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Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step of tryptophan deg-
radation along the kynurenine pathway and suppresses T-cell immune response by two paths; the 
activation of general control non-derepressible 2 kinase (GCN2K) and aryl-hydrocarbon receptor 
(AhR). In the microenvironment of the immune response, tryptophan depletion activates GCN2K, 
which inhibits T-cell proliferation and induces T-cell apoptosis (1). From a teleological point of 
view, the selection of tryptophan depletion as an immunomodulatory mechanism is ingenious. 
Tryptophan is an essential amino acid not synthesized by human cells, its concentration in the body 
is the lowest among all amino acids, and its deprivation due to low intake appears only in 2 days (2). 
Thus, its depletion in the microenvironment of inflammation can emerge acutely. Interestingly, and 
indicating the specific role of the above immunomodulatory mechanism, IDO1-induced tryptophan 
depletion does not affect the other amino acid sensing system, the mammalian target of rapamycin 
complex 1 (mTORC1), in T-cells (3–5), which is in accordance with studies showing that mTORC1 
is sensitive to the depletion of specific amino acids; more precisely of leucine, isoleucine, valine, 
and possibly arginine, but not of tryptophan (6). In parallel with IDO1-induced GCN2K activation, 
kynurenine, a derivative of tryptophan degradation, activates AhR, which induces naïve CD4+ T-cell 
differentiation into regulatory T-cells (7).

The immunosuppressive properties of IDO1 were discovered by the observation that its expres-
sion in the placenta contributes to a successful semi-allogenic pregnancy (8). Then it was revealed 
that inflammatory stimuli induce IDO1 expression in antigen-presenting cells, and the immuno-
suppressive role of this enzyme has been confirmed in experimental models of autoimmunity and 
transplantation (9–12).

Indoleamine 2,3-dioxygenase 1 is also expressed in many types of cancer, and the majority of 
studies suggest that this enzyme plays a significant role in the escape of tumors from immunosurveil-
lance (13, 14). More precisely in various types of cancer, IDO1 expression has been confirmed, 
individually or in combination, in tumor cells, in interstitial cells in lymphocyte-rich areas, and 
in endothelial cells. In most cases, IDO1 expression seems to be the result of an ongoing immune 
response by infiltrating T-cells and other immune cells that produce interferon-γ (IFN-γ) (14, 15), a 
cytokine that induces macrophage and dendritic cell (DC) activation and IDO1 expression (13, 14, 
16). The infiltrating immune cells fail to eliminate cancer cells because due to accumulated mutations 
they escape the initial immune response. The persisted immune response results in increased IDO1 
expression by tolerogenic DCs, myeloid-derived suppressor cells, and tumor-associated macrophages. 
Tryptophan depletion and kynurenine production by IDO1 induce more immune cells to become 
tolerogenic and inhibit effector T-cells, whereas increase regulatory T-cells. Regulatory T-cells by 
expressing cytotoxic T-lymphocyte-associated-antigen-4 (CTLA-4) inhibit further effector T-cells 
and increase IDO1 expression in DCs closing a positive feedback loop of immunosuppression (16). 
However, in a subset of tumors IDO1 is expressed by cancer cells in the absence of any inflammation 
indicating that it may be the result of oncogenic events and may contribute to escape of tumor by 
immunosurveillance by preventing T-cell infiltration (14, 15).
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Figure 1 | A model about the effect of indoleamine 2,3-dioxygenase 1 (IDO1) on the utilization of the main energy sources by activated CD4+ T-cells. In the 
immune response microenvironment, IDO1 by degrading l-tryptophan along the kynurenine pathway activates general control non-derepressible 2 kinase (GCN2K) 
and aryl-hydrocarbon receptor (AhR). By upregulating the transcription factor p53 and downregulating the transcription factor c-Myc, activated GCN2K decreases 
the expression of glucose transporter 1 (GLUT1), key glycolytic enzymes, and glutaminases inhibiting the consumption of glucose and glutamine. The reduced 
utilization of these pivotal sources of energy by activated T-cells results in reduced ATP production. The latter activates AMP-activated protein kinase (AMPK), which 
phosphorylates and inactivates acetyl-CoA carboxylase 2 (ACC2) resulting in decreased production of the carnitine palmitoyltransferase I (CPT1) inhibitor 
malonyl-CoA. In parallel, activation of AhR increases the expression of all CPT1 isoenzymes. Since CPT1 controls free fatty acid oxidation, these IDO-induced 
alterations promote free fatty acid oxidation as an alternative fuel for ATP production, supplying the required energy for CD4+ T-cell survival and proliferation.
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Nevertheless, other studies question the role of IDO1 over-
expression in the adverse clinical outcome of certain cancers. 
Ishio et al. found that the recurrence-free survival rate of patients 
with IDO1-positive hepatocellular carcinoma is significantly 
higher than that of patients with IDO1-negative hepatocellular 
carcinoma (17). Takao et al. showed that increased IDO1 protein 
is related to worse prognosis in patients with serous type, but not 
with clear cell or endometrioid type of ovarian adenocarcinoma 
(18). Riesenberg et  al. revealed that the expression of IDO1 in 
tumor endothelial cells correlates with long-term survival of 
patients with renal cell carcinoma (19). Jacquemier et al. deter-
mined that high IDO expression is associated with morphological 
medullary features and has an independent favorable prognostic 
value in patients with basal-like breast carcinoma (20). Recently, 
Heeren et al. showed that in patients with early stage cervical can-
cer, a marginal IDO expression pattern in the tumor dominantly 
predicts a favorable outcome, which might be related to IFN-γ 
release in the cervical tumor microenvironment (21).

Most importantly, despite the initial experimental and clinical 
indications about the efficacy of IDO1 inhibitors in cancer immu-
notherapy (16), in the recently Incyte’s phase III clinical trial, 
the addition of the IDO1 inhibitor epacadostat in a therapy with 
the programmed death 1 immune checkpoint inhibitor pem-
brolizumab, made no difference for the patients with metastatic 
melanoma receiving both drugs. This failure led three companies 
to the decision to suspend, cancel, or downsize 13 trials of IDO1 
inhibitors in combination with immune checkpoint inhibitors (22).

There are some possible explanations for these disappointing 
results. First, IDO1 expression, confirmed by either immunohis-
tochemistry or polymerase chain reaction, in a tumor does not 
necessarily mean that this enzyme is functional. For instance, 
IFN-γ induces both the expression of IDO1 and the production 
of nitrogen monoxide (NO) in macrophages, but the latter inhibits 
IDO1 enzymatic activity (23). Also, in an inflammatory environ-
ment, both NO and superoxide anion are produced resulting in the 
generation of peroxynitrite anion, which inhibits by nitration IDO1 
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enzymatic activity without affecting its protein level (24). Moreover, 
phosphorylation of specific IDO1 tyrosine residues blocks its 
catalytic activity (25). Thus, assessing along with IDO1 expression 
its enzymatic activity by detecting in the tumors along with IDO1, 
proteins that are known to be modified or expressed after GCN2K 
or AhR activation would yield more accurate results about the role 
of this enzyme in the escape of tumors from immunosurveillance.

In addition, IDO1, by activating GCN2K, alters the metabo-
lism of T-cells, inhibits their proliferation and induces apoptosis 
in a p53-dependent way (4, 26, 27). The transcription factor p53, 
also known as tumor suppressor p53, inhibits aerobic glycolysis, 
which characterizes rapidly proliferating cells, and induces cell 
cycle arrest and/or apoptosis (28, 29). Interestingly, activated 
GCN2K also increases p53 expression in nonimmune cells, such 
as human aortic endothelial and renal epithelial cells (30, 31). The 
fact that in most the tumors the p53 pathway is directly or indirectly 
inactivated (28), offers an advantage in cancer progression. IDO1 
expressed by cancer cells or infiltrating immune cells by depleting 
tryptophan in the local microenvironment activates GCN2K in 
the T-cells that infiltrate the lesion inhibiting their proliferation 
and inducing apoptosis. On the contrary, due to the ineffective 
p53 pathway in the cancer cells, tryptophan depletion does not 
inhibit tumor growth. Acting in such a way, IDO1 contributes to 
the escape of cancer from the immunosurveillance. However, in 
the case of cancer with the intact p53 pathway, the IDO1 expressed 
by the infiltrating immune cells may be able to activate GCN2K 
in cancer cells and inhibit tumor progression in a p53-dependent 
way. In such a case, the administration of an IDO1 inhibitor may 
decrease the antitumor immune response. Interestingly, in an 
experimental study, IFN-γ exhibited its antiproliferative effects 
only in cancer cell lines in which it upregulated IDO1 expression 
with a consequent tryptophan deprivation; suggesting a possible 
direct antitumor effect of this enzyme in certain types of cancer. 
However, the p53 pathway was not assessed in the tested cancer 
cell lines (32). Thus, evaluation of the cancer p53 status before the 
administration of an IDO1 inhibitor may be vital.

Also, and despite the studies about the role of IDO1 in sup-
porting tumor vessel formation (33, 34), the ability of activated 
GCN2K to induce p53 expression, and possibly cell cycle arrest 
or apoptosis, in endothelial cells (30), raises questions about the 
effect of IDO1 inhibition on the required for the tumor progression 
neoangiogenesis. Interestingly, expression of IDO1 in endothelial 
cells of renal tumors is associated with a better prognosis (19).

As regards the immunosuppressive properties of IDO1 per se, 
research in my laboratory, revealed that this enzyme affects T-cell 
fate at least in part by altering cell metabolism (3–5, 26, 35, 36). 
Thus, the availability of various nutrients in the microenviron-
ment of the immune response may have a significant impact on 
IDO1 immunomodulatory properties. Most of the conclusions 
about the molecular pathways involved in the IDO1-induced 
immunosuppression were extrapolated under the strictly con-
trolled conditions of cell cultures (1, 7). Nevertheless, if a free 
fatty acid is added in the culture medium, the trend for CD4+ 
T-cell differentiation toward a regulatory phenotype remains, but 
the antiproliferative and pro-apoptotic properties of IDO1 disap-
pear (35, 36). The reason relies on the effect of IDO1 on T-cell 
metabolism. As depicted in more detail in Figure 1, depletion of 

tryptophan by activating GCN2K inhibits glucose and glutamine 
catabolism (3, 4, 26, 36). However, kynurenine by activating AhR 
induces free fatty acid β-oxidation, which refuels CD4+ T-cells 
with energy, allowing their proliferation and preventing their 
apoptosis (35, 36). Accordingly, two of the three ways by which 
IDO1 is supposed to suppress T-cell-mediated immune response 
may not take place if enough free fatty acids are present in the 
cancer microenvironment. In such a case, the gain in antitumor 
immunity by inhibition of IDO1 would be far less than the 
expected. The data about the concentration of free fatty acids in 
the various types of cancer are scarce.

In conclusion, there are many aspects to be revealed about the 
role of IDO1 in the escape of cancer from immunosurveillance 
(Table 1). Along with tumor IDO1 expression, assessment of its 
activity may prevent overestimation of its role in the escape of 
cancer from immunosurveillance. In cancer with an intact p53 
pathway, expression of IDO1 by the infiltrating immune cells may 
exhibit antitumor activity. Also, in an environment relatively rich 
in free fatty acids the immunosuppressive properties of IDO1 may 
be decreased considerably, and the gain in antitumor immunity 
from its inhibition may be less than the expected. The role of IDO1 
in tumor neoangiogenesis remains to be better elucidated as well. 
Administration of IDO1 inhibitors may be beneficial to certain 
but not all cancers. Beyond tumor IDO1 expression, assessment 
of other factors such as IDO enzymatic activity, the status of the 
p53 pathway in the cancer cells, and the availability of free fatty 
acids in the tumor microenvironment, i.e., the application of a 
more personalized medicine, may help IDO1 inhibitors to find 
their place in cancer immunotherapy.
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TABle 1 | Factors that may limit the anticancer effect of indoleamine 
2,3-dioxygenase 1 (IDO1) inhibitors.

The role of IDO1 in the 
escape of cancer from 
immunosurveillance may 
be overestimated

Most studies assessed only IDO1 expression but not 
its activity. However, certain conditions that may be 
present in the cancer microenvironment may inhibit 
IDO1 activity without affecting its protein level

In certain tumors, IDO1 
may induce apoptosis of 
the cancer cells

In human lymphocytes, epithelial and endothelial 
cells, IDO1 by activating general control non-
derepressible 2 kinase (GCN2K) induces p53-
mediated apoptosis. Thus, in the minority of cancers 
with an intact p53 pathway, IDO1 expression in the 
infiltrating immune cells may be beneficial

In certain tumors, 
IDO1 may suppress 
neoangiogenesis

Although there are studies that support a positive 
role for IDO1 in tumor neoangiogenesis, the fact that 
GCN2K activation induces p53-mediated apoptosis 
in human endothelial cells raises questions. In renal 
carcinoma, the expression of IDO1 in endothelial 
cells signifies a worse prognosis

The immunosuppressive 
properties of IDO1 may 
be overestimated

Traditionally, it is thought that IDO1 suppresses 
T-cells proliferation, induces their apoptosis, and 
promotes their differentiation toward a regulatory 
phenotype. However, the presence of free fatty acids 
in the tumor microenvironment may abolish the 
antiproliferative and pro-apoptotic properties of IDO1
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