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Cancer immunotherapy is aimed at stimulating tumor-specific cytotoxic T lymphocytes 
and their subsequent trafficking so that they may reach, and persist in, the tumor 
microenvironment, recognizing and eliminating malignant target cells. Thus, charac-
terization of the phenotype and effector functions of CD8+ T  lymphocytes infiltrating 
human solid tumors is essential for better understanding and manipulating the local 
antitumor immune response, and for defining their contribution to the success of current 
cancer immunotherapy approaches. Accumulating evidence indicates that a substantial 
subpopulation of CD3+CD8+ tumor-infiltrating lymphocytes are tissue resident memory T 
(TRM) cells, and is emerging as an activated tumor-specific T-cell subset. These TRM cells 
accumulate in various human cancer tissues, including non-small-cell lung carcinoma  
(NSCLC), ovarian and breast cancers, and are defined by expression of CD103  
[αE(CD103)β7] and/or CD49a [α1(CD49a)β1] integrins, along with C-type lectin CD69, 
which most likely contribute to their residency characteristic. CD103 binds to the epi-
thelial cell marker E-cadherin, thereby promoting retention of TRM cells in epithelial tumor 
islets and maturation of cytotoxic immune synapse with specific cancer cells, resulting 
in T-cell receptor (TCR)-dependent target cell killing. Moreover, CD103 integrin triggers 
bidirectional signaling events that cooperate with TCR signals to enable T-cell migration 
and optimal cytokine production. Remarkably, TRM cells infiltrating human NSCLC tumors 
also express inhibitory receptors such as programmed cell death-1, the neutralization of 
which, with blocking antibodies, enhances CD103-dependent TCR-mediated cytotox-
icity toward autologous cancer cells. Thus, accumulation of TRM cells at the tumor site 
explains the more favorable clinical outcome, and might be associated with the success 
of immune checkpoint blockade in a fraction of cancer patients.

Keywords: CD8 tissue resident memory T (TRM) cells, CD103 integrin, cytotoxic T lymphocytes, onco-immunology, 
cancer immunotherapy

Abbreviations: CTL, cytotoxic T  lymphocytes; CTLA, cytotoxic T-lymphocyte-associated antigen; PD-1, programmed cell 
death-1; IFN, interferon; LFA-1, lymphocyte-function-associated antigen-1; mAb, monoclonal antibodies; NSCLC, non-
small-cell lung carcinoma; MHC-I, major histocompatibility complex class I; TCR, T-cell receptor; TIL, tumor-infiltrating 
lymphocytes.
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iNTRODUCTiON

CD8+ T  lymphocytes play an essential role in defense against 
cancers through recognition by T-cell receptors (TCR) of specific 
antigenic peptides presented on the surface of malignant cells by 
major histocompatibility complex class I (MHC-I) molecules, 
and elimination of the tumor target, mainly by releasing the 
content of cytolytic granules containing perforin and granzymes. 
To destroy their target, cytotoxic T lymphocytes (CTL) must first 
migrate to the tumor site, infiltrate the tumor tissue, and interact 
with the cancer cell, to finally trigger effector functions leading to 
transformed cell eradication. Integrins and their ligands (1) play 
a crucial role in promoting antitumor T-cell activities by regulat-
ing T-cell migration and retention within the tumor, adhesion 
to antigen-presenting cells and co-stimulation resulting in CTL 
activation and functions (2). Cytokines and chemokines are also 
involved in coordinating circulation, homing, retention, and acti-
vation of T lymphocytes. Although some of them are known to 
contribute to tumor cell proliferation and dissemination by inhib-
iting tumor-specific T-cell responses, others promote infiltration 
and activation of T  lymphocytes in a hostile tumor ecosystem, 
resulting in tumor cell destruction (3). In this regard, TGF-β, 
abundant in the tumor microenvironment, was reported to be an 
immunosuppressive factor used by malignant cells to escape from 
the immune response (4). This cytokine inhibits expression of 
lymphocyte-function-associated antigen-1 (LFA-1, also known 
as αLβ2 or CD11a) integrin and LFA-1-mediated T-cell functions 
(5). Paradoxically, this cytokine induces CD103 (also known as 
αEβ7 or HML-1) integrin expression on activated intraepithelial 
CD8+ T  lymphocytes, and enhanced CD103-dependent T-cell 
adhesion and signaling (6, 7).

LFA-1 and CD103 are the predominant integrins expressed 
by intraepithelial T  lymphocytes (IEL) and CD8+ tumor-
infiltrating lymphocytes (TIL). While the contribution of LFA-1 
and its ligand ICAM-1 (CD54) to TCR-mediated CTL activities 
is well documented (8), much less is known about the role of 
CD103 and its ligand, the epithelial cell marker E-cadherin, to 
T-cell-mediated cytolytic activity. CD103 has been associated 
with cytotoxicity of CD8+ T cells in several human pathologies, 
including graft-versus-host disease (GVHD) (9), allogeneic 
transplant rejection (10–12), autoimmune diseases (13, 14), 
and cancer (6, 15). This integrin, together with the activation 
marker CD69 and the integrin CD49a [also known as α1β1 
or very late antigen-1 (VLA-1)], defines a recently identified 
subtype of CD8+ T lymphocytes called “tissue-resident memory 
T (TRM) cells,” possibly endowed with potent cytotoxic activi-
ties. Moreover, there is an emerging consensus that TRM cells 
frequently accumulate in multiple human tumors, especially 
of epithelial origin, and play an essential role in tumor-specific 
T-cell responses and, likely, in control of malignant diseases. TRM 
cells are also surrogate markers of the efficacy of cancer vaccines 
(16, 17), and a low number of this T-cell subset among TIL may 
correlate with failure of immune checkpoint blockade therapy 
in most cancer patients. In this review, we focus on CD8+ TRM 
cells accumulating in human solid tumors, mainly non-small-
cell lung carcinoma (NSCLC), and current insight implicating 
CD103 integrin in regulating TRM functions and CTL-mediated 

antitumor immune responses, with potential prognosis and 
immunotherapeutic applications.

PHeNOTYPiC AND MOLeCULAR 
FeATUReS OF TRM CeLLS iN TUMORS

It is now generally agreed that a population of TRM cells accumu-
lates in tumors of epithelial origin, such as ovarian, pancreatic, 
colorectal, and lung tumors (15, 18–20), as well as those of non-
epithelial origin, including malignant glioma and melanoma 
(21, 22). These TRM cells express a broad range of integrins and 
chemokine receptors, probably involved in their migration to the 
tumor site, and may interfere with their egress from the tumor tis-
sue. Transcriptional studies pointed to expression of CXCR3 and 
CXCR6 by TRM cells infiltrating human lungs (23). Intratumoral 
TRM cells express high levels of CCR5 and CCR6 chemokine recep-
tors that may confer T-cell homing to the inflammatory tumor 
microenvironment (15). Moreover, CCR5 is recruited at the 
immune synapse formed between T cells and tumor target cells 
upon interaction of CD103 with E-cadherin, promoting reten-
tion of TRM cells at the tumor site by inhibiting their sensitivity 
to a CCL5 chemotactic gradient (7). By contrast, TRM cells do not 
express CX3CR1, a chemokine receptor that mediates transmi-
gration through the endothelium, supporting the hypothesis that 
this T-cell population has reached its final destination and does 
not need to exit from the lung tissue (23). Lung tumor TRM lack 
expression of lymph node homing receptors CCR7 and CD62L, 
as well as the receptor for sphingosine 1-phosphate, S1PR1 (15), 
which mediates the egress of T cells from lymphoid organs (24). 
Indeed, downregulation of SIPR1 appears to be a prerequisite for 
retention of CD8+CD103+ TRM cells in peripheral tissues (25, 26).

With regard to adhesion/costimulatory molecules, the expres-
sion profile of intratumoral TRM cells seems to be compatible with 
their capacity to reside in tumor tissue and their inability to recir-
culate in the bloodstream. In melanoma, CD8+ TRM cells were 
found to co-express CD69, CD103, and VLA-1 (CD49a or α1β1 
integrin), with the latter reported to cause long-term retention 
of activated T cells in peripheral tissues (27). Human lung tumor 
CD8+ TRM cells are characterized by downregulation of CD28 and 
upregulation of CD69 and CD103 and CD49a integrins, which are 
most likely induced by TGF-β in the tumor microenvironment 
(15, 28). TGF-β plays a pivotal role in formation and maintenance 
of TRM, at least in part via induction of CD103. Indeed, TGF-β is 
directly involved in CD103 expression in tumor-specific T cells 
upon engagement of TCR with specific tumor peptide–MHC-I 
complexes (7), through binding of Smad2/3 and NFAT-1 tran-
scription factors to promoter and enhancer elements of the ITGAE 
gene, which encodes the CD103 (αE) subunit (29). This cytokine 
is also involved in dampening expression of the LFA-1 integrin on 
TIL, thus participating in T-cell residency within the tumor (15, 
30). In LCMV chronic infection, but not acute infection, TGF-β 
signaling inhibits migration of CD8+ effector T  lymphocytes 
from the spleen to the gut by dampening expression of integrin 
α4β7 during the formation phase of TRM cells (31). Consequently, 
CD8+ Tgfbr2−/− T  cells migrate normally to the intestine, but  
their retention in the gut epithelium is impaired. In contrast, 
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TGF-β signaling does not impact α4β7 integrin expression and 
T-cell migration to the gut after acute bacterial infection (32). 
Moreover, E-cadherin, which is downregulated by TGF-β in 
cancer cells during epithelial-to-mesenchymal transition [for a 
review see Ref. (33)], appeared to promote accumulation of a sub-
set of CD8+ memory T cells in murine submandibular glands by 
a mechanism independent of CD103 (34). This cytokine has been 
identified as a potential therapeutic target in cancer because of its 
role in supporting tumor progression and in inducing immuno-
suppression. In this regard, it has been shown that targeting the 
TGF-β pathway inhibits tumor growth by promoting antitumor 
immunity associated with increased CD8+ T-cell numbers (35). 
However, the consequence of such cancer immunotherapy 
approaches on TRM cells, the maintenance of which is dependent 
of TGF-β, has not been addressed.

T-cell inhibitory receptors are important for maintaining 
self-tolerance and regulating the immune response in periph-
eral tissues (36). Among these immune checkpoints, cytotoxic 
T-lymphocyte-associated antigen (CTLA)-4 and Tim-3 appeared 
to be associated with tumor antigen-specific CD8+ T-cell dys-
function in melanoma patients (37). CD103+ TRM cells have been 
shown to express a wide range of inhibitory receptors, such as 
CTLA-4, Tim-3, and programmed cell death-1 (PD-1), associ-
ated with their capacity to maintain peripheral tolerance (25, 38). 
Data from our group and other groups revealed that intratumoral 
CD8+CD103+ TRM cells frequently express PD-1, Tim-3, and 
Lag-3, which are likely involved in their exhausted state and their 
dysfunctioning at the tumor site (15, 28, 39, 40). Notably, TGF-β 
is also involved in PD-1 induction on CD8+ T cells, contributing 
to T-cell anergy and a sustained tolerance (41). Neutralization of 
TGF-β results in downregulation of PD-1 expression in T cells 
causing graft rejection. Mechanistically, PD-1 is regulated by the 
NFATc1 transcription factor (42), and is enhanced by a TGF-β/
SMAD3-dependent signaling pathway (43). Expression of PD-1 
on TIL is described as a biomarker of CD8+ tumor-reactive T cells 
in cancer patients (44). Thus, the PD-1+ status of tumor TRM cells 
suggests that they are enriched with antigen-specific CD8+ T cells 
that may be used as targets in cancer immunotherapy.

Alongside upregulation of genes encoding PD-1, CTLA-4 and 
Tim-3, CD8+ TIL display increased expression levels of genes 
encoding transcription factors EGR1 and Nr4a2 (25, 38), as well 
BATF and NAB1, suggesting a role in TRM establishment in the 
tumor (28). CD8+CD103+ TIL also express an increased level of 
T-bet (45) and the Runx3 transcription factor, which programs 
their residency in tumors (46). Indeed, Runx3 deficiency impaired 
TIL accumulation without affecting migration to the tumor, 
associated with an increase in tumor growth. By contrast, KLF2 
transcription factor was diminished in TRM cells from human 
TILhi tumors (28), while Notch activity appeared to be required 
for maintenance of CD103+ TRM cells in mouse tumors (23). 
Therefore, additional studies are needed to better characterize 
the transcriptional features of CD8+CD103+ TRM cells in human 
tumors, and transcriptional factors that govern their residency 
in malignant tissues. Overall, the TRM cell subset is characterized 
by a Runx3+, Notch+, Hobit+, Blimp1+, BATF+, EOMESneg, and 
Tbetlow transcription factor profile (23, 46–49) and is defined by 
the surface expression of CD103, CD49a, and CD69 [for reviews 

see Ref. (50–52)]. It also expresses the inhibitory receptors PD-1, 
CTLA-4, and Tim-3 (15, 38, 53), and is promoted by particular 
route of immunization targeting tissue dendritic cells (17, 54, 
55) and specific environmental factors mainly TGF-β, IL-33, and 
IL-15 (56–59).

FUNCTiONAL ACTiviTieS OF 
iNTRATUMORAL TRM CeLLS

Thus far, little is known about CD8+CD103+ TRM functions 
in tumor tissues. Immune checkpoint expression by CD103+ 
TIL suggested that CD8+ TRM cells in tumors are enriched 
with tumor antigen-specific CTL. These T  cells were found to 
express transcripts encoding products linked to cytotoxic func-
tions of CD8+ T lymphocytes, including IFNG, GZMA, GZMB, 
SEMA7A, KLRB1, CCL3, STAT1, RAB27A, IL21R, and FKBP1A 
(28). Expression of granzyme A, granzyme B, and perforin by 
CD8+CD103+ TIL was also observed at the protein level, together 
with the CD107a (LAMP-1) degranulation marker and the Ki-67 
proliferation marker (15, 28, 45, 60).

Functional studies showed that CD8+CD103+ TIL are able to 
secrete inflammatory cytokines, including interferon (IFN)γ and 
TNFα (28, 46). Moreover, interaction of CD103 with E-cadherin 
on tumor target cells optimizes cytokine release, since siRNA 
targeting E-cadherin partially inhibited IFNγ production 
(61). Cytotoxicity experiments indicated that freshly isolated 
CD103+ TIL were able to kill autologous tumor cells following 
neutralization of the PD-1–PD-L1 interaction with anti-PD-1 or 
anti-PD-L1 blocking antibodies (15). This cytotoxic activity is 
most likely mediated by CD103+ T cells, since anti-CD103 neu-
tralizing monoclonal antibodies (mAb) compromise this func-
tion. Consistently, cytotoxicity of CD103+ T-cell clones toward 
autologous E-cadherin+ tumor cells is inhibited anti-CD103 
blocking mAb (6). Another noteworthy aspect of our contribu-
tion to the field is the demonstration that CD103 is an important 
molecule required for polarization of cytotoxic granules at the 
immune synapse formed between CTL clones and autologous 
tumor cells, and that siRNA targeting E-cadherin inhibited TCR-
mediated target cell killing (6). Moreover, CD103 contributes to 
recruitment of CD103+ TRM cells within epithelial tumor islets, 
and intratumoral early T-cell signaling (30).

A role for the VLA-1 integrin in the differentiation and func-
tions of TRM cells was reported in a mouse tumor model (27). 
VLA-1+ T  cells, co-expressing or not CD103, secreted high 
levels of IFNγ upon re-stimulation, and this cytokine production 
was impaired by anti-VLA-1 or anti-CD103 mAb. Moreover, 
blockade of VLA-1 or CD103 severely compromised control of 
tumor growth in vivo. Similar studies revealed that CD8+CD103+ 
TRM cells accumulate and protect mice against melanoma in a 
CD103-dependent manner, and these TRM cells play a pivotal 
role in perpetuating antitumor immunity (22). Conversely, it 
has been reported that anti-latency-associated peptide (LAP) 
antibodies targeting the LAP/TGF-β complex induce a decrease 
in CD8+CD103+ T cells in mouse spleen and lymph nodes, and 
that this peculiar T-cell subset displays a tolerogenic feature (62). 
Murine CD8+CD103+ regulatory T cells have also been described 
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in autoimmune diseases where they are induced by TGF-β and 
display suppressive activities independently of granzyme B (63). 
Moreover, CD8+CD103+ T  cells are crucial for prevention of 
chronic GVHD lupus in mice by suppressing T helper and B cell 
responses through a non-cytotoxic mechanism involving TGF-
β and IL-10 signals (64). However, further studies are needed 
to permit the distinction between human CD8+CD103+ CTL 
and CD8+CD103+ T  regulatory cells, even though granzyme B 
expression appears as a good marker, and determine the exact 
contribution of both subsets in autoimmune [for a review see Ref. 
(65)] and cancer diseases.

BiDiReCTiONAL SiGNALiNG OF CD103 
DiCTATeS iTS ACTivATiON AND 
FUNCTiONS

Integrins are heterodimeric transmembrane receptors that medi-
ate cell-extracellular matrix adhesion and cell–cell interactions 
(2). Among a family of 24 members (1), the CD103 integrin, 
formed by αE (CD103) and β7 subunits, is exclusively expressed 
by leukocytes, in particular IEL (66), psoriatic skin epidermal 
CD8+ T  cells (67), cervico-vaginal antigen-specific CTL (68), 
and CD8+ T lymphocytes infiltrating various human tumors (6, 
18–20, 60, 69). The restricted distribution of the CD103 integrin 
is attributed to expression of the αE subunit, since the β7 subunit 
is widely expressed in T cells (70).

On naive T  lymphocytes, integrins have weak affinity for 
their ligands. However, stimulation of T  lymphocytes through 
TCR or chemokine receptors initiates an “inside-out” signal 
that induces integrin activation by triggering integrin-extended 
conformation and clustering, thereby enhancing their affinity for 
their ligands. Firm adhesion of integrins to their ligands triggers 
an “outside-in” signal that has costimulatory functions in TCR 
signaling, thereby contributing to T-cell activation, migration, 
and cytotoxicity (71–73). Until recently, the signaling pathways 
of CD103 integrin and the molecules involved in its bidirectional 
activation were not clearly elucidated. Like the other integrins, 
CD103 activation is regulated by TCR engagement. In this con-
text, it has been shown that cross-linking of TCR on IEL or cell 
treatment with phorbol myristate acetate increased the avidity 
of CD103 for E-cadherin and provided a mechanism for lym-
phocyte adherence and activation (74). Furthermore, the CCR9 
ligand, CCL25, induced CD103-mediated adhesion of CD8+ IEL 
to E-cadherin, suggesting a role for this chemokine receptor/
chemokine pair in promoting functions of CD103 via inside-out 
signaling (75). Similarly, the CCL7 chemokine has been shown to 
favor adhesion and retention of CD103-expressing T cells during 
renal allograft rejection, by promoting the adhesive properties of 
CD103 (76).

TGF-β is responsible for inducing CD103 integrin in CD8+ 
T  lymphocytes (6, 77) by regulating expression of both ITGAE 
(29, 78) and ITGB7 (79) genes encoding αE and β7 chains, 
respectively. In addition, in contrast to all other integrins, TGF-β 
regulates CD103 activation and signaling within epithelial tis-
sues (Figure  1). Indeed, we previously demonstrated that the 
interaction of TGF-β with its receptors TGFBR on the surface of 
CD8+CD103+ T cells induces recruitment and phosphorylation 

of integrin-linked kinase (ILK) by TGFBR1 (activin receptor-like 
kinase-5) (30). We further showed that phosphorylated-ILK 
interacted with the CD103 subunit intracellular domain, result-
ing in phosphorylation of protein kinase B (PKB)/AKT, thereby 
initiating integrin inside-out signaling leading to activation of 
CD103 and strengthening of CD103-E-cadherin adhesion.

The mechanism regulating the CD103 outside-in signaling 
pathway is not fully understood. Studies from our group have 
shown that CD103-E-cadherin tight adhesion initiates an 
outside-in signal by promoting phosphorylation of the focal-
adhesion-associated adaptor protein paxillin and proline-rich 
tyrosine kinase-2 (Pyk2), and subsequent binding of phospho-
rylated-paxillin to the CD103 subunit tail (80). In addition, the 
adhesive interaction of E-cadherin with CD103 on TIL triggers 
phosphorylation of extracellular signal-regulated kinases 1 and 2 
(ERK1/2) and phospholipase C γ1 proteins, providing intracellu-
lar signals that promote CTL effector functions (60). These stud-
ies emphasize a unique costimulatory role of the CD103 integrin 
in activation of tumor-specific CTL, by triggering polarization 
of cytotoxic granules at the immune synapse and subsequent 
TCR-mediated cytotoxicity (60), and in proliferation of CD103+ 
thymocyte cells (81). Engagement of CD103 with E-cadherin also 
determines cell shape and motility of CD103+ lymphocytes (82), 
and recruitment of CD8+ TRM cells within epithelial tumor islets, 
in an actin-polymerization-dependent fashion (30, 80). Moreover, 
TGF-β enhances T-cell adhesion and movement toward tumor 
regions by increasing CD103 expression levels and promoting 
intracellular T-cell signals leading to integrin activation (30). 
CD103 also contributes to retention of TRM cell subpopulations 
by interacting with E-cadherin and mediating arrest of T  lym-
phocytes on epithelial tissues (32, 61). Thus, CD103 appears to 
be a unique integrin for adjusting T-cell adhesion and migratory 
potential in a TGF-β-rich tumor microenvironment, as well as 
retention of tumor-specific CD8+ TRM cells and local antitumor 
effector functions (Figure 1).

PROGNOSTiC vALUe OF TRM CeLLS iN 
HUMAN CANCeRS

CD8+CD103+ TRM cells have emerged as predictive markers of 
patient survival in several malignant diseases, including ovar-
ian, lung, endometrial, and breast cancers (15, 20, 28, 83, 84). 
Indeed, in a large cohort of high-grade serous ovarian cancers 
(20) and a cohort of early-stage NSCLC (15), an enhanced 
CD103+ TIL subset correlated with improved patient survival. 
CD103+ TIL were also associated with a favorable prognosis in 
urothelial cell carcinoma of the bladder, and could represent a 
favorable prognostic predictor of overall and recurrence-free 
survival (83). In that retrospective study, CD8+ T  cells were 
identified as the principal cellular sources of CD103, and the 
density of intratumoral CD103+ cells was inversely associated 
with tumor size. More recent studies also defined the CD103 
integrin as a biomarker of good prognosis in cohorts of breast 
(85) and lung cancer (17, 28, 84). Notably, TRM infiltration in lung 
cancer correlated with better clinical outcome in both univariate 
and multivariate analyses, independently of CD8+ T  cells (17). 
In addition, high numbers of intratumoral CD103+ TIL were 
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significantly associated with prolonged disease-free survival 
and overall survival in patients with pulmonary squamous cell 
carcinoma, but not in those with pulmonary adenocarcinoma 
(84). The epithelial localization of CD103+ TIL has an even more 
significant predictive value compared to the stromal location, 
suggesting that intraepithelial CD8+CD103+ cells encompass a 
higher proportion of tumor-specific TRM cells (15, 85). This intra-
tumoral positioning of CD103+ TIL was correlated with expres-
sion of E-cadherin on tumor cells in bladder cancer (83), but not 
in ovarian or breast cancer (20, 85). Moreover, this predominant 
location in intratumoral regions, rather than in the stroma, was 
associated with the capacity of CD103 to promote recruitment 
of TIL in epithelial tumor islets (30). Thus, TRM cells appear to be 
key components in antitumor immunity, and their presence at 

the tumor site predicts a favorable prognosis in many cancers of 
different histological types. Paradoxically, their dominant expres-
sion of checkpoint receptors suggests that may be functionally 
exhausted. However, their location in close contact with tumor 
cells, their ability to proliferate in  situ, to produce granzyme B 
and other cytotoxic molecules and pro-inflammatory cytokines, 
support the hypothesis that TRM cells are enriched in tumor-
specific CD8+ T cells that could trigger specific cytotoxic activity 
toward target cells in physiological conditions and following 
neutralization of PD-1–PD-L1 interaction, as we demonstrated 
ex vivo (15) and possibly also during anti-PD-1/anti-PD-L1 
cancer immunotherapy. Accordantly, recent studies revealed an 
expansion of CD8+CD103+ TRM cells during anti-PD-1 treatment 
in melanoma (86).
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CONCLUDiNG ReMARKS

Overall, CD8+ TRM cells that accumulate in human tumor lesions 
appear to be important effectors in antitumor CTL responses. 
Their retention within the tumor ecosystem may control tumor 
growth and explain more favorable prognoses in certain cancer 
patients. Moreover, CD103 emerges as a key molecule in CD8+ 
TRM activation, the expression of which is probably adjusted in 
the tumor microenvironment by TGF-β. This integrin not only 
promotes T-cell adhesion to target cells through interaction 
with its unique known ligand E-cadherin but also provides posi-
tive signals triggering diverse T-cell effector functions, such as 
spreading, migration, proliferation, and cytotoxicity (Figure 1). 
Nevertheless, additional studies and tools are required to further 
decipher CD103 structure and bidirectional signaling, and to 
determine whether this integrin also undergoes conformational 
changes within the tumor ecosystem in order to control the affin-
ity to its ligand E-cadherin and to regulate its functional proper-
ties. In this regard, identification of new partners and associated 
molecules controlling integrin intracellular signals and regulat-
ing the dynamics of CD103 are essential in order to optimize the 
antitumor reactivity of CD8+ TRM cells. They would also help to 

determine the true contribution of CD8+CD103+ TRM cells and 
the identified costimulatory molecules in the success of immune 
checkpoint blockade immunotherapies in a minor subpopulation 
of cancer patients, and to improve current T-cell-based cancer 
immunotherapeutic approaches such as adoptive T-cell therapies 
(Figure 2).
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