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Chagas disease (CD), a neglected tropical disease caused by the protozoan Trypanosoma 
cruzi, affects around six million individuals in Latin America. Currently, CD occurs world-
wide, becoming a significant public health concern due to its silent aspect and high 
morbimortality rate. T. cruzi presents different escape strategies which allow its evasion 
from the host immune system, enabling its persistence and the establishment of chronic 
infection which leads to the development of chronic Chagas cardiomyopathy (CCC). The 
potent immune stimuli generated by T. cruzi persistence may result in tissue damage and 
inflammatory response. In addition, molecular mimicry between parasites molecules and 
host proteins may result in cross-reaction with self-molecules and consequently in auto-
immune features including autoantibodies and autoreactive cells. Although controversial, 
there is evidence demonstrating a role for autoimmunity in the clinical progression of 
CCC. Nevertheless, the exact mechanism underlying the generation of an autoimmune 
response in human CD progression is unknown. In this review, we summarize the recent 
findings and hypotheses related to the autoimmune mechanisms involved in the devel-
opment and progression of CCC.

Keywords: Chagas disease, autoimmunity, autoantibodies, chronic Chagas disease, mimicry, bystander 
activation, complement system

inTRODUCTiOn

Chagas disease (CD) is a neglected tropical disease caused by the protozoan parasite Trypanosoma 
cruzi, which affects around six million individuals in Latin America (1). CD is increasing as a 
health threat in countries of Europe, the United States, Canada, Japan, and Australia, where blood 
transfusion, organ transplantation, and vertical transmission seem to be the main transmission 
routes (1). According to the World Health Organization, the estimated incidence of CD in the 
Americas is 30,000, followed by 14,000 deaths and 8,000 infected newborn per year (2).

Chagas disease is a life-threatening and persistent illness, having both acute and chronic phases 
(3). During the acute phase, which develops within a short time (4–8 weeks) following the infection, 
the parasite burden is controlled by the acute inflammatory response (4, 5). In order to establish 
a life-long infection, it is known that T. cruzi evades host immune response and, with this, some 
patients will remain asymptomatic and with low levels of intracellular parasites (6). The long-term 
proliferation and persistence of these parasites in the tissue leads to the establishment of the chronic 
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phase of CD (7). Nearly 30–40% of chronically infected patients 
evolve from asymptomatic condition to symptomatic forms, 
including cardiac, digestive, or cardiodigestive (Figure 1A) (8).

There is a large variability in the outcome of T. cruzi infec-
tion, which is possibly due to different pathogenic mechanisms. 
However, the real contribution of the immunogenetic pattern of 

the human host, parasite diversity, and persistence, among others 
that could determine the clinical progression from asymptomatic 
to symptomatic CD forms remain enigmatic (9–14). In these 
circumstances, the parasite evasion of both humoral and cellular 
immune responses may lead to the success of T. cruzi infection 
and development of chronic CD (6, 9, 15–19).
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FigURe 1 | Overview on the natural history of CD, development of cardiomyopathy and its autoimmunity pathophysiological mechanisms. (A) Natural history of CD: 
the acute phase of Trypanosoma cruzi infection is oligosymptomatic and characterized by high parasitemia, which starts to decrease after 4 weeks. During the 
chronic phase (6–8 weeks), the parasitemia remains low and some patients (30–40%) might develop Chagas-related symptoms, especially cardiomyopathy. The 
parasite invades and differentiates in cardiomyocytes, leading to a fibrosis condition and consequently dysrhythmia, myocardial thinning, and cardiac hypertrophy. 
(B) Direct mechanisms associated with the cardiomyocyte damage: myocytolysis (cell lysis after amastigote differentiate into trypomastigote); toxic molecules 
produced by the parasite; microvascular changes induced by the parasite (cardiac hypoperfusion); disruption of immune regulation mechanisms in B cell 
(represented by X); constant presence of T. cruzi antigens triggers T cell-mediated damage and DTH process; autoimmunity (represented by the antibodies in the 
right). (C) Autoimmunity pathways in chronic CD: T. cruzi presents different escape strategies which enable its evasion from CS activation, allowing its entry in 
phagocytes, persistence, and the establishment of chronic infection which lead to the development of CCC. The potent immune stimuli generated by T. cruzi 
persistence (here represented by TNF, IFN-γ, ROS, NO, iNOS production by phagocytic cell) may result in tissue damage and inflammatory response through 
bystander activation and molecular mimicry. Bystander activation is caused by the exposure of both host and parasite intracellular proteins resulting in potent 
immune stimuli due to the release of self-antigens that induces the production of autoantibodies. Molecular mimicry occurs when there are structural similarities 
between T. cruzi-specific molecule and host-molecule, triggering T-cell activation. Specific antibodies from B cells can participate in ADCC mechanism on target 
cells. Neutrophil, eosinophil, and NK cell interact with these antibodies via CD16 (Fc receptor) and release lytic molecules like enzymes, perforins, or TNF on the 
target cells, independent of the CS. Moreover, CS activation and constant evasion strategies from T. cruzi could damage the host tissues through MAC formation. 
Abbreviations: CD, Chagas disease; DTH, delayed-type hypersensitivity; CCC, chronic Chagas cardiomyopathy; CP, classical pathway; LP, lectin pathway; AP, 
alternative pathway; CS, complement system; TNF, tumor necrosis factor; IFN-γ, interferon; ROS, reactive oxygen species; NO, nitric oxide; iNOS, inducible nitric 
oxide synthase; ADCC, antibody-dependent cell-mediated cytotoxicity; MAC, membrane attack complex; NK, natural killer cell.
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Despite the contribution of the parasite persistence and the 
host genetics to the clinical progression of CD, it is known that 
immune reactivity against cardiac antigens (e.g., cardiac myosin) 
can occur during the infection in some patients (20, 21), where 
parasite-induced damage may lead to molecular mimicry 
between parasite/host proteins epitopes, thereby generating a 
potent immune stimuli (21). This may exceed the threshold of 
immune activation acceptable for self-tolerance, resulting in 
cross-reaction with self-molecules and, eventually, host tissue 
damage (6, 8, 21–25). Although the development of autoantibod-
ies in CD has been demonstrated in several studies (17, 19, 22, 24, 
26–34), its role in the clinical development of the disease has not 
been clarified. This review aims to address some of the possible 
mechanisms of autoimmunity involved in CD.

FROM inFeCTiOn TO iMMUne 
ReSPOnSeS evASiOn: wHAT  
iS THe COnSeQUenCe OF PARASiTe 
PeRSiSTenCe?

Trypanosoma cruzi can be transmitted by vectors (bugs from 
Triatominae subfamily) as well as blood transfusions, organ 
transplantation, ingestion of food contaminated with the para-
site, vertical transmission, among others (35). Through a process 
called adhesion and recognition, the parasite forms a stable bond 
with cell surface molecules that serve as adhesion anchors to the 
cell for invasion (16, 36). In vectorial transmission, the invasion 
of host cells occurs by metacyclic trypomastigotes, the infective 
stage of the parasite. After cell invasion, the trypomastigotes 
differentiate into amastigotes and replicate in the cytosol, where 
they differentiate into trypomastigotes and, with the rupture of 
the cell, these reach the bloodstream, spreading the infection to 
other tissues. Infective T. cruzi metacyclic trypomastigotes have 
the ability to invade any mammalian cell (7, 37, 38).

Both humoral and cellular immune responses are essential 
for parasite control (39). In this context, the host response uses 
several strategies to eliminate the parasite including complement 
activation (15, 40, 41), opsonization (42), production of specific 
antibodies (43–45), and antibody-dependent cellular cytotoxicity 

(46, 47). The complement is part of the innate immunity act-
ing in the first line of host defense against pathogens (48). It 
comprises more than 35 proteins and can be activated by three 
pathways: lectin, classical, and alternative (15). As soon as the 
trypomastigotes reach the host bloodstream, lectin pathway (LP) 
and alternative pathway (AP) are activated since both pathways 
do not depend on specific antibody responses (49). Collectins 
and ficolins recognize and bind to glycosylated and acetylated 
molecules on the surface of T. cruzi trypomastigotes activating 
the LP and the AP is spontaneously activated by hydrolysis of 
C3 (12, 14, 15). As the infection progresses, the host can mount 
a specific antibody response against T. cruzi that will lead to 
interaction with C1 complex composed of one molecule of C1q 
and two molecules each of C1r and C1s—activating the classical 
pathway (CP) (49). Once activated, proteases from both LP and 
CP cleave C2 and C4, generating a C3 convertase (C4b2a) which 
cleaves the central complement component C3 in C3a and C3b. 
This last fragment binds to C3 convertase forming C5 convertase, 
which cleaves C5 in C5a and C5b. The fragment C5b binds to 
C6, C7, C8 and 12–18 copies of C9 and, as a final product of 
complement activation, the membrane attack complex (MAC) 
is formed on the target cell (such as epimastigotes), promoting 
its lysis (50).

Trypanosoma cruzi utilizes its surface proteins (such as T. cruzi 
calreticulin, trypomastigote decay-accelerating factor, T. cruzi 
complement regulatory protein—Gp160, T. cruzi complement C2 
receptor inhibitor trispanning, and T. cruzi complement regula-
tory gp58/068) to circumvent complement-mediated lysis and 
opsonization (15, 51, 52). These proteins disturb the attachment 
of initial molecules from complement pathways, thereby inhibit-
ing the C3 convertase formation, which is a crucial step in the 
activation of all three pathways and generation of complement-
mediated effects (49, 53).

Metacyclic trypomastigote forms of T. cruzi not only involve 
the expression of regulatory molecules on parasite’s surface but 
they also induce membrane-derived vesicles (microvesicles) 
from host cells, which affects the formation and activation of 
C3 convertase (C4b2a), resulting in the inhibition of comple-
ment activation, increased parasite survival, and eukaryotic cell 
invasion (54). Moreover, microvesicles derived from both host 
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cells and T. cruzi can fuse, thereby increasing host cell invasion 
and parasite dissemination (55). Both mechanisms interfere also 
in the activation of complement (49, 54). Incomplete parasite 
clearance may lead to immune reactivity that could elicit tissue 
damage leading to the exposure of neoepitopes and stimulus for 
autoantibody production (56), triggering mechanisms involved 
in autoimmunity in chronic CD (8). These mechanisms are 
demonstrated in Figure 1.

AUTOiMMUniTY in CD

The pathogenesis of symptomatic chronic CD is not yet com-
pletely understood. Some hypotheses are based on the direct 
response of the immune system against infected tissues (8, 57, 58).  
According to these hypotheses, an efficient immune response 
could result in the substantial reduction in the number of para-
sites with less tissue damage and lack of clinical manifestations 
in asymptomatic patients (58). On the other hand, an inefficient 
immune response would favor parasite persistence in the tissues 
with consequent injury and fibrosis (59, 60). In addition, the 
autoimmunity hypothesis suggests that cardiac damage, trig-
gered by parasite persistence, would lead to an exacerbation of 
the immune response and disruption in self-tolerance, resulting 
in immune reaction against self-molecules (58). In this case, 
the autoimmune response would possibly be the reason for 
the late damage observed in chronic CD (8). In fact, the first 
evidence of autoimmunity in CD was presented by Cossio and 
collaborators in 1974 (61), who reported antibodies in sera of 
chagasic patients that reacted with endocardium, interstitium, 
and heart blood vessels but were absent in healthy individu-
als and in patients with non-chagasic cardiomyopathy. The 
involvement of autoimmunity in the pathogenesis of chronic 
Chagas cardiomyopathy (CCC) has been extensively studied 
(18, 24, 25, 62–64), although questions concerning its exact 
role remain unanswered (58). It is worth mentioning that, in 
addition to autoimmunity, other mechanisms may contribute 
to the development of CCC, such as myocytolysis, secretion of 
toxic molecules by the parasite, microvascular changes induced 
by the parasite (cardiac hypoperfusion), disruption of immune 
regulation mechanisms in B cell and T cell-mediated delayed-
type hypersensitivity (8, 57, 58, 65, 66) (Figure 1B). In general 
terms, the autoimmunity in CD has been considered one of the 
key mechanisms to explain the tissue damage observed in the 
chronic phase, even in the absence of the parasite in the affected 
tissues (Figure 1C).

HOw DOeS AUTOiMMUniTY LeAD  
TO AUTOAnTiBODY DeveLOPMenT?

Two main mechanisms support the autoimmunity hypothesis in 
CCC: bystander activation and molecular mimicry (Figure 1C). 
The first involves the exposure of intracellular proteins after 
parasite-induced damage, resulting in the release of self-antigens 
in an inflammatory environment. In addition, the constant 
presence of parasite antigens can trigger responses mediated 
by CD4+ and/or CD8+ T  cells, which may be responsible for 

injuring infected or neighboring tissue cells (59, 67–69). This 
potent immune stimulus may overcome the threshold of self-
tolerance and trigger the production of autoantibodies targeted 
to multiple antigens (58). In case of molecular mimicry, sequence 
similarities between foreign and self-peptides result in the 
cross-activation of autoreactive T or B cells to the host peptides 
(62, 63, 67). Cumulative evidence of cross-reactivity between  
T. cruzi and human antigens as well as of autoantibodies affecting 
structures and functions of the heart muscle have been reported 
(18, 25, 58).

Several mechanisms involved in the pathogenesis of CD 
suggest that the autoimmune aggression in the muscle fiber is 
due to antigenic mimicry to T. cruzi and host molecules. The 
similarity of antigenic epitopes of the parasite and host tissue 
leads to cross-reaction and production of autoreactive antibod-
ies. In fact, molecular mimicry is considered the most significant 
mechanism of autoimmunity in CCC, being a key pathogenic 
event in disease manifestation. The demonstration that CD4+ 
T  cells from mice with chronic Chagas myocarditis were able 
to transfer the cardiac damage to healthy mice corroborates this 
hypothesis (21). In addition, passive transfer of serum and/or 
antibodies from chagasic patients presenting complex cardiac 
arrhythmias were able to induce disturbances in the electro-
genesis and conduction of adult rabbit hearts, confirming the 
pathogenicity of CD autoantibodies (70, 71). Moreover, T. cruzi 
antigens that mimic human host antigens evidence the connec-
tion between parasite persistence and autoimmunity (18). The 
cross-reactivity between host molecules and T. cruzi antigens is 
listed in Table 1.

In the course of CD, the most probable routes to the devel-
opment of autoantibodies include (i) the exposure of intracel-
lular proteins leading to bystander activation mechanism, (ii) 
molecular mimicry, and (iii) the polyclonal B  cell activation 
(67) (Figure 1). Actually, antibodies against self-antigens such 
as actin, myosin, myoglobin, DNA, tubulin (85), desmin, and 
myosin from cardiac muscle (86) were found in animal models 
of T. cruzi infection. In patients with CD, autoantibodies target-
ing β1-adrenergic receptors (76) and muscarinic acetylcholine 
receptors (M2) were found associated with the development 
of cardiomyopathy (33, 78). Moreover, an association of anti-
muscarinic receptors antibodies with ventricular electrical 
instability and sudden death in patients with CCC has been 
reported (87, 88). In addition, specific antibodies against cardiac 
myosin concomitantly with a robust autoreactive T-cell reaction 
increasing the production of different autoantibodies have been 
described (27, 89–91). Some of these autoantibodies are listed 
in Table 1.

The cell injury seen in CCC may be associated with antibody-
dependent cell-mediated cytotoxicity (ADCC) since it has been 
shown that infected mice neutrophil, eosinophil, and natural 
killer cells interact via Fc receptor with antibodies, releasing lytic 
molecules such as perforins and tumor necrosis factor, leading 
to cytotoxic effect of target cells (92–94).

Furthermore, complement activation and formation of MAC 
on host cell surface may be involved in the cell injury process 
present in CCC. During the chronic phase of CD, which is 
known to be associated with ongoing inflammation, complement 
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TABLe 1 | Cross-reactivity and human autoantibodies described in Chagas disease.

Trypanosoma cruzi antigens Autoantibody Target human epitope Reference

Nervous 
system

Sulfated glycolipid Anti-neuron Neurons of the central and peripheral nervous system (26)

Anti-sciatic nerve Sciatic nerve components (72)

Cytoplasmic ribosome Anti UsnRNPs Small nuclear ribonucleoproteins (UsnRNPs) (28)

FL-160 surface protein Anti-FL-160 Neuronal protein 48 kDa (73)

Microtubule-associated protein (MAP) Anti-MAP like protein MAP of brain (74)

Heart Glycosphingolipids Anti-neutral glycosphingolipids Glycosphingolipids from heart muscle cells (75)

Ribosomal P0 and P2β (TcP2β) proteins Anti-β1 adrenoreceptor C-terminal region of the ribosomal P proteins similar  
to the second extracellular loop of β1 adrenoreceptor

(19, 76)

Anti-β1 adrenoreceptors Myocardial β1 adrenoreceptor (77)

B13 protein Anti-cardiac myosin heavy chain Cardiac myosin heavy chain (20)

Cruzipain Anti-mAChR Heart cardiac muscarinic acetylcholine receptor (mAChR) (17)

Second extracellular loop of the human heart mAChR (34, 78)

Third extracellular loop of the human mAChRs (33)

Cross-reacting antigen (SRA)  
on striated muscle

Anti-SRA SRA on the sarcolemma of cardiac myofibers (79)

Microsomal fraction (Mc) Anti-Mc antibodies Skeletal and heart muscle (80, 81)

Immune 
response

55 kDa membrane protein Anti-B lymphocytes p28 28 kDa lymphocyte membrane protein (82)

Lectin domain of shed acute-phase  
antigen (SAPA)

Anti-Galectin-1 Galectin-1 (32)

SAPA Anti-Cha Peptides R3 from human the autoantigen Cha (83)

Others 23 kDa ribosomal protein Anti-ribossomal P proteins 23 kDa ribosomal protein (29, 84)

P2β (TcP2β) protein Anti-β2 adrenoreceptors Spleen cell β2 adrenoceptors (77)
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becomes activated, resulting in the assembly of MAC on endothe-
lial and cardiomyocyte cells and causing tissue damage (95). 
This event could explain, in part, the active myocarditis and the 
fibrosis observed in myocardial lesions seen in some patients 
with chronic CD. The formation of MAC on cardiomyocytes of 
chagasic patients suggests that cell damage would favor exposure 
of intracellular molecules and the development of autoantibod-
ies contributing to the autoimmunity process (96) (Figure 1C). 
Although the presence of autoantibodies might represent a factor 
involved in cell damage in the chronic phase of CD, the real effect 
of autoimmunity in the clinical development of the disease is still 
unknown.

Thus, understanding the autoimmunity hypothesis in CCC 
development may guide new strategies for the treatment of 
chronic CD. Nevertheless, one may consider that therapies 
modulating the immune response are complex and may be a 
double-edged sword causing side effects since the abrogation 
of molecules from the immune system in experimental T. cruzi 
infection have shown to increase parasitemia (97).

FinAL COnSiDeRATiOnS

The autoimmune hypothesis in the pathogenesis of CD is a topic 
of controversial debate, and several studies have demonstrated 
the involvement of more than one plausible mechanism that 
could contribute to the tissue damage observed in the chronic 
phase of the disease. Thus, the presence of the parasite within 
the tissues could stimulate in a continuous way both humoral 
and cellular responses activating multiple pathways, such as 

molecular mimicry and autoantibodies formation, bystander 
activation, ADCC, and complement activation, contributing to 
tissue damage and progression to symptomatic forms, including 
chagasic cardiomyopathy. All the information gathered in this 
review contributes to highlight points of possible interventions 
for future development of strategies regarding neutralization, 
blocking or immunoadsorption of autoantibodies, as well as 
complement inhibition. Thus, a better understanding of the host 
immune response during T. cruzi infection and CD progression 
is a key element to the development of effective vaccines and 
immunotherapy.
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