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Immunomodulatory drugs and monoclonal antibody-based immunotherapies have sig-
nificantly improved the prognosis of the patients with multiple myeloma (MM) in the recent 
years. These new classes of reagents target malignant plasma cells (PCs) and further 
modulate the immune microenvironment, which prolongs anti-MM responses and may 
prevent tumor occurrence. Since MM remains an incurable cancer for most patients, 
there continues to be a need to identify new tumor target molecules and investigate 
alternative cellular approaches using gene therapeutic strategies and novel treatment 
mechanisms. Osteoclasts (OCs), as critical multi-nucleated large cells responsible for 
bone destruction in >80% MM patients, have become an attractive cellular target for 
the development of novel MM immunotherapies. In MM, OCs are induced and activated 
by malignant PCs in a reciprocal manner, leading to osteolytic bone disease com-
monly associated with this malignancy. Significantly, bidirectional interactions between 
OCs and MM cells create a positive feedback loop to promote MM cell progression, 
increase angiogenesis, and inhibit immune surveillance via both cell–cell contact and 
abnormal production of multiple cytokines/chemokines. Most recently, hyper-activated 
OCs have been associated with activation of programmed cell death protein 1 (PD-1)/
programmed cell death ligand 1 (PD-L1) pathway, which impairs T cell proliferation and 
cytotoxicity against MM cells. Importantly, therapeutic anti-CD38 monoclonal antibodies 
and checkpoint inhibitors can alleviate OC-induced immune suppression. Furthermore, 
a proliferation-inducing ligand, abundantly secreted by OCs and OC precursors, sig-
nificantly upregulates PD-L1 expression on MM cells, in addition to directly promoting 
MM cell proliferation and survival. Coupled with increased PD-L1 expression in other 
immune-suppressive cells, i.e., myeloid-derived suppressor cells and tumor-associated 
macrophages, these results strongly suggest that OCs contribute to the immunosup-
pressive MM BM microenvironment. Based on these findings and ongoing osteoimmu-
nology studies, therapeutic interventions targeting OC number and function are under 
development to diminish both MM bone disease and related immune suppression. In 
this review, we discuss the classical and novel roles of OCs in the patho-immunology of 
MM. We also describe novel therapeutic strategies simultaneously targeting OCs and
MM interactions, including PD-1/PD-L1 axis, to overcome the immune-suppressive
microenvironment and improve patient outcome.
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iNTRODUCTiON

Multiple myeloma (MM), a malignancy of plasma cells (PCs), is 
defined by abnormal growth of malignant PCs within the bone 
marrow (BM), resulting in excessive monoclonal immunoglobu-
lin in the blood and urine, impaired renal function, and repeated 
infections in patients (1). Moreover, osteolytic bone disease is a 
central hallmark of MM, which severely impacts quality of life in 
>80% of patients (2, 3). Specifically, osteoclast (OC)-mediated 
lytic bone destruction remains a cause of major morbidity in MM. 
In the past two decades, the introduction of autologous stem-cell 
transplantation and the availability of novel agents with differ-
ent mechanisms of action including proteasome inhibitors (e.g., 
bortezomib, carfilzomib, ixazomib) and immunomodulatory 
drugs (IMiDs) (e.g., thalidomide, lenalidomide, pomalidomide) 
have revolutionized the therapeutic strategies for MM and sig-
nificantly prolonged overall survival of patients (4–7). However, 
cure is rarely achieved due to the development of drug resistance 
and persistence of minimal residual disease. Thus, there is unmet 
need for innovative treatment modalities to eradicate residual 
tumor clones and effectively prevent disease relapses, as well as 
enhance overall anti-MM immunity.

Recently, immunotherapies have showed significant clinical 
activities not only against malignant, PCs but also potentially 
relieving the immunocompromised status in MM. Currently, 
a variety of immunotherapeutic strategies are under intensive 
preclinical and clinical development, including monoclonal 
antibodies (mAbs), chimeric antigen receptor T (CAR T) cells, 
immune checkpoint inhibitors, and as well as cancer vaccines (8). 
Following the approval of the first two mAbs daratumumab tar-
geting CD38 and elotuzumab targeting SLAMF7 by FDA in late 
2015 for the treatment in relapse and refractory MM (RRMM), 
multiple combination trials of these two mAbs are ongoing (8, 
9). Excitingly, daratumumab has also shown clinical responses 
in newly diagnosed MM patients (9). Another therapeutic 
anti-CD38 mAb isatuximab, unlike daratumumab, can directly 
kill MM cells with p53 mutations and in the absence of effector 
natural killer (NK) cells in vitro (10). Indeed, isatuximab, when 
combined with lenalidomide or pomalidomide plus dexametha-
sone, also demonstrated significant activity in heavily treated 
RRMM (11, 12). Isatuximab is currently undergoing studies for 
the treatment of relapsed and previously untreated MM patients, 
pursuing FDA approval. Most importantly, more than a dozen 
targeted immunotherapies besides CD38 and SLAMF7 mAbs, 
alone or in combinations with current or emerging anti-MM 
therapies with different mechanisms of actions, have already 
entered clinical investigations.

Accumulating data for the past two decades has confirmed 
that the BM microenvironment plays a crucial role in the patho-
genesis and recurrence of MM (13, 14). Malignant PCs in the 
MM BM are in close contact with non-myeloma cells, including 
bone marrow stromal cells (BMSCs) (13, 15), osteoclasts (OCs) 
(16–20), myeloid-derived suppressor cells (MDSCs) (21, 22), 
tumor-associated macrophages (TAMs) (23), regulatory T-cells 
(Treg) (21, 24, 25), plasmacytoid dendritic cells (pDC) (26), and 
regulatory B-cells (Breg) (27). These BM accessory cells, alone or 
in collaboration with others, support the initiation, progression, 

and re-occurrence of MM. They further influence treatment 
responses and may promote clonal evolution of malignant PC 
clones to adapt to the immune microenvironment and escape 
immune surveillance. For example, MM cells increase their 
proliferation upon adherence to BMSCs and become resistant 
to dexamethasone treatment (13, 28). Cytotoxic effects of some 
conventional drugs, i.e., dexamethasone, melphalan, as well as 
antibody-mediated cellular cytotoxicity against MM cells are 
reduced in the presence of BMSCs (13, 29).

Among other abovementioned cells, hyperactive OCs cause 
osteolytic bone diseases affecting almost every MM patient, 
thereby making them a potential novel cellular target for novel 
therapeutics. OCs, critical mediators of bone absorption, are 
large cells with multiple nuclei derived from CD14+ lineage 
myeloid cells (i.e., monocyte, macrophage) under the influ-
ence of several OC-activating cytokines produced by multiple 
BM accessory cells. Among many OC-stimulating cytokines, 
macrophage-colony-stimulating factor (M-CSF) and receptor 
activator of nuclear factor-κB (NF-κB) ligand (RANKL) are two 
essential OC-differentiation factors during osteoclastogenesis. 
Traditionally, OCs are known to play a vital role in maintenance 
of bone metabolism by counteracting osteoblasts (OBs). In 
contrast to OBs, which produce and secrete matrix proteins and 
transport mineral into the matrix for bone formation, OCs are 
responsible for bone degradation by breaking down tissues. In 
addition to inducing growth and survival of MM cells, OCs are 
capable of regulating growth of other BM cells, such as hemat-
opoietic stem cells and B  cell progenitors (30–32). Moreover, 
a close crosstalk exists between skeletal and immune systems, 
termed osteoimmunology, since several regulatory molecules are 
shared by these two systems (33–35). Most recently, OCs have 
been further associated with maintenance of immunosuppres-
sive MM BM microenvironment via induction and secretion of 
several immune checkpoint proteins from OCs in close contact 
with MM cells (20) (Figure 1).

Programmed cell death ligand 1, also known as cluster of 
differentiation 274 (CD274) or B7 homolog 1 (B7-H1), is a 
40  kDa type 1 transmembrane protein encoded by the CD274 
gene located in the 9p24.1 region with the full length of cDNA 
870 bp in man (36, 37). Following binding to its cognate receptor 
programmed cell death protein 1 (PD-1) (CD279) expressed on 
activated T  cells, B  cells, NK  cells, and monocytes, the PD-1/
PD-L1 pathway inhibits immune activation by triggering the 
phosphatases that deactivate signals emanating from the T cell 
receptor (38–40). Specifically, the engagement of PD-L1 with 
PD-1 on activated T cell leads to T cell dysfunction, exhaustion, 
neutralization, and production of interleukin-10 (IL-10) (41, 42). 
PD-L1 also interacts with B7-1 (CD80) on activated T cells, which 
in turn downregulates T cell activity (43). This important check-
point pathway has been associated with autoimmune disease, 
infection, and cancer (37, 44–46).

In the tumor microenvironment, PD-1/PD-L1 pathway per-
forms a vital role in tumor progression and survival by escaping 
tumor neutralizing immune surveillance. PD-L1 is expressed on 
various tumor cells and antigen-presenting cells (APCs) (41). 
PD-L1 overexpression on tumor cells is further associated with 
higher risk of cancer progression and poor clinical outcome 
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FigURe 1 | Osteoclasts create an immunosuppressive microenvironment in multiple myeloma (MM). In MM, the interaction of MM cells and bone marrow stromal 
cells induces production of various cytokines and growth factors, as well as activates RANK/receptor activator of nuclear factor-κB (NF-κB) ligand pathway, to 
promote the differentiation and expansion of OCs from CD14+ OC precursors. OCs can directly inhibit proliferation of activated CD4+ and CD8+ effector T cells, 
thereby reducing their numbers and leading to decreased MM cell lysis. The expression of multiple immune checkpoint molecules on OCs is increased during 
osteoclastogenesis. Furthermore, the secretion of galectin-9 and APRIL is significantly augmented during OC formation, resulting in apoptosis of T cells, i.e., 
mediated by galectin-9, and enhanced programmed cell death ligand 1 expression on MM cells, i.e., mediated by APRIL, IL-6. APRIL, a proliferation-inducing ligand; 
BMSC, bone marrow stromal cell; HVEM, herpesvirus entry mediator; IDO, indoleamine 2, 3-dioxygenase.
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(47–49). Importantly, immune checkpoint inhibitors target-
ing PD-1/PD-L1 have generated groundbreaking and durable 
responses in a broad spectrum of advanced solid tumors (50) 
and blood cancers including B-cell lymphomas (51, 52). In MM, 
PD-1/PD-L1 is also activated and associated with immunocom-
promised status and drug resistance (53, 54), supporting the 
development of new treatments targeting this pathway in MM 
(55). Despite inconclusive early clinical reports (51, 55), this 
important immune checkpoint pathway may still represent one 
of the novel strategies with potential anti-MM activities targeting 
defective immune effector cells, when combined with current and 
emerging therapies for MM.

We here summarized mechanisms of myeloma bone diseases 
and the novel functional characterization of OCs in the immu-
nosuppressive BM microenvironment in MM via PD-1/PD-L1 
pathway. Also included are effects of various current and emerging 
anti-MM treatments on OCs, other cellular subtypes associated 
the MM bone disease, and immune cells in the BM. Finally, we 
discuss the novel strategies for immune-therapies targeting OC 
function and PD-1/PD-L1 pathway in combination with other 
MM treatments to further overcome OC-induced immune sup-
pression and prolong overall treatment responses.

MYeLOMA BONe DiSeASe: CLiNiCAL 
MANiFeSTATiON

The cells in skeletal system including OBs, OCs, and osteocytes 
closely communicate with each other to maintain the balance of 

bone metabolism. OBs provide essential signals, M-CSF, RANKL, 
and other co-stimulatory factors, to promote the differentiation 
of myeloid lineage precursors of OCs (56). However, this balance 
is significantly disturbed in the majority of MM patients, in whom 
OCs are highly activated accompanied with little or no OB activ-
ity (2). Eventually, increased bone-degrading effects accelerate 
osteoporosis and the development of lytic bone lesions, shown 
as characteristic “punched-out” lesions on skeletal X-ray (57, 58).

Clinically, approximately 80% of MM patients have radiologic 
evidence of bone involvement, and 90% have osteolytic manifes-
tations including generalized osteopenia or discrete lytic lesions 
over the course of disease (16, 59). The most commonly involved 
sites include vertebral bodies (49%), skull (35%), pelvis (34%), 
and ribs (33% of patients) (2, 3, 60). Patients with MM bone 
disease may suffer from skeletal-related events (SREs) includ-
ing pain, pathological fractures, spinal cord compression, and 
hypercalcemia. Furthermore, these SREs may increase mortality, 
decrease quality of life, and result in an adverse outcome (58, 61).

MYeLOMA BONe DiSeASe: MAJOR 
CeLLULAR AND MOLeCULAR 
MeCHANiSMS

The mechanisms of MM-related bone disease involve overactiva-
tion of OCs and inhibition of OBs via complicated interactions 
between various BM  cells and cytokines secreted by them (2). 
The contact between MM cells and BMSCs significantly increases 
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activity and accelerates differentiation of OCs, while inhibiting 
the growth of OBs (15, 62). For example, the binding of surface 
VLA-4 (α4β1 integrin) on MM cells to VCAM-1 on BMSCs induces 
production of cytokines, which favor bone absorption including: 
RANKL, M-CSF, IL-1, and IL-6 by BMSCs; and OC-activating 
factors including macrophage inflammatory protein-1α/β (MIP-
1α/β), IL-3, stromal-derived factor-1α, and tumor necrosis factor 
α (TNF-α) by MM cells(63–70). In addition, adhesion between 
MM cells and BMSCs promotes secretion of B-cell activation fac-
tor (BAFF), which also promote growth of MM cells (71, 72) and 
RANKL-independent proliferation of OCs (72). In parallel, p38 
mitogen-activated protein kinase signaling pathway is activated 
upon MM cell adherence to BMSCs, leading to more secretion of 
MM cell-supportive factors IL-6 and vascular endothelial growth 
factor (VEGF), in addition to induction of OC-activating factors 
(i.e., IL-11, RANKL, MIP-1α) (73). Moreover, IL-6 secretion 
by BMSC enhances expression and secretion of matrix metal-
loproteinase-13 (MMP-13) in MM cells (74). MMP-13, in turn, 
promotes fusion of OCs and bone absorption. Simultaneously, 
activated OCs support proliferation of MM cells by secreting 
more factors including annexin-II, osteopontin (OPN), IL-6, 
IL-10, insulin growth factor-1, BAFF, and a proliferation-inducing 
ligand (APRIL) (13, 20, 75–78).

In contrast, the expansion and activation of OBs is signifi-
cantly blocked in MM bone disease due to increased secretion 
of OB inhibitory factors including: dickkopf-1 (Dkk-1), soluble 
frizzled-related protein 2 (sFRP2), sFRP3, IL-3, IL-7, growth 
factor independence-1 (gfi1), hepatocyte growth factor, activin 
A, sclerostin, and TNF-α (2, 62, 79–84). These factors directly 
and indirectly block proliferation and differentiation of OBs, 
impairing mineral deposition and bone regeneration. In 
addition, osteoprotegerin (OPG), a soluble decoy receptor of 
RANKL, is produced by OBs and inhibits OC activation under 
normal physiological conditions. OPG levels are significantly 
decreased in MM bone disease (85), associated with reduced OB 
number. Defective bone formation due to decreased prolifera-
tion and differentiation of OBs induced by MM cells, along with 
reduced levels of OC inhibitory cytokines produced by OBs, 
further augments OC formation and induction of osteolytic 
bone destruction.

In terms of signaling transduction cascades, the RANK/
RANKL pathway critically regulates MM-induced bone lesions 
since several of the abovementioned OC-activating factors are 
induced via this pathway. RANKL is detected on the surface of 
MM cells and elevated in MM patients compared with health 
individuals and patients with monoclonal gammopathy of unde-
termined significance (MGUS) (86, 87). Concurrently, increased 
OCs induced by RANKL activate dormant MM cells (32). In fact, 
higher RANKL expression is associated with more severe bone 
disease and poorer clinical outcome (86, 88). In addition, MM 
cells express mRNA encoding the isoform of soluble RANKL 
(sRANKL), which directly promotes activation of OCs (89). 
Significantly, sRANKL is elevated in MM patients and closely 
related to generalized bone loss (90, 91).

Further studies on OC-gene expression profiling identify 
genes coding for 4 CCR2-targeting chemokines and genes coding 
for MM growth factors to be highly expressed by MM OCs (92). 

Specifically, higher CCR2 expression in MM cells is correlated 
with increased bone lesions, and CCR2 chemokines activate 
mitogen-activated protein kinase (MEK) pathway to support 
growth of MM cells (92). These results implicate the MEK1/2 
signaling cascade (93), which is significantly induced by M-CSF 
and RANKL, in the pathogenesis of MM bone disease(17, 18, 94).

OCs iN THe MM BM 
MiCROeNviRONMeNT

The suppression of the host immune system is a critical step in the 
progression of many cancers, including MM. The interaction of 
MM cells and surrounding cells promotes production of immu-
nosuppressive cytokines, growth of immune-suppressive cell 
populations, and suppression of the anti-MM ability of normal 
immune cells. For example, IL-6 and IL-10 levels are increased in 
the serum samples of MM patients, and both cytokines promote 
MM cell growth and survival in an autocrine and paracrine 
fashion. These two cytokines are also critical in MM-related 
immunosuppression, since IL-10 has potent immunosuppressive 
ability by inhibiting production of pro-inflammatory interferon-γ 
(IFN-γ) and TNF-α in immune effector cells (95), and IL-6 has 
been linked to impaired NK cell activity (96). Furthermore, the 
pro-osteoclastogenic LIGHT/TNFSF14 was recently linked to 
MM-bone disease (97). At the cellular level, inhibitory immune 
T  regulatory cells (Tregs), B regulatory cells, and pDCs are 
significantly increased in the BM of the patients with active 
MM (24, 26, 27). In parallel, MM cells induce the development 
of myeloid-derived suppressor cells (MDSCs), which in turn 
support proliferation of MM cells by promoting proliferation of 
Tregs and suppressing T-cell-mediated immune responses (22, 
98). Importantly, MDSCs induced by MM cells can further dif-
ferentiate into mature OCs capable of inducing bone lysis, which 
further links immune suppression and hyper-active bone lysis 
activity of MDSCs in MM progression (99). Furthermore, the 
increased percentage of circulating pre-OCs have been described 
in MM (100, 101).

The MM BM microenvironment is also characterized by 
increased angiogenesis, which further suppresses anti-MM 
immunity. Specifically, contact of MM cells and OCs enhances 
angiogenesis and production of angiogenic factors (VEGF and 
OPN), which in turn promote the expansion of OCs by vas-
cular endothelial cells (102). Both VEGF and OPN have been 
shown to directly induce proliferation of MM cells. In addition, 
increased OC formation by stimulation of RANKL or parathyroid 
hormone-related protein promotes angiogenesis via induction of 
MMP-9, a potent angiogenic factor secreted by OC mediating 
RANKL-induced angiogenesis. In contrast, OPG inhibits forma-
tion of OCs and decreases formation of new vessels (103).

Most recently, OCs have been shown to significantly block 
T cell proliferation and cytotoxicity in MM cells (Figure 2). The 
expression of several immune checkpoint molecules on OCs, 
including PD-L1, galectin-9, herpesvirus entry mediator, CD200, 
T-cell metabolism regulators indoleamine 2, 3-dioxygenase 
(IDO), and CD38, is significantly enhanced during OC formation 
in vitro (20) (Figure 1). Meanwhile, the secretion of galectin-9 
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FigURe 2 | Osteoclasts crosstalk with immune cells. The differentiation of OCs from its precursor (OC precursor) is mediated by multiple cytokines. For example, 
inflammation induces production of tumor necrosis factor α (TNFα), which activates OC formation directly or indirectly via BMSC. Another immune cell, the Th17 cell, 
which produces IL-17, also stimulate OCs via upregulation of receptor activator of nuclear factor-κB (NF-κB) ligand. The process of OC differentiation can be 
inhibited by INF-γ and IL4 produced by Th1 and Th2 cells, respectively. In parallel, T regulatory cells (Tregs) can inhibit OC precursors by secretion of TGF-β and 
IL-4. CTLA 4 expressed on Tregs can bind to CD80/86 on OC precursors and further influence the fate of OC precursors. OCs can activate several immune cells. 
First, OCs induce formation of CD8+FOXP3+ T cells, which in turn inhibit OCs. Second, OCs can act as antigen-presenting cells to promote immune response  
of CD4 or CD8 T cells. Third, OCs can induce differentiation of CD4+ T cell to TNFα-producing cells or CD4+FOXP3+ T cells, dependent on the surrounding 
microenvironment. BMSC, bone marrow stromal cell; IL, interleukin; INF, interferon; M-CSF, macrophage-colony-stimulating-factor; TGF, tumor growth factor;  
TNF, tumor necrosis factor; Treg, regulatory T cell.
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and APRIL by OCs is significantly increased. Galectin-9 signifi-
cantly induces apoptosis of T cells, and APRIL further induces 
expression of PD-L1 on MM cells mainly via MEK/ERK pathway. 
Significantly higher expression of PD-L1 was observed on OCs 
than MM cells, which was linked to profound inhibition of T cell 
activation to lyse MM cells. Importantly, the inhibition of T cell 
activation can be repaired using blocking PD-L1 or anti-CD38 
monoclonal antibody (20), suggesting potential clinical develop-
ment of these mAbs, alone and in combination, to overcome the 
immunosuppressive MM BM milieu.

OCs iN OSTeOiMMUNOLOgY

The skeletal and immune systems closely interact, since cytokines 
produced by lymphocytes significantly affect bone homeostasis. 
Among cells in these two systems, OCs significantly regulate 
intricate cytokine and cellular networks, as described above and 
in Figure 2. OCs interact not only with various BM cytokines but 
also control differentiation and expansion of multiple immune 
subsets. For example, inflammation or immune-related cytokines 
like TNF-α, IL-1, and IL-6, are associated with bone absorption 
(104–107). In autoimmune diseases like rheumatoid arthritis, 
production of cytokines (TNF-α, IL-1, IL-6, IL-17) is significantly 
increased in synovium and pannus, which may directly affect 
bone by upregulating OC activities at sites of articular erosion 
(108). In fact, TNF-α induces activation of OCs indirectly by 

enhancing the expression of RANKL and M-CSF in BMSCs or 
directly by interacting with OC precursors (109).

As for the interaction between OCs and immune cells, acti-
vated CD3+ or CD4+ T cells with RANKL expression support 
differentiation of OC in vitro (110, 111). A subset of CD4+ T cells 
(Th17), which produces IL-17 could upregulate RANKL and 
promote differentiation of OCs by the effect of IL-17 on BMSCs 
and OCs (112). T  cells also produce IL-7, which can promote 
formation of OCs by upregulating RANKL (113). In addition, 
activated T  cells secrete soluble RANKL (sRANKL), which is 
correlated with the formation of OCs and bone loss (114, 115). 
On the other hand, the activation of OCs can be downregulated 
by IFNγ and IL-4 secreted by Th1 and Th2 cells, respectively. IFN-
γ produced by T cells significantly suppresses differentiation of 
OCs by interfering with the RANKL–RANK pathway, including 
degradation of downstream molecules such as tumor necrosis 
factor receptor-associated factor 6 (TRAF6) (116).

On the other hand, human OCs can function as APCs by 
expressing class I and II MHC molecules and co-stimulatory mol-
ecules to in turn activate both CD4+ and CD8+ T cells (117). In 
a mouse model study, expression of RANKL was detected on the 
surface of activated CD4+ and CD8+ T cells (118). Conversely, 
inhibition by a RANKL inhibitor suppresses activation of T cells, 
suggesting the role of RANK/RANKL pathway in T cell activa-
tion. Meanwhile, OCs are capable of inducing differentiation of 
CD8+ T cells into FoxP3+ CD8+ Tregs, which not only decrease 
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antigen-specific T  cell proliferation but also suppress bone 
resorption by forming a negative feedback loop (119–123). In 
a similar fashion, adoptive transfer of CD4+CD25+ Tregs into 
T-cell deficient mice enhances bone mass formation accom-
panied by decreased OC numbers, partially mediated by IL-4 
and IL-10 (124). In addition, isolated human Tregs suppress 
OC differentiation via the secretion of TGF-β and IL-4 (125). 
CD4+CD25+Foxp3+ Treg can also inhibit differentiation of OCs 
by cytotoxic T  lymphocyte antigen 4 (CTLA4) in a cell-to-cell 
contact-dependent manner (126, 127). Specifically, CTLA4 on 
Tregs downregulates proliferation of OCs by binding to CD80/86 
on OC precursors (128). The engagement of CD80/86 by CTLA-4 
in OC precursors activates IDO, which in turn further degrades 
tryptophan and induces apoptosis of OC precursors.

A recent study in a mouse model showed that OCs derived 
from normal BM can induce CD4+FoxP3+ regulatory T  cells 
(129). On the contrary, OCs can induce TNFα-producing CD4+ 
T cells in an inflammatory bowel disease mouse model (129). All 
these findings suggest that OCs not only play a role in immune 
suppression, but also serve as true APCs depending on the origin 
and environment.

PD-L1 eXPReSSiON ON MM CeLLS  
AND OCs

Programmed cell death protein 1/PD-L1 pathway contributes 
to tumor progression and survival by escaping tumor neutral-
izing immune surveillance in the tumor microenvironment 
(130). PD-L1 has been linked to the maintenance of Tregs, 
which are associated with suppression of antitumor immune 
response (131). The expression of PD-L1 on tumor cells can be 
enhanced by IFNγ secreted by activated cytotoxic T cells in the 
tumor microenvironment, thereby downregulating antitumor 
immunity (132). In addition, PD-L1 expression can be altered 
by extrinsic factors like inflammatory cytokines, which induce 
signaling cascades including MEK/ERK, PTEN, mTOR, or PI3K 
pathways (133–135).

In MM, PD-L1 is expressed on PCs isolated from patients 
with MM and MM cell lines, but not on normal PCs (20, 133, 
136–138). The percentages of PD-L1 + PCs are higher on MM 
and smoldering MM than MGUS (133). Increased PD-L1 levels 
in MGUS patients is further linked to a higher risk of progression 
to clinical MM (139). PD-L1 expression on MM cells is enhanced 
following stimulation of IFNγ via activation of MYD88, TRAF6, 
and MEK/ERK signaling pathways; conversely, MEK1/2 inhibi-
tors partially block IFNγ-induced PD-L1 upregulation (20, 133). 
BMSCs also induce expression of PD-L1 on MM cells by produc-
tion of IL-6 via signal transducer and activator of transcription 
3, MEK1/2, or Janus kinase 2 (140, 141). In addition, MM cells 
with PD-L1 expression are correlated with higher proliferation 
rate and higher expression of BCL-2 and FasL than MM cells 
without PD-L1 expression. Moreover, the interaction between 
PD-L1 on MM cells and PD-1 not only inhibited tumor-specific 
cytotoxic T cells but also promoted drug resistance in myeloma 
cells through the PI3K/AKT signaling cascade (53). Importantly, 
higher serum level of soluble PD-L1 in MM patients is associated 
with shorter progression-free survival (142).

Programmed cell death ligand 1 is expressed on multiple 
immune cell subsets in the MM BM microenvironment, includ-
ing pDCs (137, 143), MDSCs (141), and OCs (20). Specifically, 
PD-L1 on pDCs is overexpressed in 81% of cases (143). 
Expression of PD-L1 is significantly higher on the CD141+ 
subset, which regulates immune response of CD8+ T cells, than 
on the CD141-negative CD4+ T  cells. PD-L1 on immunosup-
pressive MDSCs is increased in patients with RRMM compared 
with newly diagnosed MM (141). Significantly, blockade of PD-1/
PD-L1 pathway inhibits MDSC-mediated growth of MM cells. 
Furthermore, BM mesenchymal stem cells promote proliferation 
and reduce apoptosis of MM cells by suppressing T-cell immune 
responses via PD-1/PD-L1 pathway (144).

Furthermore, OCs induce expression of PD-L1 on MM cells 
in an APRIL-dependent manner via binding of two APRIL recep-
tors (BCMA and TACI), which are highly expressed on MM cells 
(20, 145) (Figure 3). Since OCs are the key physiological source 
of APRIL production in the BM microenvironment, these results 
further provide evidence of a positive feedback loop between OCs 
and MM cells in promoting PD-L1-mediated immunosuppres-
sion in MM. Meanwhile, increased PD-L1 expression on OCs 
further enhances immunosuppression by promoting the binding 
of PD-1 on T  cells and inducing dysfunction and apoptosis of 
effector T cells (20).

Some current and emerging anti-MM agents can affect the 
expression of PD-L1 on MM cells (Table 1). For example, protea-
some inhibitors, oncolytic reovirus, and a histone deacetylase 
inhibitor 6 (HDAC) inhibitor have been shown to enhance 
PD-L1 expression on MM cells (146–148). On the other hand, 
lenalidomide and MEK1/2 inhibitors, as well as APRIL blocking 
reagents, reduce PD-L1 induction on MM cells (20, 133, 141, 
145, 149). These findings support further investigations targeting 
PD-L1 in MM.

TARgeTiNg PD-1/PD-L1 PATHwAY wiTH 
vARiOUS CURReNT AND NOveL MM 
TReATMeNTS

Preclinical Studies
The combination of hematopoietic stem cell transplantation with 
whole-cell vaccination and PD-L1 blockade significantly improves 
the survival of MM-bearing mice (136). In another study where 
anti-MM activity is mainly mediated by pre-activated T cells, the 
combination of anti-PD-L1 inhibitor plus lymphodepletion by 
sublethal dose of radiation augments T-cell-mediated anti-MM 
effect and significantly improves survival of mice (54).

A combination of PD-1/PD-L1 blockade with IMiDs was 
also investigated in a study where NK  cells or T  cells were 
cocultured with CD138+ tumor cells isolated from MM patients 
and treated with PD-1or PD-L1 inhibitor, alone or together, 
and with lenalidomide (141). The immune checkpoint blockade 
by PD-1 or PD-L1, or PD-1/PD-L1 inhibitor combination, 
induced effector cell-mediated anti-MM cytotoxicity (137, 
141). The expression of PD-1 and PD-L1 on effector cells and 
MM cells was downregulated by lenalidomide. Lenalidomide 
further augments anti-MM cytotoxicity mediated by checkpoint 
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FigURe 3 | Targeting a proliferation-inducing ligand (APRIL) and programmed cell death ligand 1 (PD-L1) to overcome OC-mediated immune suppression in the 
multiple myeloma (MM) BM milieu. APRIL is secreted by myeloid lineage cells including OCs, OC precursors, tumor-associated macrophages, and MDSCs, in the 
BM. MDSCs induced by MM cells further differentiate into functional OCs. Besides the induction of critical downstream targets (listed in gray on the right), APRIL 
induces PD-L1 on MM cells via BCMA, a specific MM antigen. This positive feedback loop between MM cells and MM-supporting cells, coupled with increased 
PD-L1 expression, further inhibits effector-mediated MM cell lysis via binding to programmed cell death protein 1 (PD-1) on activated T and natural killer (NK) effector 
cells. Blocking PD-1/PD-L1 and APRIL monoclonal antibodies prevent these effects and may mitigate immune suppression in MM. Adapted from Ref. (20, 145). 
TAM, tumor-associated antigen; MDSC, myeloid-derived suppressor cells; BCMA, B cell maturation antigen; T/NK, immune effector cells; pDC, plasmacytoid 
dendritic cell. Red lines indicate inhibition in the presence of these blocking monoclonal antibodies; double arrow lines depict interactions.
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blockade dependent on NK and T effector cells. In addition, 
PD-1 inhibitor enhances production of INF-γ and granzyme B 
from NK cells against MM cells. Treatment with lenalidomide 
further upregulates PD-1 inhibitor’s enhancement of NK-cell 
lysis of MM cells (150).

When combined with HDAC6 inhibitor, anti-PD-L1 anti-
body can trigger even higher MM cell killing mediated by NK 
and cytotoxic T cells, compared with killing in the presence of 
either agent alone (148). In addition, oncolytic reovirus enhances 
expression of PD-L1 on MM cells and augments the anti-MM 
effect of anti-PD-L1 inhibitor (147). Furthermore, since T-cell 
dependent bispecific antibody (TDB) induces the expression of 
PD-1 on CD8+ T cells following the engagement of T cells and 
target MM cells, treatment with PD-L1 inhibitor could enhance 
anti-MM activity of MM targeted TDB, as recently shown using 
an anti-FcRH5/CD3 TDB (151).

Clinical Studies
In a phase 1b study, monotherapy with PD-1 inhibitor nivolumab 
was administered in RRMM patients (152); however, no obvi-
ous disease regression was observed. The preliminary data 
from a phase 1 study, which investigated anti-PD1 antibody 
pembrolizumab in combination with lenalidomide and low-
dose dexamethasone in patients with RRMM showed high 
response rate (76%) (153). Another phase 2 trial combining 
pembrolizumab, pomalidomide, and dexamethasone in RRMM 
patient also showed high response rate (60%) (154). This study 
further showed that higher PD-L1 expression on MM is linked 

to better progression-free survival. Importantly, however, there 
were more deaths in phase III trials in the cohorts comparing 
lenalidomide or pomalidomide with dexamethasone together 
with pembrolizumab than in patients treated with lenalidomide 
or pomalidomide with dexamethasone, which has curtailed the 
development of IMiD pembrolizumab combinations.

Regarding clinical trials of PD-L1 antibodies, single agent dur-
valumab or the combination of durvalumab with lenalidomide 
(NCT02685826) is being evaluated in patients with newly diag-
nosed MM. Durvalumab, alone or combined with pomalidomide 
(NCT02616640); as well as durvalumab in combination with 
daratumumab or in combination with pomalidomide, dexa-
methasone, and daratumumab (NCT02807454) are also clinical 
trials in RRMM patients. However, these trials are currently not 
actively recruiting patients for the time being due to the above-
mentioned safety concern. Nonetheless clinical trials of another 
anti-PD-L1 antibody, atezolizumab are ongoing in patients with 
RRMM (NCT02431208).

In addition to direct blockade of PD-1/PD-L1 by PD-1 or 
PD-L1 inhibitor, novel therapeutic interventions, which modulate 
the expression of PD-L1 on MM cells are under clinical evalua-
tion in RRMM patients, including the combination of oncolytic 
reovirus with lenalidomide or pomalidomide (NCT03015922), 
or oncolytic reovirus with bortezomib and dexamethasone 
(NCT02514382). Moreover, HDAC6 or MEK inhibitors are also 
under clinical investigation to potentially modulate expression 
pattern of PD-1 and PD-L1. The studies of PD-L1 inhibitors or 
PD-L1 modulators are listed in Table 1.
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TABLe 1 | Summary of trials of programmed cell death ligand 1 (PD-L1) inhibitors and treatment, which modulates PD-L1 expression.

Agents effect on PD-L1 in multiple 
myeloma (MM) cells

Clinical trials in MM

Atezolizumab Direct inhibition  1. Alone or in combination with an IMiD and/or daratumumab in relapse and refractory MM (RRMM) 
patients, phase 1 (NCT02431208). Status: recruiting

Durvalumab Direct inhibition  1. Monotherapy or in combination with pomalidomide with or without dexamethasone in RRMM 
patients, phase 1 (NCT02616640). Status: active, not recruiting

 2. Combination of durvalumab with lenalidomide with or without dexamethasone in newly diagnosed 
MM patients, phase 1 (NCT02685826). Status: active, not recruiting

 3. Combination of durvalumab with daratumumab with or without pomalidomide and dexamethasone 
in RRMM patients, phase 2 (NCT02807454). Status: active, not recruiting

Proteasome inhibitor Upregulation  1. Bortezomib with oncolytic reovirus and dexamethasone in RRMM patients (NCT02514382). Status: 
recruiting

Oncolytic reovirus Upregulation  1. Bortezomib with oncolytic reovirus and dexamethasone in RRMM patients (NCT02514382). Status: 
recruiting

 2. Combined with lenalidomide or pomalidomide in RRMM patients, phase 1 (NCT03015922). Status: 
recruiting

HDAC6 inhibitors Upregulation in MM cells Ricolinostat (ACY-241):

 1. Combination with pomalidomide and dexamethasone in RRMM patients, phase 1b/2 
(NCT01997840). Status: active, not recruiting

MEK1/2 inhibitor Downregulation  1. Binimetinib with encorafenib in RRMM patients with BRAFV600 E or BRAFV600K mutation, phase 
2 (NCT02834364). Status: recruiting

BTK inhibitor Downregulation  1. Ibrutinib with carfilzomib and dexamethasone in RRMM patients, phase 1/2 (NCT01962792). 
Status: active, not recruiting

 2. Ibrutinib with pomalidomide, and dexamethasone in RRMM patients: phase 1/2 (NCT02548962). 
Status: active, not recruiting

 3. Ibrutinib, bortezomib, and dexamethasone in RRMM patients, phase 2 (NCT02902965). Status: 
active, not recruiting

A proliferation-inducing 
ligand (APRIL) inhibitor

Downregulation BION-1301 in RRMM patients, phase 1/2 (NCT03340883). Status: recruiting

APRIL CAR T cells Downregulation RRMM patients, phase 1/2 (NCT03287804). Status: recruiting

BCMA CAR T cells Downregulation  1. bb2121 in RRMM patients, phase 1 (NCT02658929). Status: active, not recruiting.
 2. bb2121 in RRMM patients, phase 2 (NCT03361748). Status: recruiting.
 3. Anti-BCMA CAR-T for heavily pretreated MM patients, phase 1 (NCT02215967). Status: active, not 

recruiting.
 4. Combination of anti-BCMA CAR-T with lenalidomide in RRMM patients, phase 1 (NCT03070327). 

Status: recruiting.
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THeRAPeUTiC iNTeRveNTiONS 
TARgeTiNg OCs iN MM THeRAPieS

Many novel agents have been under evaluation not only for 
their direct anti-MM activity but also their abilities to abro-
gate MM-supporting activities in the BM microenvironment, 
including targeting of OCs. They include bortezomib and 
IMiDs, which are already standard anti-MM therapies, as well 
as several novel agents showing promising results in preclinical 
studies (Table 2).

Bortezomib, as a proteasome inhibitor, not only has direct 
anti-MM activity, but also targets cells associated with MM bone 
disease. Bortezomib induces dose-dependent growth inhibition 
and apoptosis, as well as blocks differentiation, of OCs. It further 
decreases the resorption capacity of mature OCs, reduces the total 
number of functional OCs, and increases differentiation of OBs 
(155–157). In addition to the induction of differentiation and 
growth of OBs, therapeutic proteasome inhibitors bortezomib 
and carfilzomib promote bone nodule formation, associated with 

reduced levels of DKK-1 and RANKL (158–160). Bortezomib 
preferentially induces differentiation of mesenchymal stem/
progenitor cells to OBs by regulating expression of the bone-
specifying transcription factor runt-related transcription factor 
2 in a mouse model (161).

Immunomodulatory drugs inhibit formation of OCs by 
inhibiting PU.1 and pERK (2, 162). Cathepsin K, an important 
molecule in bone collagen matrix resorption, and the serum level 
of RANKL and RANKL/OPG ratio are significantly reduced in 
MM patients receiving lenalidomide treatment. Furthermore, 
lenalidomide and pomalidomide normalize RANKL/OPG ratio 
and inhibit upregulation of RANKL by downregulating adhesion 
molecules on MM cells (163).

Bisphosphonate is routinely used in MM bone disease treat-
ment to reduce risk of skeletal events (164, 165). Bisphosphonate 
has high affinity for bone mineral surfaces at sites of active bone 
remodeling by OCs. It induces apoptosis of OCs while protecting 
OBs from apoptosis, in addition to blocking differentiation and 
maturation of OCs (2, 166, 167).
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TABLe 2 | Summary of therapeutic agents targeting osteoclasts (OCs) and other cells associated with multiple myeloma bone disease.

Agents Mechanisms Reference

Proteasome inhibitor  1. Induce apoptosis and block differentiation of OCs
 2. Increase differentiation of OB
 3. Reduced level of DKK-1 and receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)

(94, 155, 157,  
159, 160)

Immunomodulatory drugs  1. Targeting PU.1 and pERK to inhibit formation of OC
 2. Normalize RANKL/osteoprotegerin ratio

(162, 163)

Bisphosphonate  1. Induce OC apoptosis but protect OB from apoptosis
 2. Block differentiation and maturation of OC

(166, 167)

RANKL inhibitor  1. Decrease OC formation and activity.
 2. Minimal or stimulatory effects on OB.

(18, 168, 169)

BTK inhibitor  1. Suppress bone resorption and differentiation of OCs
 2. Inhibit secretion of multiple cytokines and chemokines from OCs and bone marrow stromal cells

(93, 94)

Anti-CD38 antibody  1. Inhibition of OC formation and bone resorption
 2. Overcome the inhibition of T-cell proliferation blocked by OCs
 3. Inhibit immune checkpoint molecules on OCs

(20, 173)

Programmed cell death protein 1/programmed 
cell death ligand 1 antibody

Block OC-mediated inhibition in T-cell activation and proliferation (20)
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Denosumab (AMG165), a fully human monoclonal antibody 
(IgG2), blocks the binding of RANKL to its receptor expressed 
on OCs and their precursors, leading to decreased OC activ-
ity and inhibition of bone resorption, followed by increased 
bone mass and strength (168, 169). Denosumab reduces bone 
resorption, increases mass of cortical and cancellous bone, and 
improves the microstructure of trabecular bone (170). A phase 
3 clinical trial in MM has shown that denosumab is not inferior 
to zoledronic acid, the bisphosphonate most commonly used to 
reduce skeletal-related event in newly diagnosed MM patients 
(3, 171).

The development and integration of anti-CD38 monoclonal 
antibody is an important milestone in MM immunotherapy. 
In addition to MM cells, CD 38 is also expressed on normal 
PCs, NK cells, monocytes, early OC progenitors, and OCs, but 
not on the surface of stromal and osteoblastic cells (172, 173). 
Daratumumab inhibits OC formation and bone resorption 
(173). The inhibition of T-cell proliferation caused by OCs is par-
tially overcome by anti-CD38 monoclonal antibody isatuximab 
(20) via inhibition of multiple immune checkpoint molecules 
expressed on OC. Since anti-PD-L1 partially overcomes inhibi-
tory effects of OCs on T-cell activation and proliferation, these 
results suggest potential therapeutic benefit of combining CD38 
and PD-1/PD-L1 mAbs to block OC-induced immunosuppres-
sion in MM.

PeRSPeCTiveS AND CONCLUSiON

Programmed cell death protein 1/PD-L1 pathway plays a critical 
role in the immunosuppressive tumor microenvironment in MM. 
As PD-L1 is overexpressed in MM patient cells and other cells 
associated with immunosuppression including OCs, MDSCs, 
TAMs, Tregs, and pDCs, blockade of PD-1/PD-L1 pathway may 
confer an anti-MM effect by restoring the immune dysfunction. 
Early phase clinical trials in MM showed that blockade of PD-1/
PD-L1 pathway alone does not achieve responses. Although 

combining PD-1 inhibitor with IMiDs (lenalidomide and poma-
lidomide) showed higher response rates in RRMM patients, 
clinical trials combining PD-1 inhibitors with IMiDs in MM are 
currently put on hold due to safety concerns.

On the other hand, anti-PD-L1 mAbs also show promising 
clinical benefit with acceptable safety profile in clinical trials of 
various solid tumors, leading to increasing interest in targeting 
PD-L1 in MM (174). Preclinical studies showed that treatment 
with anti-PD-L1 antibody induces no direct MM killing, but 
significantly restores the anti-MM activity of cytotoxic T cells or 
NK cells, suggesting that PD-L1 inhibitor might be a therapeutic 
partner with other anti-MM agents. Several combinations of 
molecules which either upregulate or downregulate expression 
of PD-L1 in combination with anti-MM agents are under evalu-
ation (Table 1). Early phase clinical trials conducted with BCMA 
CAR-T therapy, HDAC6 inhibitors, and oncolytic reovirus in 
RRMM patients have shown preliminary promising results 
(175–177). Novel strategies targeting immune checkpoints and 
the OC-related pathway have also shown impressive results in 
preclinical studies. For example, the combination of RANKL 
and CTLA4 antibody enhances antitumor effect of lymphocytes 
(178). Blockade of RANKL pathway also augments the antitumor 
effect of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 
blockade in an animal model (179). Since RANKL inhibitor 
is now used in MM patients with bone disease, combinations 
with above agent represent potential novel therapeutic strate-
gies. Finally, preclinical data combining CD38 with PD-1 and/
or PD-L1 mAbs provides the rationale for clinical evaluation of 
these combinations. These various combination therapies may 
overcome primary and acquired resistance to anti-PD-1/PD-L1 
therapies in MM.

An effective anti-MM immunotherapy not only relies on 
effective killing of MM cells themselves, but also on success-
fully restoring anticancer immune function. Immunotherapy 
targeting PD-1/PD-L1 pathway has revolutionized the treat-
ment in several progressive solid tumors but is accompanied by 
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immune-related adverse events in some patients. For anti-PD-1/
PD-L1 immunotherapy to proceed in MM, it will be critical to 
investigate both the direct effects on tumor cells, as well as the 
impact on cellular- and cytokine-mediated immunosuppression 
in the MM microenvironment. Moreover, delineating molecular 
mechanisms regulating PD-L1 and PD-1 expression in the MM 
BM milieu will identify novel targets for potential therapeutic 
application.
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