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Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine 
have been used for thousands of years. Carnosol as a bioactive diterpene compound 
originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively 
applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In 
this study, we investigated the therapeutic effects and molecule mechanism of carno-
sol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple 
sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the 
myelin oligodendrocyte glycoprotein (MOG35–55) peptide-induced EAE model, markedly 
decreased inflammatory cell infiltration into the central nervous system and reduced 
demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer 
and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB 
nuclear translocation. In the passive-EAE model, carnosol treatment also significantly 
prevented Th17  cell pathogenicity. Moreover, carnosol exerted its therapeutic effects 
in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated 
macrophage/microglia. Taken together, our results show that carnosol has enormous 
potential for development as a therapeutic agent for autoimmune diseases such as MS.

Keywords: carnosol, multiple sclerosis, experimental autoimmune encephalomyelitis, Th17  cell, macrophage/
microglia

inTrODUcTiOn

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), 
are chronic immune-mediated demyelinating diseases of the central nervous system (CNS), char-
acterized by infiltrated inflammatory cells, demyelination, and damage to neurons (2). Although 
the underlying mechanism of MS has not been well defined, a growing body of evidence supports 
its being an autoimmune disease (3). While Th1  cells have been considered pathogenic for MS/
EAE, Th17 cells, a subpopulation of pro-inflammatory T helper cells defined by their secretion of 
IL-17 (4), have recently emerged as an important player in inflammatory and autoimmune dis-
eases via the secretion of pro-inflammatory cytokines, such as IL-17A, IL-17F, GM-CSF, and IL-22  
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(5, 6). Polarization of Th17 populations and the related cytokine 
production are directly regulated by RORγt (7), and the signals 
that cause Th17 cells to differentiate actually inhibit regulatory 
T cell (Treg) differentiation (8). Therefore, targeted inhibition of 
RORγt transcription or a Th17 differentiation-related signaling 
pathway such as NF-κB and signal transducer and activator of 
transcription 3 (STAT3) represents an encouraging therapeutic 
strategy in treatment of Th17-related diseases (4, 9, 10).

Current MS therapies either have limited efficacy or impor-
tant safety issues (11, 12). A great deal of research effort has 
gone into developing novel therapies that specifically target 
Th17 cells, while sparing other immune cells. Recently, several 
new anti-inflammatory or immunomodulatory drugs derived 
from medicinal plants have been explored and are considered 
to have great potential for treatment of autoimmune diseases 
(4, 13–15). These natural compounds represent a rich source for 
the identification of effective and safe candidate medicines with 
innovative targets and/or mechanisms of action in the therapy of 
MS and other autoimmune diseases.

Rosmarinus officinalis (rosemary) and Salvia officinalis are 
common household plants that grow all over the world and have 
been used as medicinal herbs due to their powerful antioxidant 
and anti-inflammatory effects (16, 17). Carnosol, a major diter-
pene present in R. officinalis (rosemary) and S. officinalis, has been 
reported to possess strong antioxidant, anti-tumor, anti-viral, 
and especially anti-inflammatory properties (18–20). Carnosol 
treatment also induced T-cell leukemia/lymphoma apoptosis 
and decreased IL-6 and TNF-α levels in serum (21, 22). These 
studies indicate that carnosol may be effective in the treatment 
of autoimmune diseases; however, this possibility has not been 
tested. To elucidate this question, in the present work, we studied 
the potential therapeutic anti-inflammatory abilities of carnosol 
on actively induced and adoptively transferred EAE models and 
the mechanism of its action.

MaTerials anD MeThODs

eae induction and Treatment
Female C57BL/6 mice (purchased from the Fourth Military 
University (Xi’an, China)) were used at the age of 8  weeks. 
All animal experiments were performed with the approval of 
the Institutional Animal Care and Use Committee of Shaanxi 
Normal University and according to the approved institutional 
guidelines and regulations. For acute and chronic EAE, a previ-
ously described method was followed (23). Briefly, mice were 
subcutaneously injected with 200 µg of myelin oligodendrocyte 
glycoprotein (MOG) peptide 35–55 (Genescript, Piscataway, NJ, 
USA) in 200  µl of emulsified complete Freund’s adjuvant with 
5  mg/ml Mycobacterium tuberculosis H37Ra (Difco, Lawrence, 
KS, USA). For adoptive transfer EAE, mice were sacrificed 
10  days after MOG35–55 immunization, and splenocytes and 
draining lymph nodes were provided as previously described 
(4). Cells were cultured for 3 days in the presence of 25 µg/ml 
MOG35–55, 10 ng/ml rmIL-23, and 2 ng/ml rmIL-2 (R&D Systems, 
Minneapolis, MN, USA) at 1 ×  107 cell/ml. CD4+ T  cells were 
purified by CD4+ T cell isolation kit and 4 × 106 cells per mouse 
were transferred via intravenous (i.v.) injection. Pertussis toxin 

(200  ng/mouse) was injected intraperitoneally (i.p.) on days 0 
and 2. Clinical EAE was assessed by daily scoring using a 0–5 
scale as described previously (24). Carnosol was obtained from 
Sigma-Aldrich (St. Louis, MO, USA) and was injected (50 mg/kg/
day) i.p. daily starting at day 0 p.i.

histological and immunofluorescence 
staining
Mice were euthanized at different time points after drug adminis-
tration, and transcardially perfused with PBS. Tissues (brains and 
spinal cords) were collected for pathological assessment. Spinal 
cords were fixed with 4% paraformaldehyde overnight, cut into 
5 µm sections and stained with H&E (hematoxylin and eosin) for 
inflammation and Luxol fast blue (LFB) for demyelination. Slides 
were examined and assessed following a previously described 
method (23).

For immunofluorescence, brain and spinal cord were 
cryopreserved in OCT compound (Tissue-Tek, Sakura Finetek, 
Japan) for frozen sections and cut into 12  µm sections (25). 
Immunofluorescence staining was performed using general 
methods and the appropriate dilutions of primary antibodies 
were applied. Immunofluorescence controls were routinely 
performed with incubations in which primary antibodies were 
omitted. Images were acquired by Nikon Eclipse E600 fluorescent 
microscopy (Nikon, Melville, NY, USA). For quantification of 
CD45+, MOG+, MBP+, iNOS+, Arg1+, and CD68+, 10 areas of the 
sections were selected and analyzed as previously described (23).

cytokine Measurement by elisa
Splenocytes from EAE mice were prepared and cultured in 
triplicates in RPMI 1640 supplemented with 10% fetal bovine 
serum (Thermo Fisher Scientific) and stimulated with 25 µg/ml 
MOG35–55 for 3 days. Cell-free supernatants were harvested and 
analyzed for IFN-γ, IL-17, GM-CSF, IL-5, and IL-10 by ELISA 
Kits (R&D Systems).

Mononuclear cell (Mnc) Preparation
Splenocytes of EAE mice were mechanically pushing spleen 
tissue through a 70 µm strainer (Falcon, Tewksbury, MA, USA) 
and treated with red blood cell (RBC) lysis buffer (Biolegend, San 
Diego, CA, USA) for 60 s. Collected cells were flushed with pre-
cold PBS before stimulation. To collect MNC from CNS tissue, 
brain and spinal cords were administered with Liberase (Roche, 
Nutley, NJ, USA) for half hour and dissociated through a 70 µm 
strainer and flushed with pre-cold PBS. Cells were then separated 
by 70/30% percoll (Sigma-Aldrich) gradient method following 
previously described (26).

In Vitro T cell Polarization
Polarization of Th1, Th17, and Treg cells was induced in  vitro 
following a previously described method (4). Naive 8-week-old 
female C57BL/6 mice were sacrificed and spleen tissue was dis-
sociated to single cell. Mouse CD4 microbeads (Miltenyi Biotech 
Inc.) were used to purify the CD4+ T  cells. Then, cells were 
cultured for 3 days under their respective polarizing conditions 
(27). Cells were stimulated for 3 days and examined on FACSAria 
(BD Biosciences).
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FigUre 1 | Carnosol ameliorated clinical severity of experimental 
autoimmune encephalomyelitis (EAE). C57BL/6 mice were injected i.p. 
with PBS or carnosol (50 mg/kg) daily starting on the day of EAE 
induction, and scored daily following a 0–5 scale (a). (B) Mice were 
sacrificed at day 30 p.i. and spinal cords were harvested. Sections at 
lumbar level (L3) were analyzed by H&E and Luxol fast blue (LFB) (scale 
bar = 1 mm), and pathology scores of inflammation (c) and percentage of 
demyelination area (D) were evaluated. Data are mean ± SD (n = 5 each 
group). **p < 0.01 and ****p < 0.0001, determined by two-way ANOVA 
(a), or nonparametric test (c,D). One representative of three independent 
experiments is shown.
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Flow cytometry analysis
For cell surface staining, fluorochrome-conjugated Abs to CD4 
(BD Biosciences, San Jose, CA, USA) or isotype control Abs were 
added to cells for 30  min. For all intracellular staining, CNS-
infiltrating MNCs or splenocytes were stimulated for 5  h with 
phorbol 12-myristate 13 acetate (50 ng/ml), ionomycin (500 ng/
ml) (Sigma-Aldrich), and GolgiPlug (BD Biosciences). The stain-
ing procedure was performed following a previously described 
protocol (4). Data were analyzed with FlowJo software (Treestar, 
Ashland, OR, USA).

Quantitative Pcr
Total RNA from T  cells or microglia cells was extracted by 
RNeasy Plus Mini Kit (QIAGEN, Valencia, CA, USA). cDNA 
was synthesized with QuantiTect Reverse Transcription Kit 
(QIAGEN). Quantitative PCR was performed in ABI Prism 7500 
Sequence Detection System (Applied Biosystems, Foster City, 
CA, USA) using QuantiFast SYBR Green PCR Kit (QIAGEN). 
All experiments involving mRNA levels were normalized to 
glyceraldehyde 3-phosphate dehydrogenase and primers that 
were based on published cDNA sequences are listed in Table S2 
in Supplementary Material.

Western Blot
T cells were activated on 24-well plate under Th17 differentiation 
condition w/o carnosol 10 µg/ml for 18 h and were then collected. 
Cells were lysed by cell lysis buffer (Cell Signaling Technology, 
Danvers, MA, USA) supplemented with 1  mM phenylmethyl-
sulfonyl fluoride (Cell Signaling Technology). All samples con-
taining 15 µg total proteins were separated by 10% SDS-PAGE 
and transferred to polyvinylidene difluoride membrane (Pierce 
Chemical, Rockford, IL, USA). Membranes were blocked with 
5% (w/v) nonfat dry milk powder in Tris-buffered saline (TBS) 
for 2  h at room temperature. This was followed by incubation 
at 4°C overnight with primary antibodies. Afterward, the mem-
brane was washed three times in TBS plus Tween and incubated 
with the corresponding secondary antibodies (Cell Signaling 
Technology). The protein band was detected using Pierce ECL 
Western Blotting Substrate (Thermo Fisher Scientific, Waltham, 
MA, USA).

statistical analysis
Data were analyzed using GraphPad Prism 6 software (GraphPad, 
La Jolla, CA, USA), and are presented as the mean  ±  SD. 
Significant differences in comparing multiple groups, data were 
analyzed by Tukey’s multiple comparisons test. All other sta-
tistical comparisons were done using nonparametric statistical 
tests. Differences with p values of less than 0.05 were considered 
significant.

resUlTs

carnosol Treatment remarkably alleviated 
acute clinical eae
We first tested whether carnosol was effective in ameliorating 
the clinical severity of MOG-induced EAE by scoring disease 

signs daily on a 0–5 scale. The PBS-treated group of mice showed 
the first signs of EAE on day 10 p.i., while the carnosol-treated 
mice did so on day 12 p.i. Further, daily carnosol administration 
apparently led to decreased disease severity compared to the PBS-
treated control group (p < 0.01; Figure 1A).

We then evaluated pathological changes by histologic analyses 
in lumbar spinal cords to examine CNS inflammatory infiltration 
and demyelination at day 30 p.i. As shown in Figure 1B, massive 
inflammatory infiltration and demyelination was observed in the 
spinal cord of PBS-treated EAE mice; by contrast, the carnosol-
treated group displayed mild to moderate signs (p  <  0.0001; 
Figures  1B–D). These results indicated that carnosol had a 
significantly suppressive effect in acute EAE.
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FigUre 2 | Carnosol treatment suppressed inflammatory infiltration in the central nervous system (CNS). Mice were treated with PBS or carnosol at the day of 
experimental autoimmune encephalomyelitis induction and sacrificed at day 30 p.i. (a) Spinal cords were subjected to immunostaining analysis. (a) Representative 
sections of thoracic spinal cord from PBS- and carnosol-treated mice were stained with CD45 and MOG (scale bar = 100 μm), and the number of CD45+ cells  
(B) and the intensity of MOG staining (c) were statistically analyzed. (D) Spinal cords and brains were harvested and mononuclear cells (MNCs) isolated (n = 10 
each group). Total MNC numbers in CNS were counted under light microscopy. (e) The percentage of CD4+ T cells was measured by flow cytometry. (F) Absolute 
numbers of infiltrated CD4+ T were calculated by multiplying the percentages of these cells with total numbers of MNCs in each spinal cord and brain tissue. (g–J) 
Frequencies of IFN-γ+, IL-17+, GM-CSF+, and Foxp3+ cells among CD4+ cells were assessed by flow cytometry, and (K) the percentages of these cells in total CD4+ 
cell numbers in each CNS are shown. Symbols represent mean ± SD (n = 5 each group). **p < 0.01 and ***p < 0.001. Student’s t-test. One representative of three 
independent experiments is shown.
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FigUre 3 | Carnosol treatment decreased inflammation and cytokine 
production. Mice were treated with PBS or carnosol at the day of 
experimental autoimmune encephalomyelitis induction and sacrificed at day 
30 p.i. as described in Figure 1a. Splenocytes were harvested and 
stimulated with 25 µg/ml MOG35–55 for 3 days. Cytokine concentrations in 
culture supernatants were measured by ELISA. n = 5. Symbols represent 
mean ± SD (n = 5 each group). *p < 0.05 and **p < 0.01. Nonparametric 
test. One representative of three independent experiments is shown.

5

Li et al. Carnosol Effectively Suppresses EAE

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1807

carnosol suppressed cns inflammation 
and Modulated Peripheral immune 
response in acute eae
To evaluate the therapeutic effects of carnosol on CNS pathology, 
spinal cords were obtained from carnosol- and PBS-treated EAE 
mice. Analysis of spinal cord tissue sections showed abundant 
CD45+ inflammatory cells in the lesion area in the PBS-treated 
group, while these cells could barely be detected in the spinal cord 
tissue sections of carnosol-treated mice (p < 0.01; Figures 2A,B). 
Correspondingly, there was significantly reduced demyelination 
(MOG− area) in carnosol-treated mice compared with the PBS-
treated group (p < 0.01; Figures 2A,C). These results were consist-
ent with the HE and LFB staining, indicating that carnosol inhibited 
inflammatory cell infiltration and demyelination in the CNS.

To further evaluate the effects of carnosol on the infiltrated 
inflammatory T cells into the CNS, MNCs were separated from 
the CNS and analyzed by flow cytometry. The total number of 
MNCs was 703.8  ±  119.0  ×  104 per mouse in the PBS-treated 
group vs. 382.6  ±  93.59  ×  104 in the carnosol-treated group 
(p < 0.01; Figure 2D). In addition, carnosol treatment significantly 
decreased the percentage and absolute numbers of CD4+ cells in 
the CNS compared to the PBS-treated control (Figures  2E,F). 
Furthermore, while the percentages of CD4+IFN-γ+ (Th1) and 
CD4+Foxp3+ (Treg) cells remained unchanged, percentages of 
CD4+IL17+, CD4+GM-CSF+, and IFN-γ+IL-17+ cells decreased 
dramatically after carnosol treatment (p < 0.001; Figures 2G–K; 
Figure S1 in Supplementary Material). These results indicate 
that carnosol may play a significant role in the inhibition of CNS 
inflammatory infiltration, especially in the pathogenic Th17 cell 
population.

To study the autoantigen-induced cytokine production in the 
peripheral immune system of carnosol-treated mice, spleen cells 
were collected at day 30 p.i. and pulsed with MOG35–55. As shown 
in Figure 3, the protein levels of IL-17 and GM-CSF in cell culture 
supernatants were significantly decreased in the carnosol-treated 

group, which was consistent with the findings in the CNS infil-
trated cells, as shown in Figures 2G–K. Overall, our data show 
that carnosol specifically inhibited the cytokine production of 
pathogenic Th17 cells.

carnosol Mediated its immunomodulation 
Function by inhibiting Th17 cell 
Differentiation
To clarify the mechanism underlying the effects of carnosol on 
CD4+ T cell subsets, we defined its function in Th1, Th17, and 
Treg cell polarization in vitro. Under Th17-differentiation con-
dition, about 25% of CD4+ cells were IL-17+ in the PBS group, 
while carnosol treatment at a dose of 10 µM significantly reduced 
Th17-polarized (IL-17-producing) CD4+ T cells (25.06 ± 2.13 vs. 
4.47 ±  0.52%, p <  0.01) (Figures 4A,D). In addition, carnosol 
treatment suppressed Th17 differentiation in a dose-dependent 
manner. We then investigated the effects of carnosol on Th1 and 
Treg cell differentiation. In contrast to the findings for Th17 cells, 
IFN-γ or Foxp3 expression under Th1 or Treg polarizing condi-
tion was not significantly affected under carnosol treatment 
(Figures 4B–D). Taken together, these data suggest that carnosol 
selectively inhibits Th17 polarization.

carnosol suppressed sTaT3 and nF-κB 
Phosphorylation, Which is required for 
Th17 Differentiation
Inflammatory cytokine production depends on early events in the 
NF-κB signaling pathway (28). In order to study the mode of action 
of carnosol in T cell differentiation, the phosphorylation status 
of NF-κB was determined by Western blot. p65 phosphorylation 
at Ser536 regulates its activation and nuclear translocation (29). 
Results showed that carnosol suppressed cell response by a shift 
of NF-κBp65 to the cell nucleus, which was demonstrated by the 
proper shift in the ratio of phosphorylation NF-κB/total NF-κB 
(Figures 4E,F). Further, the pro-inflammatory cytokines in the 
downstream of NF-κB signal pathway, including IL-2 and TNF-α, 
were also significantly decreased (Figure 4H).

Signal transducer and activator of transcription 3 activities 
play an important role in the differentiation of Th17 cells. We 
determined that the basal STAT3 phosphorylation level was 
significantly decreased. The phosphorylation status at Tyr705 
induced nuclear translocation and DNA binding, which 
promotes IL-17 production (30). Our results showed that 
carnosol treatment significantly suppressed STAT3 activation 
(Figures 4E,G) and IL-17A and IL-17F production of Th17 cells 
(Figure  4I) compared with the PBS-treated cells. In contrast, 
similar expression levels were observed for NF-κB and STAT4 
phosphorylation in carnosol- and PBS-treated Th1 cells (Figure 
S2 in Supplementary Material). Together, these results indicate 
that carnosol may specifically inhibit differentiation of Th17 cells 
but not Th1 cells.

carnosol suppressed Pathogenicity  
of Th17 cells in Passive eae
To assess the effect of carnosol on the encephalitogenicity of 
Th17  cells, at day 10 p.i., MNCs were collected from lymph 
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FigUre 4 | Carnosol suppressed Th17 cell differentiation by blocking the function of NF-κB and signal transducer and activator of transcription 3 (STAT3).  
(a) CD4+ cells were isolated from C57Bl/6 mice and cultured under the Th17 polarizing condition with different concentrations of carnosol for 3 days. Percentage of 
Th17 cells was analyzed by intracellular staining of IL-17. (B,c) CD4+ cells were cultured under the Th1 and regulatory T cell (Treg) polarizing condition with carnosol 
(10 µM) for 3 days. Percentages of Th1 and Treg cells were analyzed by intracellular staining of IFN-γ+ and Foxp3+, respectively. (D) Statistical analysis of  
(a–c). (e) CD4+ T cells were cultured under Th17 polarizing condition and treated with 10 µM carnosol or PBS for 3 days. Cells were then analyzed for NF-κB  
and STAT3 expression by Western blot. (F,g) Statistical analysis of (e). (h,i) Cells were harvested as described in (e) and subjected to RNA extraction and cDNA 
production. Expression of pro-inflammation cytokines and IL-17 members (IL-17a and IL-17f) was determined by real-time PCR. Symbols represent mean ± SD 
(n = 3 each group). *p < 0.05 and **p < 0.01. Student’s t-test. One representative of three independent experiments is shown.
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nodes and spleen of IL-17A-IRES-GFP mice (C57BL/6 back-
ground), of which IL-17A-producing cells are GFP+ (The 
Jackson Laboratory, Stock # 018472). Cells were cultured 
under Th17-polarizing conditions with PBS or carnosol, and 
stimulated by MOG35–55 (20  µg/ml). After 3  days of culture, 

CD4+ T cells were separated and i.v. injected into naïve C57BL/6 
recipient mice. As shown in Figure 5A, carnosol-treated T cells 
transferred significantly reduced clinical disease compared to 
the PBS-treated group (p  <  0.01). Mice were sacrificed after 
20 days, and brain tissues from different groups were collected 
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FigUre 5 | Carnosol decreased clinical severity in an adoptive transfer 
model of experimental autoimmune encephalomyelitis (EAE). For adoptive 
transfer EAE, single-cell suspensions were derived from spleen and lymph 
nodes of IL-17A-IRES-GFP EAE mice at day 10 p.i. MOG (25 µg/ml) plus 
IL-23 (10 ng/ml) and IL-2 (2 ng/ml) were added to cultures in the presence or 
absence of carnosol (10 µM) for 3 days. 1 × 106 CD4 T cells were i.v. injected 
to the recipient mice. (a) Mean clinical score of adoptive transfer EAE 
(mean ± SD; n = 5 each group). **p < 0.01, Two-way ANOVA with Sidak 
test. (B) Mice were sacrificed at day 20 after cell transfer, and brains were 
subjected to immunostaining analysis of CD45+ and GFP+ cells (marker for 
Th17 cells). Statistical analyses of total CD45+ cell numbers (c) and the 
percentage of GFP+CD45+ cell (D) for staining in (B) are shown. Scale 
bar = 100 µm. Symbols represent mean ± SD (n = 5 each group) **p < 0.01, 
determined by two-way ANOVA (a), or nonparametric test (c,D). One 
representative of two independent experiments is shown.
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for immunohistochemistry. Results showed similar CD45+ cell 
numbers in the tissue; however, in the CNS, the percentages of 
GFP+/CD45+ cells in the carnosol-treated group were mark-
edly reduced compared with the PBS-treated group (p < 0.01; 
Figures  5B–D). These in  vivo results further demonstrated a 
suppression function of carnosol on the encephalitogenicity of 
MOG-reactive Th17 cells.

carnosol alleviated clinical Disease When 
Treatment started at chronic stage of eae
To further explore the therapeutic effects of carnosol, the chronic 
EAE model was used in this study. Mice were treated starting 
from day 25 p.i., when CNS demyelination and chronic tissue 
damage were already established. While clinical scores in the 
PBS-injected mice remained at 2.5–3.0, the disease was signifi-
cantly alleviated in the carnosol-treated group after 10 days of 
treatment (p < 0.01–0.001; Figure 6A). The results indicate that, 
compared to the PBS-treated mice, carnosol showed potential 
for blockade of demyelination and recovery from neurological 
damage in the CNS, even when treatment was started after the 
peak of disease.

Compared to acute EAE (e.g., day 25 p.i.), in chronic EAE (e.g., 
day 60 p.i.; Figures  6B,C), rare infiltration inflammation cells 
were observed in the white matter of both PBS- and carnosol-
treated mice, suggesting that neuroinflammation is no longer the 
major pathogenesis in the chronic stage (23). On the other hand, 
while PBS-treated EAE mice tended to have more severe demy-
elination, as shown by LFB and MBP staining, the demyelination 
area was obviously decreased in carnosol-treated mice compared 
to PBS-treated control mice. Increased MBP expression after car-
nosol treatment compared to that before treatment (day 25 p.i.) 
suggests that carnosol might induce myelin protein regeneration 
(Figures 6D–G).

carnosol Promoted an M1/M2 Phenotype 
shift of Macrophage/Microglia
Given that microglia/infiltrating macrophages with the activated 
type 1 phenotype (M1) have a significant role in CNS inflamma-
tion during EAE chronicity, whereas type 2 phenotype (M2) cells 
are immunomodulatory and promyelinating (31, 32), we deter-
mined the effects of carnosol on these cells in the CNS tissues 
of EAE mice that were euthanized after 60 days p.i. The number 
of M1 microglia/infiltrating macrophages (iNOS+CD68+) was 
decreased and an increase in M2 (Arg1+CD68+) phenotype was 
observed in carnosol-treated mice compared to PBS-treated 
control (Figures  7A–D). These results indicated that, at least 
partially, carnosol inhibited demyelination and promoted myelin 
recovery through inhibiting M1 microglia and switching them to 
M2. To further confirm this hypothesis, primary microglia were 
cultured with or without carnosol. Carnosol effectively inhibited 
production of important mediators of microglia activation, e.g., 
TNF-α (Figure 7E), and expression levels of IL-1β, NOSII, and 
TNF-α were also significantly decreased (Figure  7F). These 
results indicated that carnosol inhibits the infiltration of M1 
phenotype microglia and switches it to a promyelinating and 
immunoregulatory M2 phenotype that promotes the process of 
myelin regeneration (32).

DiscUssiOn

This work for the first time shows the beneficial effect of carnosol 
on both acute and chronic stages of EAE. Carnosol significantly 
decreased inflammatory infiltration into the CNS and the demy-
elination process, thus halting disease development. The role of 
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FigUre 6 | Carnosol treatment alleviated the clinical severity of chronic experimental autoimmune encephalomyelitis (EAE) mice. (a) Clinical scores of carnosol- and 
PBS-treated mice at the chronic stage (treatment starting from day 25 p.i.) of EAE. Mice were sacrificed at day 60 p.i. (n = 5 each group), and spinal cords were 
harvested and evaluated for cell infiltration by H&E staining (B), which was scored on a 0–3 scale (c), and for demyelination by Luxol fast blue (D). (e) Demyelination 
area was measured using Image-Pro Plus software. (F) Sections of lumbar spinal cord from (a) were assayed for demyelination by MBP staining. (g) Quantitative 
analysis of MBP expression. MBP intensity was measured in the lesion areas in the lumbar spinal cord using Image-Pro. Data represent mean ± SD (n = 10 each 
group). Scale bar = 1 mm (B,D) or 100 µm (F). *p < 0.05, **p < 0.01, and ****p < 0.0001. Student’s t-test. One representative of three independent experiments is 
shown.
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carnosol in acute EAE is primarily due to its inhibitory effect 
on Th17 cell differentiation, CNS infiltration, and encephalito-
genicity, in which the STAT3 signaling pathway plays an impor-
tant role. Further, the shift of microglia/infiltrated macrophage 
phenotype from a pro-inflammatory (M1) to an immunoregula-
tory one (M2) may be an important mechanism underlying the 
therapeutic effect of carnosol on the chronic stage of EAE.

Carnosol, an ortho-diphenolic of abietane-type diterpene-
lactone, consists of an abietane carbon skeleton with hydroxyl 
groups at positions C-11 and C-12 and a lactone moiety across 
the B ring (18). Carnosol showed a broad range of physiological 
benefits and bio-pharmacological effects, as well as exerted strong 
anti-oxidant, anti-cancer, and neuroprotection effects (17, 20). 
Furthermore, carnosol was reported to exert anti-inflammatory 
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FigUre 7 | Carnosol promoted an M2 phenotype in macrophages/microglia. 
Spinal cords of mice described in Figure 6 were stained for markers for M1 
[iNOS; (a)] and M2 [Arg-1; (B)] on microglia/infiltrating macrophages (CD68+ 
cells). (c,D) Quantitative analysis of the percentages of double positive cells. 
(e,F) Primary microglia were prepared from newborn B6 mice, stimulated 
with LPS (100 ng/ml), and treated with carnosol at different concentrations 
for 2 days and (e) supernatants were harvested for TNF-α production and  
(F) cells were collected for expression levels of IL-1β, NOSII, and TNF-α by 
real-time PCR. Glyceraldehyde 3-phosphate dehydrogenase was used as an 
internal control. Scale bar = 100 µm. Data are shown as mean values ± SD 
(n = 5 each group). ANOVA with Tukey’s multiple comparisons test was used. 
*p < 0.05 and **p < 0.01. One representative of three independent 
experiments is shown.
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effects by reducing cytokine release (e.g., IL-1, IL-6) and iNOS 
formation (18). Also, carnosol, as an anti-inflammatory 
and anti-oxidant agent, has been considered as a potentially 

promising therapeutic drug for many incurable diseases, such 
as neurodegeneration, cancer, and cardiovascular disorders (33, 
34). However, the mechanism underlying these functions has not 
been completely elucidated. Although it has already been shown 
that carnosol stimulates the MAPKs signaling pathway and 
down-regulates multiple transcription factors, including NF-κB 
as well as pro-inflammation protein such as COX-2 level (35–37), 
to our knowledge, this is the first study to show that carnosol 
treatment leads to an inhibition in Th17 differentiation and that 
it modulates microglial switch.

The major challenge for the clinical application of natural 
compounds is determining their detailed molecular mechanism 
(4). Indeed, the mechanism of carnosol’s action on T helper cell 
differentiation in autoimmune disease remains largely unknown. 
It has been suggested that carnosol suppresses inflammation by 
targeting NF-κB signaling (37, 38), whose activation has been 
found in MS brain lesions (39, 40) and peripheral blood (41), as 
well as in the development of EAE (42, 43). Further, IL-17 plays a 
key role in the pathogenesis of MS and EAE (9, 44). Specifically, 
activated STAT3 is considered to be necessary for IL-17 produc-
tion in mouse and human Th17  cells (45, 46). STAT3 controls 
various genes that contribute to the Th17 population cells includ-
ing the IL-17 locus itself (47), and binds to genes encoding tran-
scription factors that are critical for Th17 polarization, including 
Rorc, Irf4, and Batf (48). In our study, carnosol altered the level 
of Th17 lineage-associated cytokine IL-17. This finding suggests 
that carnosol inhibits polarization of T cells into Th17 cells, which 
may be due to carnosol’s ability to diminish Th17-associated 
cytokines by targeting the NF-κB signaling pathway. In response 
to cytokines, STAT3 is phosphorylated by receptor-associated 
Janus kinases and forms homo- or heterodimers that translocate 
to the cell nucleus, where they act as transcription activators. 
Here, we show that carnosol suppressed STAT3 phosphorylation 
at the site of tyrosine 705, in response to the ligand IL-6. These 
findings further identified the mechanism of carnosol through 
suppressed NF-κB and STAT3 phosphorylation to block Th17 
differentiation.

We have further identified the therapeutic effects of carnosol 
on chronic stage of EAE, and investigated the involvement of 
M1/M2 microglia shift as a potential mechanism of its action. 
Persistent CNS inflammation, particularly the activation of 
infiltrated macrophage/microglia, is recognized to be a crucial 
mechanism underlying EAE chronicity (49). Pro-inflammatory 
cytokines, including IL-1β, IL-6, and TNF-α, were secreted by 
these inflammatory cells, which, together with the accumulation 
of neurodegeneration inhibitors, form a hostile microenviron-
ment against remyelination and neural repair (24). Therefore, 
diminishing the inflammatory cytokines of the CNS niche and 
promoting its change to a supportive environment for neural 
repair and remyelination will be helpful for treatment. Here, 
we showed that carnosol suppressed infiltrated macrophage/
microglia activation both in EAE mice in  vivo and microglia 
culture in vitro. A shift from M1 to M2 phenotype was observed 
following carnosol treatment. Previous studies indicated that 
carnosol reduced LPS-induced iNOS mRNA and protein 
expression. Administration of carnosol resulted in a reduction 
of nuclear factor-kappa B (NF-κB) subunit translocation and 
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NF-κB DNA binding activity in activated macrophages (50). 
Further experimental data added proof that carnosol blockades 
the IL-1β induced nuclear translocation of NF-κBp65, indicat-
ing that it mainly regulates through the NF-κB signaling (38). 
These findings were consistent with our results and indicated that 
carnosol could switch infiltrated macrophages/microglia from 
M1 to M2 phenotype and may play an essential role in myelin 
protein recovery.

One of the major mechanisms contributing to the chronic 
progression in MS is loss of neurotrophic factor support for both 
oligodendrocytes and neurons, resulting in persistent damage to 
CNS tissue damage, i.e., demyelination, axonal degeneration, and 
neuronal dysfunction (23). Exploring a novel medicine that both 
targets neuroinflammation and promotes neuroregeneration 
will, therefore, be of great value. Recently, Wang et al. showed the 
protective role of carnosol against spinal cord injury (37). This 
study led us to determine whether carnosol has a neuroprotec-
tive function in demyelinating disease. In the present study, we 
observed that carnosol blocks demyelination by means of the M1/
M2 switch. However, no significant differences were observed in 
OPC differentiation in vitro or in the cuprizone-induced demy-
elination model (data not shown). This finding may illustrate 
that the underlying mechanism of carnosol-induced recovery 
in EAE mice is not due to its direct effect on oligodendrocyte 
differentiation/maturation, but rather an indirect effect through 
immunomodulation and reduced CNS inflammation and the 
M1/M2 switch, thus providing a supportive microenvironment 
for neural cells.

Although we demonstrated the efficacy of carnosol treat-
ment of EAE, the immunomodulatory mechanism is not clear. 
We showed that carnosol could suppress IL-17 and GM-CSF 
production of splenocytes, but we also found that carnosol exerts 
its anti-inflammatory effect on microglia. Increasing evidence 
shows that carnosol can cross the blood–brain barrier (BBB) 
as a neuroprotective agent. We, therefore, provide compelling 
evidence supporting an effective role of carnosol in inhibiting 
Th17 cell differentiation in the periphery and modulating micro-
glia phenotype by penetrating the BBB in the CNS.

In addition, a previous study showed that carnosol has anti-
tumor capacity through prevention of Treg cell differentiation, 
decreasing IL-4 and IL-10 production, and enhancing IFN-γ 
secretion in tumor-associated lymphocyte populations (51). 
Tumor Tregs are a highly heterogeneous population that arises 
through disparate pathways and mediates immunologic effects 
by various means including soluble cytokines (52). An explana-
tion of the principal mechanism of their increase would include 
a reaction to autoimmunity, tumor-specific factors, and control 
of inflammation. Although autoimmune disease and cancer both 
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