shown to contribute to the recruitment of TRM precursors. 
CXCR3 enables TRM precursor cells to respond to the IFN-γ 
inducible chemokines CXCL9 and CXCL10, which is critical 
for differentiation of TRM cells in the skin (25). CCR5 ligands 
provided by pro-inflammatory macrophages are important to 
instruct recruitment of TRM precursors into the vaginal mucosa 
(60). These pro-inflammatory signals can be provided by a 
local network of macrophages (57, 60, 61). Thus, it appears that 
inflammatory stimuli within the LN and from the local environ-
ment contribute to TRM differentiation.

The presence of local antigen is not required to attract acti-
vated CD8 T cells into the inflamed tissue (41, 62). In the skin, 
these activated CD8 T cells can subsequently develop into TRM 
cells in the absence of local antigen (41). However, TRM cell forma-
tion after local skin infection is greatly enhanced in the presence 
of cognate antigen in the tissue microenvironment (63–65). 
In other tissues, such as the lung and central nervous system, 
establishment of TRM cells requires cognate antigen recognition 
in the tissue (28, 62). In the salivary glands, TRM cell formation 
depends on antigen in the CD4 T cell compartment, but not in 
the CD8 T cell compartment (66). The presence of local antigen 
may, therefore, not impact the size of the effector response in the 
tissue, but rather promote local retention and the formation of 
TRM cells. The role of antigen after establishment of TRM cells is 
less clear, but the long-term maintenance of the TRM cell pool in 
the lung and small intestine appears to be independent of local 
antigen (56, 67). Next to antigen, costimulatory signals might 
contribute to the differentiation of TRM cells. Recent work has 
demonstrated the requirement of intrinsic signals via the tumor 
necrosis factor (TNF) receptor family member 4-1BB for the gen-
eration of influenza-specific CD8 T cells in the lung, in contrast 
to secondary lymphoid tissues (68).

Next to inflammation and local antigen, the accompany-
ing tissue damage might also contribute to TRM generation. 

Immunization via skin scarification generates highly protective 
TRM cells, compared to subcutaneous or intradermal injection 
(69) and lung-resident T cells localize at spots that show signs 
of recovery from previous tissue damage (70). The factors 
contributing to these effects are still unknown. Inflammation 
accompanying tissue damage could be partly responsible for the 
accumulation of TRM cells at sites of tissue damage. Additionally, 
competition for survival factors during the reorganization of the 
tissue after injury might influence TRM persistence (71). Data on 
the local composition of skin-resident T cells support this view. 
Pre-existing tissue-resident dendritic epidermal γδ T  cells are 
depleted at sites of infection and are replaced by virus-specific 
CD8αβ T cells (72). To cope with the inflection-related changes 
in their microenvironment, TRM cells might have developed 
tissue-specific adaptations. For example, lung TRM cells consti-
tutively express the interferon-induced transmembrane protein 
3 (IFITM3), which facilitates their survival during secondary 
challenges with influenza (73).

Maintenance of TRM Cells
Tissue-resident memory CD8 T  cells can persist in tissues 
for long periods of time (13, 20, 57). Their location at distinct 
sites throughout the body suggests different requirements for 
their maintenance and specific adaptions to the local environ-
ments. The local presence of antigen, cytokines, chemokines, 
and tissue-specific metabolites are factors that contribute to  
TRM maintenance.

Similar to recently and chronically activated T  cells, TRM 
cells demonstrate increased expression of activation-associated 
molecules, such as PD-1 and importantly CD69 (40, 43). 
However, persistent stimulation by antigen is not required for 
TRM maintenance. In fact, the development of TRM cells in the 
intestine is compromised after chronic viral infection compared 
to acute viral infection (56). In addition, TRM cells can be formed 
and maintained by recruiting activated T cells into tissues via 
sterile inflammation (41), suggesting that TRM cell persistence 
does not require local antigen in the peripheral tissues after  
infection.

Similar to circulating memory cells, TRM cells upregulate recep-
tors for IL-7 and IL-15 (39, 74), suggesting that these homeostatic 
cytokines contribute to antigen-independent maintenance of  
TRM cells. Indeed, IL-7 and IL-15 produced within hair follicles 
maintain TRM cells near these structures within the skin (75). 
IL-15 already plays a role during lodgment of TRM cells, but 
the continued presence of IL-15 is essential for long-term TRM 
maintenance within the skin (74). IL-15 may not be crucial for  
TRM cells at other sites, as virus-specific TRM cells within the 
intestines, pancreas, and female reproductive tract (FRT) are 
maintained independently of IL-15, in contrast to those in the 
salivary glands and kidneys (76). The involvement of other home-
ostatic cytokines in the maintenance of these IL-15-independent  
TRM populations is currently unclear. TRM cells require TGF-β 
for maintenance in the mucosa (25, 56, 77). TGF-β instructs the 
upregulation of CD103 that allows retention of TRM cells in the 
epithelium, potentially through interactions with E-cadherin 
on epithelial cells (25, 56, 77). TGF-β is produced as part of 
an inactive complex together with latency associated protein 
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(LAP). Integrins such as αVβ6 and αVβ8, which are expressed on 
keratinocytes, are required to release LAP and activate TGF-β in 
the epithelium (78). These integrins may restrict the action radius 
of TGF-β close to the epithelial layer. TRM populations underneath 
the epithelium such as those within the lamina propria of the 
intestine are independent of TGF-β and largely do not express 
CD103 (57). TRM populations within internal organs such as the 
liver and the kidney also largely lack CD103 expression (17, 43), 
suggesting TGF-β-independent maintenance. Thus, with notable 
exceptions, TRM populations are maintained on homeostatic 
cytokines similar to other memory cells and epithelial TRM cells 
uniquely require TGF-β.

After development, TRM cells form stable populations in many 
tissues, including skin, liver, and the small intestine, and provide 
long-term protection against reinfection (13, 17, 20, 41, 57). 
Maintenance of TRM cells in these tissues appears to be independ-
ent of the recruitment of circulating cells, as adoptive transfer 
experiments have shown that circulating memory CD8 T  cells  
do not convert into TRM cells under steady state conditions (14). 
In contrast, influenza-specific TRM cells in the murine lungs fail  
to survive long-term (67, 79). These TRM cells appear to be 
con tinuously replenished via recruitment from the circulating 
memory CD8 T cell pool (67).

Tissue-resident memory CD8 T cells are present throughout 
the body at distinct sites in highly diverse environments that 
differ in oxygen and nutrient levels, exposure to microbiota, 
and the regenerative ability of the tissue. Given that TRM cells 
are permanently residing within the peripheral tissues, they 
are strictly dependent on the resources within the local envi-
ronment in contrast to circulating memory cells. Therefore, 
TRM cells may require tissue-specific adaptations to cope with 
different conditions posed by the local microenvironment. 
Transcriptional profiling has revealed a TRM-specific core sig-
nature shared between TRM cells at different locations, including 
the lungs, liver, intestine, and skin (25, 43). In addition to this 
core signature, TRM cells at different sites are characterized by 
tissue-specific gene expression profiles (25, 43). The distinct 
gene programs of TRM cells include chemokine receptors and 
adhesion molecules that are required to address TRM cells to 
different tissues. The chemokine receptors CCR8 and CCR10 
and the adhesion molecule cutaneous lymphocyte antigen 
(CLA) are specifically upregulated on skin TRM. CCR10 and 
CLA have also been functionally implicated in the localization 
of TRM in the skin (25, 80). In contrast, CCR9 is specifically 
expressed on intestine-derived TRM cells and may, together with 
the α4β7 integrin, drive localization of TRM cells in the small 
intestine (14). Skin-resident TRM cells have been described to 
rely on the uptake of exogenous fatty acids via the fatty acid 
binding protein (FABP) 4 and FABP5 in contrast to circulat-
ing memory CD8 T cells (81). The metabolic requirements of  
TRM cells at other locations are not yet clear. Members of the 
FABP family are expressed in a tissue-specific manner (82), 
suggesting that populations within brain, liver, and intestine 
may take advantage of local opportunities to meet metabolic 
demands. Thus, the heterogeneity within TRM populations at 
different locations may reflect strategies to optimally adapt to 
the local circumstances.

eFFeCTOR ReSPONSeS OF TRM CeLLS 
UPON ReACTivATiON

Numerous studies have highlighted the essential role of  
TRM cells in providing efficient protection against local reinfec-
tions at barrier sites (20, 41, 42). Being situated at the front lines 
of the immune defense, TRM cells are poised for early detection 
of recurring pathogens. Here, we will discuss the mechanisms  
by which TRM cells protect against local infections and the fate of 
TRM cells after antigen re-encounter.

Border Patrol
Despite their inability to recirculate throughout the body,  
TRM cells retain the ability to migrate within their local environ-
ment. This has been most extensively studied for TRM cells in the 
skin. These TRM cells localize to the basal layer of the epidermis, 
where they migrate in the two-dimensional plane of the tissue. 
Skin TRM cells display a dynamic morphology and continually 
project dendritic extensions in multiple directions (72, 83, 84)  
(Figure 2). In contrast, T cells in the underlying dermis exhibit 
an amoeboid shape, which resembles that of migrating lym-
phocytes in the secondary lymphoid organs. The migration of 
TRM cells within the epidermis appears to be constrained by 
the local environment upon resolution of inflammation (72). 
These constraints only permit relatively slow migration of skin 
TRM cells, thus promoting their long-term persistence at sites of 
prior infection (72), and enhancing their ability to scan the local 
environment for recurring pathogens. This local border patrol 
requires a density of TRM cells of approximately 100 or more cells 
per mm2 for complete coverage of the local area and to ensure 
early detection of cognate antigens (84).

Patrol of the local tissue environment by TRM cells has also 
been demonstrated in other organs, e.g., in the FRT and in the 
liver (17, 18, 85). TRM cells in these tissues show a higher motility 
compared to the epidermis, which may be related to the more 
relaxed constraints posed by the tissue architecture. In fact, the 
speed of TRM cell migration in the FRT is dependent on the local 
collagen density (85). Local encounter of TRM cells with their 
cognate antigen in the skin and FRT results in motility arrest 
and loss of their dendritic morphology (85, 86) (Figure 2). The 
immobilization is transient and TRM cells resume their migratory 
behavior within 48 h after antigen re-encounter. Motility arrest 
upon antigen encounter is important for T  cell activation. The 
transient stop allows for the formation of an immunological 
synapse between T cells and antigen-presenting cells, and enables 
T cells to acquire of signals for activation (87). Given that most 
non-lymphoid tissues are primarily surveyed by TRM cells (21), 
border patrol by these memory cells likely plays an essential role 
for the local protection throughout the body. This property as 
motile sentinels places TRM cells in the front lines of defense, 
enabling rapid responses to reinfection.

early effector Response of TRM Cells  
Upon Reactivation
Tissue-resident memory CD8 T  cells are among the first 
immune cells to act in response to pathogens that have been 
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FigURe 2 | Protective effector responses of epithelial TRM cells upon secondary infection. TRM cells in the epithelia continually patrol their local environment, 
projecting dendritic extensions in multiple directions. Upon pathogen challenge and antigen re-encounter, TRM cells rapidly release pro-inflammatory cytokines, 
including IFN-γ, TNF-α, and IL-2, which induce several immune cell- and tissue-specific effects. Local cytokine release by TRM cells results in recruitment and 
activation of natural killer (NK) cells and dendritic cells (DCs), as well as upregulation of VCAM-1 on endothelial cells in local blood vessels, which may enhance  
the recruitment of TCM, TEM, and B cells from the circulation. TRM cell reactivation and cytokine release also induces a tissue-wide state of alert, resulting in 
upregulation of many innate immune response genes, including interferon-induced transmembrane protein 3 (IFITM3), and the increased local expression  
of inflammatory chemokines. The protective capacity of TRM cells may also rely on perforin-mediated killing of target cells. One to two days after antigen re-
encounter, TRM cells undergo local proliferation. Further investigation is required to determine whether TRM cells exit their local environment after reactivation. 
Abbreviations: IFN-γ, interferon γ; TNF-α, tumor necrosis factor α; IL-2, interleukin 2; ICAM-1, vascular cell adhesion molecule 1; TCM cell, central memory  
T cell; TEM cell, effector memory T cell; CCL, C-C motif chemokine; CXCL9, C-X-C motif chemokine 9.
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previously encountered in an antigen-specific manner. Upon 
activation, TRM cells rapidly respond by the production of pro-
inflammatory cytokines, including IFN-γ (Figure  2). In both 
mice and men, TRM cells across different tissues express high 
transcript levels of these pro-inflammatory cytokines compared 
to their circulating counterparts (37, 40, 43, 88). These elevated 
transcript levels may endow TRM cells with the potential to rap-
idly produce cytokines upon activation. In addition, posttran-
scriptional mechanisms have been shown to control cytokine 
production in CD8 T  cells (89, 90), and may contribute to 
the fast responsiveness of TRM cells. IFN-γ has direct antiviral 
properties, but is also important for the recruitment and activa-
tion of immune cells. The early release of IFN-γ by TRM cells has 
been demonstrated to stimulate immune cells including DCs 
and NK cells (91). TRM-derived IFN-γ also elevates expression 
of the homing molecule vascular cell adhesion molecule 1 on 
endothelial cells, and enhances the recruitment of circulating 
B cells and memory T cells from the bloodstream (60, 91, 92) 
(Figure  2). Furthermore, antigen recognition by TRM cells 
potentiates the local expression of inflammatory chemokines 
in the tissue, including CCL2, CCL3, CCL4, CCL5, CXCL9, and 
CXCL10 (60, 91). High transcript levels of CCL3, CCL4, and 
XCL1 in quiescent TRM cells suggest that TRM cells participate 
themselves in the production of these chemokines (43, 88). 

TRM-derived IFN-γ may also contribute to the release of IFN-γ-
dependent chemokines, such as CXCL9 and CXCL10, from the 
surrounding tissue. These chemokines may trigger the attrac-
tion of innate myeloid cells, e.g., neutrophils and monocytes, 
to the site of infection, thereby further enhancing the immune 
response (93, 94). In addition, IFN-γ release by reactivated  
TRM cells has been shown to induce a tissue-wide state of alert in 
the skin, resulting in elevated expression of many innate immune  
response genes, including IFITM3, in the tissue (95) (Figure 2). 
Under certain conditions, TRM cells may even induce a body-wide 
state of alert to prevent viral spread (96). Interestingly, while the 
local activation of TRM cells is pathogen-specific, the triggering 
of downstream immune responses can ultimately lead to near-
sterile protection of the tissue against antigenically unrelated 
pathogens (92, 95). The importance of cytokine production by 
TRM cells for tissue protection has also been demonstrated in the 
lung, where airway TRM cells protect against respiratory influ-
enza virus through production of IFN-γ (42). Similarly, IFN-γ 
production by brain TRM cells is crucial for protection against 
intracerebral infections (97). Tissue-specific adaptations may 
exist in the secreted factors of TRM cells at different locations 
(96). For example, lung-resident TRM cells release IL-22 next 
to IFN-γ, while TRM cells in the liver co-produce granulocyte-
macrophage colony-stimulating factor and IFN-γ (96). These 
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differences in local cytokine repertoires may allow TRM cells to 
tailor responses to their local microenvironment.

Protection against intracellular pathogens by effector CD8 
T  cells is partly mediated by the removal of infected cells 
through the targeted release of cytotoxic molecules, includ-
ing perforin and granzyme B. After clearance of infection, the 
expression of cytotoxic molecules is strongly downregulated in 
circulating memory CD8 T cells. In contrast, TRM cells in several 
tissues maintain high levels of granzyme B in the memory phase  
(17, 56, 97) (Figure 1). The constitutive expression of granzyme B 
suggests that TRM cells can rapidly employ cytotoxic mechanisms 
to eliminate infected cells early after pathogen re-encounter. 
Indeed, TRM cells in the brain can kill target cells and their 
protective capacity is dependent on perforin (28, 97). Granzyme 
B has furthermore been implicated in the remodeling of extra-
cellular matrices (98, 99), suggesting that the serine protease 
may also contribute to the local migration of TRM cells within 
tissues. Granzyme B-driven cytotoxicity may not be essential for 
TRM-mediated protection at other sites, given that, for example, 
airway TRM cells do not maintain expression of granzyme B and 
other cytotoxic mediators (42). The selective killing of infected 
cells by TRM cells minimizes off-target immunopathology, but 
this protective mechanism may be overwhelmed by rapidly 
replicating pathogens. Under these conditions, the potential of 
TRM cells to amplify immune responses through the release of 
pro-inflammatory cytokines and chemokines may be essential 
and offset the increased risk for collateral damage.

Proliferation and Maintenance  
of the Local TRM Repertoire
The protective capacity of memory CD8 T  cells depends on 
their robust proliferation upon recall to establish an army of 
secondary effector cells. The large number of effector cells can 
be crucial to counter rapidly replicating and spreading patho-
gens. In particular, TCM cells have a robust proliferative capacity 
(100–102). These memory cells patrol secondary lymphoid 
organs and are, therefore, ideally positioned at these distal 
sites to the infection to mount secondary responses. TEM cells, 
which survey peripheral tissues and have limited access to the 
LN, undergo less pronounced proliferation upon re-challenge 
(100–102). Using intravital imaging, it has been demonstrated 
that TRM cells in the skin and FRT undergo local proliferation 
in situ within the first days after antigen re-encounter (85, 86).  
Potential changes in phenotypic markers on reactivated TRM 
cells and timespan limitations for intravital imaging pose chal-
lenges for long-term follow-up of secondary TRM responses. 
Despite these technical difficulties, it appears that pre-existing 
TRM cells within peripheral tissues are the main origin of local 
proliferative recall responses (Figure  2). In line with this, the 
secondary TRM population arising after pathogen clearance  
primarily develops from pre-existing TRM cells (85, 86). Recruited 
circulating memory CD8 T  cells also contribute to second-
ary effector responses (68) and the formation of secondary  
TRM cells, albeit to a lesser extent (85, 86). However, these mem-
ory cells appear to have a limited potential to form TRM cells, at 
least compared to naïve CD8 T cells (103). The importance of 

the recruitment of circulating memory cells into the secondary  
TRM pool may reside in the introduction of new specificities to 
the local repertoire. Despite local proli feration, reinfection does 
not numerically increase the pool of local TRM cells (86), suggest-
ing that limits exist in the number of TRM cells that can populate 
the peripheral tissues. If that is indeed the case, then secondary 
TRM cells may compete for available niches, which may re-shape 
the local repertoire after reinfection (71). Previously, it has 
been demonstrated that circulating memory T  cells undergo 
qualitative changes after successive infections (104, 105). In this 
context, it will be interesting to investigate the quality, function, 
and longevity of these secondary TRM cells compared to primary 
TRM cells.

Tissue exit and Contribution to Systemic 
Responses
While local reinfection results in the recruitment of circulat-
ing memory T cells to the tissue, locally proliferating TRM cells 
may in turn downregulate their tissue residency program and 
egress from the peripheral tissues. Secondary lymphoid organs, 
including lymph nodes (LN) that drain tissues, are mainly popu-
lated by circulating naïve and memory T cells, but also harbor  
TRM cells (34). Recent work has shown that the TRM cell population 
in the draining LN increases after a secondary challenge in the 
skin or the FRT and that these secondary TRM cells are derived 
from reactivated TRM cells in the non-lymphoid tissue (22). This 
demonstrates that, upon antigen exposure, TRM cells possess the 
ability to leave their local environment and enter other tissues, 
where they can form secondary TRM cells. It remains to be deter-
mined whether TRM cells can also disseminate beyond the local 
draining LN and form secondary memory cells in anatomically 
distinct tissues (Figure  2). Consistent with a contribution of  
TRM cells to systemic secondary responses, adoptively transferred 
intestinal TRM cells can acquire properties of circulating memory 
CD8 T cells upon re-stimulation (55). Further work is required 
to address whether in situ reactivated TRM cells also differentiate 
into circulating effector and memory cells during secondary 
responses. After tissue exit, reactivated TRM cells may return 
to their tissue of origin. Previous work has demonstrated that  
re-stimulated memory CD8 T cells have a homing bias to their 
tissue of origin (27, 106), suggesting that reactivated TRM cells 
may retain an imprint that permits re-entry into their former 
tissue of residence.

TRANSCRiPTiONAL CONTROL OF TRM 
DiFFeReNTiATiON AND FUNCTiON

The transition of naïve CD8 T  cells into effector and memory 
cells is a tightly coordinated differentiation process under the 
control of transcription factors. Upon activation, naïve CD8 
T  cells upregulate a transcriptional program that drives their 
differentiation into effector CD8 T cells, thus enabling the estab-
lishment of immune responses against pathogens. After clearance 
of infection, TCM and TEM cells downregulate the effector program 
and partially re-acquire transcriptional regulators of naïve CD8 
T cells to assist in the long-term maintenance of these memory 
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FigURe 3 | Transcriptional regulation of TRM cells during development, maintenance, and upon pathogen re-challenge. (A) During their formation, TRM cells receive 
multiple signals from the tissue microenvironment that integrate into a transcriptional program, which drives TRM differentiation and maintenance. In several tissues, 
transforming growth factor β (TGF-β) signaling drives the downregulation of the T-box transcription factors Eomesodermin (Eomes) and T-bet. Residual T-bet 
expression is required for IL-15Rβ expression. The transcription factor homolog of Blimp-1 in T cells (Hobit) can be induced in an IL-15-dependent manner and, 
together with its homolog Blimp-1, represses the expression of S1PR1, CCR7, Krϋpple-like factor 2 (KLF2), and TCF-1, which is crucial for tissue residency. Blimp-1 
and Hobit may also contribute to granzyme B maintenance in TRM cells. The transcription factor Runx3, which can be induced by TGF-β signaling, is crucial for the 
establishment and maintenance of many aspects of TRM cells, including granzyme B and CD103 expression. Runx3 has been shown to induce Blimp-1. Notch may 
regulate expression of the adhesion molecule CD103, is essential for maintenance of TRM cells and might contribute to the elevated transcript levels encoding for 
pro-inflammatory cytokines in TRM cells. Other factors regulating TRM cells include the nuclear receptor NR4A1, and the aryl hydrocarbon receptor (AhR). During 
quiescence, TRM cells show low proliferative activity. (B) Following pathogen re-encounter, TRM cells are exposed to antigen-dependent T cell receptor (TCR) 
triggering and a variety of inflammatory signals. TCR triggering in TRM cells may result in downregulation of Hobit, thereby weakening its contribution to maintenance 
of tissue residency. Inflammatory signals, such as IL-12 and type I interferons (IFN), can induce expression of Blimp-1 and T-bet. While increased Blimp-1 expression 
might fortify TRM features, elevated levels of T-bet could interfere with tissue residency. TRM cells rapidly release pro-inflammatory cytokines upon reactivation in an 
antigen-dependent manner. Upon re-infection, TRM cells undergo local proliferation. Dashed lines indicate relations that require further investigation. Abbreviations: 
Blimp-1, homolog of B lymphocyte-induced maturation protein 1; IL, interleukin; S1PR1, sphingosine-1-phosphate receptor 1; CCR7, C-C chemokine receptor type 
7; TCF-1, T cell factor 1; Runx3, Runt-related transcription factor 3; RBPJ, recombining binding protein suppressor of hairless; NR4A1, nuclear receptor subfamily 4 
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CD8 T cells. In contrast to circulating memory T cells, TRM cells 
retain immediate potential to exert effector functions and do not 
re-establish body-wide immune-surveillance. Therefore, grow-
ing evidence suggests that TRM cells require a specific program 
of transcriptional regulation. Here, we summarize data on the 
role of TRM cell-specific transcription factors as well as on how 
transcription factors with a crucial role for effector CD8 T cell 
differentiation regulate TRM cell generation and maintenance. 
Finally, we will discuss the transcriptional regulation of TRM effec-
tor function and TRM differentiation upon activation in secondary 
responses.

Transcription Factors Regulating  
Tissue Residency
Gene expression analysis of circulating memory CD8 T cells and 
TRM cells has revealed transcription factors with TRM-restricted 
expression profiles (Figure  3). One of these T RM-specific 
tran scription factors is Hobit. Hobit is upregulated in murine 
TRM cells within skin, lungs, liver, kidney, small intestine, and 
brain, suggesting that Hobit is widely expressed throughout  
TRM populations (25, 43, 88). These Hobit+ TRM populations  
include CD103+ TRM cells within epithelial tissues and CD103−  
TRM cells within internal organs, underlining that the transcription 
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factor is ubiquitously expressed in murine TRM subsets. In addi-
tion, other tissue-resident lymphocytes such as natural killer  
T (NKT) cells and innate lymphoid cells 1 express Hobit, sug-
gesting that Hobit is a central regulator of the tissue-residency 
program of lymphocytes (43). Due to limitations in access to 
peripheral tissues, analyses of Hobit expression in human TRM 
cells have not been as extensive as in mice. In line with findings 
in mice, a substantial proportion of CD69+ CD8 T cells within 
the human liver expresses Hobit at the protein level (38, 107). 
Transcriptional profiling also revealed that CD69+ CD8 T cells 
in human lungs express Hobit in contrast to their CD69− coun-
terparts, although expression levels are low compared to murine 
TRM cells (40). We have previously described that CD45RA+ 
CD27− effector and CD45RA− CD27− effector memory CD8 
T  cells in human peripheral blood also express Hobit (108). 
Therefore, despite the presence of Hobit in subpopulations 
of human TRM cells, no strict association of Hobit with tissue 
residency exists in human CD8 T cells.

In mice, Hobit specifically instructs the differentiation and/or  
maintenance of TRM cells, but the transcription factor does not 
operate alone. Hobit is highly homologous to Blimp-1 and both 
factors co-operate in the transcriptional regulation of TRM cells. 
Hobit and Blimp-1 both recognize a “GAAAG” containing 
binding motif and share the majority of their DNA-binding sites, 
suggesting that the related factors collaborate through competi-
tive regulation at overlapping target genes. Hobit and Blimp-1 
lock TRM cells into the tissues, as these transcription factors 
instruct shutdown of exit pathways through CCR7 and S1PR1, 
thus preventing TRM cells from re-entering the circulation (43). 
In circulating memory cells, the transcription factor KLF2 drives 
the expression of S1PR1 to provide access to the blood or lymph 
(109–111). Downregulation of S1PR1 and KLF2 is essential for 
TRM differentiation, as evidenced by forced expression of S1PR1 
that completely prevents the generation of TRM cells (26). The 
Wnt signaling associated transcription factor TCF1 is involved 
in maintenance of the distinct phenotype of TCM cells, including 
upregulation of CD62L and CCR7 (112). Hobit and Blimp-1 
directly bind within the Klf2 and the TCF1 encoding Tcf7 locus 
and within the loci of the downstream targets S1PR1 and CCR7, 
suggesting that these transcription factors efficiently downregu-
late tissue exit pathways at multiple levels (26, 43) (Figure 3). 
The expression of Hobit in circulating human effector-type and 
effector memory-type CD8 T cells is enigmatic, given that Hobit 
in mice directly suppresses expression of tissue exit receptors. 
Although S1PR1 and CCR7 are nearly absent in quiescent 
human effector CD8 T cells (113), the putative repressive actions 
of Hobit on these pathways in long-lived human effector CD8 
T cells appear insufficient to retain these cells within the peri-
pheral tissues.

Other TRM-specific transcription factors contribute to the 
regulation of TRM cells. Expression of the Ahr has been identified 
in TRM populations of the lungs, skin, and small intestine, but not 
in circulating memory CD8 T cells (25). In line with its expression 
pattern, Ahr specifically regulates the persistence of TRM in the 
skin after HSV infection (72). Ahr is a ligand-operated transcrip-
tion factor that responds to the presence of dietary components 
(45), but its ligands in virus-specific TRM cells within the skin are 

unknown. The transcription factor NR4A1 is also expressed in 
TRM cells in contrast to circulating memory CD8 T  cells (46). 
NR4A1 is specifically involved in the development and/or  
maintenance of TRM populations, in particular those in the 
epithelium and lamina propria of the small intestine (46). The 
downstream targets of Ahr and NR4A1 in TRM cells have not 
been identified. Therefore, it remains unclear which aspects of  
TRM differentiation are regulated by these transcription factors.

Regulation of TRM Cells by Transcription 
Factors of effector CD8 T Cells
Runx3, T-bet, Blimp-1, and Notch are each individually impor-
tant in driving terminal differentiation of effector CD8 T cells 
and in the acquisition of important effector functions including 
the production of IFN-γ and/or cytotoxicity (50, 114–117). TRM 
cells maintain direct effector function into the memory phase, 
suggesting a requirement for the persistent activity of these 
transcription factors. Indeed, Runx3, T-bet, Blimp-1, and Notch 
have also been implicated in the development and/or in the 
maintenance of TRM cells (37, 43, 44, 74) (Figure 3).

Runx3 drives the generation of the CD8 T cell lineage in the 
thymus and is broadly expressed in peripheral naïve, effector, 
and memory CD8 T  cells (118, 119). Runx3 pairs with the 
obligatory factor core binding factor of the Runx family that 
stabilizes binding of Runx proteins, including Runx3, to DNA 
(120). Functional profiling of CD8 T cell responses demonstrated 
that Runx3 expression is more relevant in TRM cells than in 
circulating memory CD8 T cells (44). The transcriptional acti-
vity of Runx3 is already apparent at the effector stage in putative  
TRM precursors, suggesting that Runx3 drives the formation of 
TRM cells. Runx3 remains essential during the memory phase, 
implicating a continued role for Runx3 in the maintenance  
of TRM cells (44). Virus-specific and tumor-specific TRM cells in 
different tissues and settings require Runx3 for development, 
exemplifying Runx3 as an important transcriptional regulator 
of TRM cells. Overexpression of Runx3 is sufficient to repress the 
expression of signature genes of circulating memory CD8 T cells 
and to promote the expression of residency signature genes 
including that of CD103 (44, 121). Collectively, these observa-
tions suggest that Runx3 has a primary role in the transcrip-
tional regulation of TRM differentiation. Runx3 may act upstream 
of Hobit and Blimp-1 in TRM cells, given that the transcription 
factor induces expression of Blimp-1 and enhances accessibility 
to motifs shared by Hobit and Blimp-1 (122).

Notch is a surface receptor that interacts with the membrane-
bound ligands Jagged and Delta-like on antigen-presenting 
cells (123). After ligand-induced activation, Notch is cleaved by 
γ-secretase, which enables its intracellular domain to translocate 
to the nucleus. Following translocation, Notch associates with the 
DNA-binding factor recombining binding protein suppressor of 
hairless (RBPJ) to form a transcriptional activator (124). Notch 
signaling orchestrates the maintenance of CD103+ TRM cells in 
the lungs after influenza infection (37). TGF-β-driven upregu-
lation of Notch ligands within the epithelium may provide a 
mechanism to activate Notch specifically at these sites (125, 126). 
Notch appears to directly regulate expression of CD103 (37), thus 
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facilitating binding of TRM cells within the epithelium. In addition, 
downstream targets of Notch include the glycerol transporter 
aquaporin-3, solute carriers for amino acids and other nutri-
ents, suggesting that Notch contributes to the maintenance of  
TRM cells through regulation of their metabolism (37).

T-bet is a T-box factor family member, which drives expres-
sion of the IL-15 receptor in circulating memory CD8 T  cells 
(127) and appears to have a comparable role in TRM cells (74). 
Similar to circulating memory CD8 T cells, TRM populations in 
several, but not all tissues, require the homeostatic cytokine IL-15 
for long-term maintenance (74, 76). Underlining its subordinate 
role in TRM cells, it has been reported that T-bet acts at a lower 
level of expression in TRM cells than in effector or circulating 
memory CD8 T cells. TRM cells also completely lack the T-bet-
related T-box factor Eomesodermin (Eomes) that, similarly 
to T-bet, can support IL15 receptor expression in circulating 
memory CD8 T  cells (74). Overexpression of T-bet or Eomes 
abrogates differentiation of TRM cells in skin and lungs, suggest-
ing that high-level expression of these transcription factors is 
incompatible with long-term survival of TRM cells (74, 128). The 
expression of T-bet is suppressed in TRM cells in a TGF-β- and 
Runx3-dependent manner (44, 74). Downregulation of T-bet 
may dampen its suppressive impact on the CD103 encoding 
Itgae locus, where T-bet is able to bind at sites that overlap with 
the TGF-β-driven Smad proteins (128). Therefore, reduction 
of T-bet expression may limit interference with TGF-β-driven 
induction of CD103 expression in TRM cells, while the residual 
T-bet expression may be sufficient to upregulate IL-15 receptor 
in TRM cells and to receive IL-15-dependent survival signals for 
homeostasis (128).

Taken together, transcriptional regulation of TRM cells includes 
the up-regulation of TRM-specific transcription factors, suppres-
sion of transcription factors important for circulating memory 
T cells, and the maintenance of transcription factors involved in 
effector differentiation.

Transcriptional Regulation of Direct 
effector Functions of TRM Cells
Tissue-resident memory CD8 T cells rapidly exert effector func-
tions upon activation, suggesting that transcription factors that 
regulate the expression of cytotoxic and pro-inflammatory mol-
ecules may also be active in TRM cells. Interestingly, transcription 
factors that are important for TRM development also play crucial 
roles in the regulation of effector functions.

In contrast to circulating memory T cells, TRM cells maintain 
expression of the cytotoxic mediator granzyme B at the protein 
level, which provides them with the potential to contain infection 
at early stages through the elimination of infected cells. Runx3 
has been shown to induce expression of granzyme B in TRM cells, 
directly implicating the transcription factor in the regulation of 
cytotoxicity in these memory T cells (44). A role for Runx3 in 
the instruction of lytic activity through the upregulation of gran-
zyme B and perforin expression has been previously established 
in effector CD8 T cells (114, 129). Runx3 directly binds at the 
granzyme and perforin loci, but also recruits Eomes for syner-
gistic activity at the perforin locus in effector CD8 T cells (114). 

Mucosal TRM cells do not express Eomes (74), suggesting that 
in these cells the activity of Runx3 is Eomes-independent. The 
Runx3-driven program of cytotoxicity in effector CD8 T  cells 
may also involve the upregulation of Blimp-1 expression (129). 
Blimp-1 and its homolog Hobit have been directly implicated in 
the regulation of cytotoxicity in effector CD8 T cells (115, 116) 
and in NKT cells (130), respectively. Blimp-1 drives the acquisi-
tion of granzyme B in effector CD8 T cells after acute infection 
with LCMV and influenza (115, 116). Hobit is required for 
NKT cells to upregulate granzyme B after stimulation with pro-
inflammatory cytokines such as type I IFN and after infection 
with mCMV (130). The role of Hobit and Blimp-1 in the regula-
tion of cytotoxicity in TRM cells remains to be investigated. The 
transcriptional regulation of cytotoxicity in TRM cells involves 
the long-term maintenance of cytotoxic molecules during steady 
state. Currently, it is not clear how the transcriptional network 
of TRM cells achieves the retention of cytotoxic molecules into 
the memory phase. Constitutive expression of Runx3, Blimp-1, 
and Hobit in TRM cells may be required for persistent expression 
of granzyme B and other cytotoxic molecules in these memory 
T cells (Figure 3).

Tissue-resident memory CD8 T  cells are able to mount 
rapid cytokine responses upon reactivation, which at least in 
part resides in their superior capacity to retain mRNA mol-
ecules encoding pro-inflammatory cytokines, including IFN-γ  
(43, 88). The transcriptional network underlying the persistence 
of mRNA of pro-inflammatory cytokines has not yet been 
established. Important transcriptional regulators of IFN-γ 
include T-bet and Eomes (127, 131), but these T-box transcrip-
tion factors are downregulated in TRM cells in mice and humans  
(37, 74, 128), suggesting that they do not play a dominant role in 
TRM cells. Runx3 has been described to regulate IFN-γ, TNF-α, 
and IL-2 in effector CD8 T cells (114), but is not essential for the 
regulation of cytokine production by TRM cells (44). Although 
Notch ligands induce IFN-γ expression in human TRM cells, 
Notch deficiency only marginally reduces the expression of 
IFN-γ in murine TRM cells (37). It is possible that the absence of 
an essential role in the regulation of IFN-γ production for any 
of these transcription factors relates to redundancy between the 
IFN-γ-driving molecules.

Taken together, the overlap in the transcriptional programs of 
effector CD8 T cells and TRM cells suggest a high degree of conser-
vation in the regulation of their effector capacities. Understanding 
the interplay between the different transcriptional programs in 
the maintenance of the poised effector state of TRM cells is crucial 
to further unravel the underlying transcriptional network.

Transcriptional Regulation of TRM Cells 
Upon Re-Stimulation
While the transcriptional program of TRM generation and main-
tenance is starting to become clear, it is currently not known how 
transcription factors regulate TRM functions after reactivation 
during reinfection. Based on the available information in circu-
lating CD8 T cells, we can speculate on how the signals received 
by TRM cells during infection may influence their transcriptional 
program (Figure 3).
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The transcription factor Hobit is specifically expressed by  
TRM cells and other tissue-resident lymphocytes including NKT cells  
during quiescence. Antigen recognition by NKT  cells leads to 
immediate downregulation of Hobit (130). Hobit expression 
might be similarly regulated in TRM cells. Downregulation of 
Hobit after TCR activation might allow TRM cells to release effec-
tor molecules and undergo proliferation. Additionally, the loss 
of the tissue-residence transcription factor Hobit might enable 
TRM cells to leave the tissue, enter the circulation, and migrate to 
secondary lymphoid organs. In memory CD8 T cells, the sensing 
of inflammation alone without cognate antigen recognition is 
sufficient to induce upregulation of effector molecules such as 
granzyme B (132). IFN-α receptor 1 and signal transducer and 
activator of transcription 1 are critical in this bystander cyto-
toxicity of circulating memory CD8 T cells. In NKT cells, Hobit 
is crucial for the ability to respond to inflammatory cytokines 
and type I interferon-driven granzyme B upregulation (130). 
Similarly, Hobit expression may also drive the innate functions 
of TRM cells after recognition of inflammation.

As pointed out above, many of the transcription factors, 
which are induced during priming of naïve CD8 T  cells and 
upregulated in effector cells, are also critical for TRM formation 
and maintenance. Blimp-1 and T-bet are highly expressed in 
effector T cells and maintained at a lower level in memory CD8 
T cells (50, 115, 116). Upon reinfection, reactivated memory cells 
form secondary effector cells that phenotypically and transcrip-
tionally resemble primary effector cells, e.g., high expression of 
T-bet. Recognition of IL-12 by memory CD8 T cells during recall 
responses is one of the main drivers of T-bet upregulation (133). 
Blimp-1 expression may be similarly regulated, as Blimp-1 is 
induced by pro-inflammatory cytokines including IL-12 in vitro 
(134). The data suggest that Blimp-1 and T-bet are upregulated 
in TRM cells in response to inflammation and/or TCR trig-
gering. Given its crucial role in TRM differentiation, increased 
expression of Blimp-1 may manifest tissue-resident features 
upon reinfection. At the same time, concurrent inflammation-
induced upregulation of T-bet may interfere with maintenance 
of tissue residency, as elevated levels of T-bet are incompatible 
with TRM formation (74). The role of the transcription factors 
Ahr and NR4A1 during activation of memory CD8 T  cells is 
less clear. The expression of Ahr is increased upon activation of 

memory T  cells (135). Also NR4A1 expression is upregulated 
after TCR triggering (136), but appears to exert a regulatory role 
after activation, as the transcription factor can maintain T cells 
in a quiescent state via the suppression of IRF4 (137). These data 
suggest that changes in the transcriptional programming of TRM 
cells likely occur upon reactivation. Further research is required 
to determine how the transcriptional network of TRM cells con-
trols their function and differentiation upon re-challenge with 
antigen and/or inflammation during infection.

CONCLUDiNg ReMARKS

The unique properties of TRM cells compared to circulating 
memory CD8 T cells have sparked interest in the development of 
therapeutic approaches that induce TRM formation, especially in 
the context of future vaccination strategies (138, 139). Given their 
superior protective capacity at barrier sites, local establishment of 
TRM cells constitutes an attractive approach to confer long-lasting 
tissue immunity. Recent work has demonstrated the potency 
of vaccine-induced TRM cells in providing protection against 
heterotypic viral challenges (140) and local tumor development 
(141, 142). In line with this, the improved survival rates of 
patients with tumors containing large quantities of TRM-type cells 
highlights TRM cells as a potential target in the treatment of cancer 
(143–145). A better understanding of the transcriptional network 
underlying the differentiation and function of TRM cells may assist 
in unlocking these potent memory cells for thera peutic purposes.
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