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Co-ordinated interaction between distinct cell types is a hallmark of successful immune

function. A striking example of this is the carefully orchestrated cooperation between

helper T cells and B cells that occurs during the initiation and fine-tuning of T-cell

dependent antibody responses. While these processes have evolved to permit rapid

immune defense against infection, it is becoming increasingly clear that such interactions

can also underpin the development of autoimmunity. Here we discuss a selection of

cellular and molecular pathways that mediate T cell/B cell collaboration and highlight how

in vivomodels and genome wide association studies link them with autoimmune disease.

In particular, we emphasize how CTLA-4-mediated regulation of CD28 signaling controls

the engagement of secondary costimulatory pathways such as ICOS and OX40, and

profoundly influences the capacity of T cells to provide B cell help. While our molecular

understanding of the co-operation between T cells and B cells derives from analysis of

secondary lymphoid tissues, emerging evidence suggests that subtly different rules may

govern the interaction of T and B cells at ectopic sites during autoimmune inflammation.

Accordingly, the phenotype of the T cells providing help at these sites includes notable

distinctions, despite sharing core features with T cells imparting help in secondary

lymphoid tissues. Finally, we highlight the interdependence of T cell and B cell responses

and suggest that a significant beneficial impact of B cell depletion in autoimmune settings

may be its detrimental effect on T cells engaged in molecular conversation with B cells.

Keywords: follicular helper T cells (Tfh), B cells, germinal center, autoimmunity, costimulation, CD28, CTLA-4,

immunotherapy

INTRODUCTION

Effective collaboration between T and B cells is a central tenet of protective immunity. Such
interactions underlie the development of optimal affinity-matured antibody responses that are
required for host defense, permitting the rapid neutralization of bacterial toxins and blockade of
viral cell entry. Over the last decade however, it has become apparent that T cell/B cell collaboration
also underpins the development of many autoimmune responses leading to undesirable sequelae.
Thus, many of the cellular and molecular pathways familiar to us in the context of effective
immunity are also implicated in the development of autoimmunity.

In this review we highlight the interdependence of T cell and B cell responses, both in the
initiation of humoral immunity and in the context of immune memory. We then home in on the
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pathways supporting T cell/B cell collaboration and discuss
how costimulatory signals orchestrate the chemokine receptor
modulation that drives T cell localization to the T-B border
and the altered motility that promotes follicular entry. The
importance of SLAM family members in stabilizing adhesive
interactions between T and B cells is considered, as is the role
of cytokines that support or hinder the emergence of T cell help
for the B cell response. Next we examine the early work linking
follicular helper T cell (Tfh) differentiation to the development
of autoimmunity in mice and describe how this prompted a
wave of interest in the analysis of blood-borne Tfh-like cells in
human autoimmunity. We illustrate how many of the pathways
considered earlier are linked to human autoimmunity by probing
GWAS datasets for 10 selected autoimmune diseases.

Throughout the review we focus in particular on the Tfh cell
subset that enter B cell follicles to support germinal center (GC)
formation. However, it is important to note that interactions
between B cells and non-Tfh subsets may also play roles in
promoting autoimmunity. A recent exciting development in
this regard is covered in our final section on T Cell/B Cell
Collaboration Outside Secondary Lymphoid Tissues where we
discuss the identification of “peripheral helper” T cells that lack
bona fide Tfh markers yet appear to provide help to B cells at
sites of autoimmune inflammation. Finally, we close the article
by discussing the potential to interrupt T cell/B cell collaboration
in autoimmune settings by therapeutic B cell depletion.

INTERDEPENDENCE OF T CELL AND B
CELL RESPONSES

Implicit in the concept of T cell help for B cells is a notion of
directionality, implying that T cells are the providers of help
and B cells the recipients. However, it has become clear that
the reality is far more equitable, with sequential inputs required
from both cell types for a successful overall outcome. This is
elegantly demonstrated by the molecular underpinnings of the
germinal center response, which relies on tightly regulated bi-
directional interactions between follicular helper T cells (Tfh) and
B cells.

Tfh cell differentiation is a highly complex multistage
endeavor [reviewed in (1)], and B cells play an integral role in
this process from the moment Tfh cell precursors first interact
with B cells at the follicular border in spleen or interfollicular
region in lymph nodes (2, 3) and throughout the GC reaction.
In the absence of cognate B cells, Tfh precursors expressing Bcl6
(the master transcription factor for Tfh differentiation) fail to
assume a mature Tfh cell phenotype within the follicle (3). The
maintenance of Tfh cells requires sustained antigenic stimulation
and B cells represent the key antigen presenting cell type during
the GC reaction (4, 5). Moreover, there is a positive correlation
between Tfh cell and GC B cell numbers in GC, emphasizing
the intimate functional relationship between the two cell subsets
(4, 6).

When it comes to memory responses, T cells play a clear
role in the emergence of memory B cells via the GC reaction,
and it appears that the inverse is also true, with B cells

actively supporting the efficient generation or maintenance of
T cell memory (7). Elegant experiments revealed a key role
for memory B cells in presenting antigen to memory Tfh cells
to drive Bcl6 re-expression (8), and the location of memory
Tfh cells in B cell follicles (9, 10) makes them ideally placed
for such contacts. In addition to cognate interaction, the role
of B cells in T cell memory may include the provision of
costimulatory ligands, as well as their contribution to the
structural organization and architecture that supports immune
responses.

PATHWAYS SUPPORTING T CELL/B CELL
COLLABORATION

Several key pathways regulating T cell/B cell collaboration have
been identified over the years (11), and we highlight a number of
examples below.

CD40/CD40L
CD40 and CD40L have long been recognized as key players in
humoral immunity and are essential for GC formation (11–13).
Blockade of CD40L signaling during an ongoing GC reaction
was shown to abrogate the response, emphasizing the need
for continuous CD40-CD40L interactions throughout the GC
lifespan (14). Clinical studies identified mutations in CD40L as
a common cause for human genetic immunodeficiency X-linked
hyper-IgM syndrome, where patients presented with impaired
GC development emphasizing the importance of T cell/B cell
collaboration in the pre-GC stages of adaptive immune responses
(11, 15).

CD28/CTLA-4
Experiments in the late 1990’s established that CD28 signaling
was required for CD4T cells to upregulate CXCR5 and migrate
into B cell follicles (16), explaining the defect in GC formation
in mice lacking CD28 (17) or its ligands (18). CXCR5 induction
permits responsiveness to CXCL13 expressed by stromal cells
in the follicle and, in association with downregulation of
CCR7 (19), guides T cell follicular migration. The G-protein-
coupled receptor S1PR2 appears to cooperate with CXCR5
to ensure localization and retention of Tfh at the GC site
(20). The amount of CD28 engagement directly influences Tfh
differentiation since T cells heterozygous for CD28 showed
reduced Tfh induction despite normal activation (Figure 1).
The CD28 pathway is regulated by CTLA-4 which binds to
the same ligands, CD80 and CD86, but with higher affinity
than CD28. Although widely credited with imparting a negative
signal, in our view the available evidence does not support
this idea and instead suggests that CTLA-4 regulates CD28
engagement by competing for and downregulating their shared
ligands (22, 23). The CTLA-4 pathway restricts the formation
of Tfh by limiting T cell CD28 engagement (21) and CTLA-
4 expression in the regulatory T cell compartment is essential
for this process (24, 25). Accordingly, deficiency or blockade
of CTLA-4 in mice leads to hyper-engagement of CD28,
overproduction of Tfh and spontaneous GC formation (21).
CD28 is also required for the development of the follicular
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FIGURE 1 | Strength of T cell CD28 engagement influences Tfh differentiation.

In mice that are deficient in CD28 signaling, T cells fail to form Tfh (16–18). T

cells expressing less CD28, as a result of gene heterozygosity, exhibit a

quantitative reduction in Tfh generation compared with wildtype T cells (21). In

mice lacking CTLA-4, regulation of CD80 and CD86 is impaired resulting in

excessive CD28 engagement. This is associated with spontaneous Tfh

induction, increased T cell IL-21 production and formation of germinal centers

(21).

regulatory T cells (Tfr) that negatively regulate the GC response
(26) (for recent reviews of Tfr please see Wing et al. (27),
Fazilleau and Aloulou (28) and Xie and Dent (29) in this
collection).

OX40
The ability of CD28 to promote Tfh development may reflect
its capacity to upregulate secondary costimulatory receptors
such as OX40 and ICOS. CD28 engagement triggers T cell
OX40 upregulation (16) and ligation of OX40 in turn promotes
CXCR5 expression (30). Mice expressing OX40L constitutively
on dendritic cells showed increased numbers of CD4T cells
in their B cell follicles (31) and conversely deficiency (32) or
blockade (33) of OX40 reduced Tfh numbers after viral challenge.
Importantly, B cell expression of OX40L has also been shown to
support Tfh development (34).

Despite the above, the involvement of OX40 in Tfh
differentiation remains controversial; indeed in one study
engagement of OX40 was shown to impair Tfh development
by promoting expression of Blimp-1 (35) which can inhibit
Bcl6 and extinguish the Tfh programme (36). Similarly, in the
context of Listeria monocytogenes infection, mice lacking OX40
showed intact Tfh differentiation, and treatment of wildtype
mice with agonistic anti-OX40 antibodies expanded effector
T cells at the expense of Tfh (37). Thus the involvement
of OX40 may be context dependent, with strain-specific and
site-specific differences being noted in one study (38). It
remains possible that OX40 stimulates the survival or expansion
of all differentiated T cells rather than instructing the Tfh
differentiation process per se.

ICOS
ICOS is known to be required for the GC response (39–42) and its
engagement promotes the differentiation (43) and maintenance

(44) of Tfh cells. The level of ICOS upregulation on T cells
undergoing activation in vivo is tightly coupled to the level of
CD28 engagement (21) consistent with the idea that CD28 may
promote GC formation via the ICOS pathway. ICOS is superior
to CD28 in its capacity to activate phosphoinositide 3-kinase
which is known to be required for Tfh cell differentiation and
GC formation (6, 45). It has been suggested that ICOS can
substitute for CD28 in later phases of the Tfh response (46)
although the timing may be critical since extinguishing CD28
at the time of OX40 induction (using OX40-Cre CD28-floxed
mice) showed the response was still CD28-dependent at this
stage (47, 48). B cells may be an important source of ICOSL
since mice lacking B cell-expression of this molecule exhibit
significantly reduced Tfh and GC B cell numbers in response to
peptide immunization (49, 50). Intriguingly this may reflect a
role for ICOSL on bystander (non-cognate) B cells which engages
ICOS on T cells approaching the T-B border, promoting their
motility and hastening their follicular entry and subsequent Tfh
maturation (51). ICOS signaling downregulates the transcription
factor Klf2 in both mouse and human T cells and this is critical
for ensuring follicular localization of Tfh by keeping CXCR5
high but CCR7, CD62L, PSGL-1, and S1PR1 low (44). Mirroring
the findings in murine models, humans with ICOS deficiency
show reduced blood Tfh cell frequencies and defects in GC and
memory B cell formation (52, 53).

SLAM Family Members
During a GC reaction, T and B cells are required to repeatedly
engage with each other to facilitate interactions between the
receptor/ligand pairs described above. At the T-B border, early
interactions between antigen-specific T and B cells are long-lived,
while within GC, most cognate Tfh/GC B cell interactions last
less than 5min, but are associated with extensive surface contacts
(54, 55). These interactions are stabilized by expression of signal
lymphocyte activation molecule (SLAM) family receptors Ly108
and CD84 and SLAM-associated protein (SAP) (56, 57). The
importance of these molecules is highlighted by SAP-deficient
mice, where Tfh cell differentiation is impaired leading to
profound defects in formation of GC, long-lived plasma cells
and memory B cells (58–61). Similar observations have been
made in X-linked lymphoproliferative disease patients with SAP-
deficiency (62).

Cytokines
IL-2 is a powerful inhibitor of Tfh differentiation (43, 63) by
virtue of its STAT5-dependent induction of Blimp-1 (43, 64).
Intriguingly, it has been shown that activated dendritic cells
in the outer T zone use CD25 expression to quench T cell
derived IL-2 thereby generating a microenvironment that favors
Tfh formation (65). Tfh differentiation is also influenced by
other cytokines, most notably IL-6 in mice (66) and IL-12 in
humans (67, 68). Intravital imaging studies have revealed that
cognate interactions with GC B cells induce Ca2+-dependent co-
expression of IL-21 and IL-4 in Tfh (69). These cytokines further
promote GC B cell responses, providing a positive feedback loop
between Tfh and GC B cells.
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T CELL/B CELL COLLABORATION IN
AUTOIMMUNITY

Widespread recognition of the importance of T cell/B cell
collaboration in driving immune-mediated pathology came from
a landmark paper in 2009 (70) linking overproduction of Tfh
with systemic autoimmunity. This work focused on sanroque
mice which have a mutation in the E3 ubiquitin ligase Roquin-
1 that regulates mRNA stability and is required for appropriate
repression of ICOS expression. Mice with the Roquin mutation
exhibited high ICOS expression, excessive Tfh formation and
lupus-like pathology, however this was abolished if the mice
were rendered SAP-deficient, consistent with a critical role for
T cell/B cell collaboration in driving this pathology. It was
subsequently shown that the Roquin mutation dramatically
increased progression to type 1 diabetes (T1D) in a TCR
transgenic mouse model (71). In a separate mouse model,
microarray analysis of T cells responding to pancreatic antigen
revealed a striking signature for Tfh differentiation, and cells
with a Tfh phenotype showed an enhanced capacity to induce
diabetes upon adoptive transfer (72). SAP dependent T cell/B
cell interactions have been shown to be essential in the K/BxN
model of arthritis (73), where a role for gut microbiota in
promoting disease via Tfh induction has been identified (74).
A separate study revealed that collagen-induced arthritis could
be ameliorated by T cell specific CXCR5 deficiency consistent
with the potential involvement of Tfh (75). Findings from
mouse models prompted investigation of cells with a Tfh-like
phenotype in a wide variety of disease settings in humans,
leading to the appreciation that these cells are overrepresented
in multiple autoimmune diseases including systemic lupus
erythematosus (SLE), Sjögren’s syndrome, T1D, myasthenia
gravis, rheumatoid arthritis (RA) and multiple sclerosis (MS)
(76–78).

The exact provenance of blood-borne cells with a Tfh
phenotype has been the subject of much debate. Elegant
intravital imaging revealed that while Tfh readily move between
GC they only rarely enter the circulation (79). It is widely
recognized that Tfh have a circulating memory counterpart (80–
83), however expression of many Tfh markers is reduced in the
circulation (84, 85) with CXCR5 being least affected (4). Blood-
borne CD4+CXCR5+ cells have been shown to be superior at
supporting B cell antibody production and class-switching in
vitro compared to their CD4+CXCR5- counterparts (86–90).
Importantly, CXCR5+ cells can be found in the blood of SAP-
deficient mice and humans, consistent with the idea that they
arise prior to T cell differentiation into mature Tfh within GC
(89). Despite their controversial origin and likely heterogeneity,
it has become clear that upon antigen exposure circulating Tfh-
phenotype cells can migrate to secondary lymphoid tissue and
participate in GC reactions suggesting they represent a bona fide
functional memory subset (91).

There are many possible explanations for the observed
elevation in Tfh-like cells in autoimmune settings. In some
cases, this may be secondary to generalized immune activation
associated with disease. However, Tfh changes can be detected
prior to the onset of overt disease in children at risk of T1D
(92), and insulin-specific T cells are enriched for a CXCR5+

Tfh precursor population in children who have only recently
developed islet autoantibodies (93). The blood Tfh signature
is frequently linked to disease activity (76, 78), and successful
treatment of SLE has been shown to decrease Tfh while numbers
of Th1 and Th2 cells remain unaltered (94). Persistent antigen has
been suggested to favor Tfh differentiation and maintenance (4,
95), so continuous availability of tissue antigen could potentially
support this response in chronic autoimmune conditions.

The strongest genetic association with autoimmunity maps to
the HLA region (96), consistent with its role in presenting the
TCR ligands that drive pathogenic and regulatory (97) T cell
responses. Interestingly, other genes conferring susceptibility to
autoimmunity in humans include many candidates associated
with T cell/B cell collaboration. Accordingly, in genome-wide
association studies (GWAS) from ten selected autoimmune
conditions (T1D, RA, juvenile idiopathic arthritis, autoimmune
thyroid diseases, vitiligo, alopecia areata, SLE, MS, primary
biliary cirrhosis, celiac disease), polymorphisms in several genes
integral for T cell/B cell co-operation bear significant associations
with disease susceptibility (Figure 2). These genes are highlighted
on the basis of their relevance to T cell/B cell collaboration,
however it should be noted that many are also likely to influence
T cell interactions with other cell types, such as dendritic cells. A
selection of these is discussed below.

Costimulatory Molecules
The CD28, CTLA4, and ICOS genes are located within a 300 kb
region on human chromosome 2 and likely arose from sequential
gene duplication (99). Variation at this locus is associated with
autoimmunity (100) and blockade of CD28 signaling with CTLA-
4-Ig fusion protein is a recognized treatment strategy in a
number of autoimmune disease settings (101). As mentioned
above, autoimmunity in sanroque mice is associated with de-
repression of ICOS mRNA, and dysregulated ICOS expression
is also believed to underlie the increase in Tfh and autoimmune
phenotype seen in the Sle1 lupus-prone mouse model (102).
The genes encoding the ligands for these receptors, CD80,
CD86, and ICOSLG, are also associated with autoimmunity
(Figure 2), consistent with the need to tightly control the core
pathways that control the induction of T cell help. CD40, which
provides an essential pathway for GC B cells to perceive T cell
help, is implicated in multiple autoimmune diseases (103) as is
DBC1 which regulates its downstream signaling (104). OX40L
contributes to pathology in a mouse model of SLE (34) and
polymorphisms in OX40L (TNFSF4) are associated with several
diseases where humoral immunity is known to be perturbed
including SLE and RA, leading to the investigation of this
pathway as a therapeutic target (105).

Cytokines
Cytokines are important regulators of the GC response, and
many of the key cytokines implicated in shaping Tfh and
GC B cell differentiation are associated with autoimmune
susceptibility. IL2RA, which encodes the high affinity subunit for
the IL-2-receptor shows one of the strongest associations with
T1D outside of the HLA region (106), and as discussed above,
IL-2 signaling potently inhibits Tfh differentiation. The IL2 and
IL21 genes located next to each other on human chromosome 4
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FIGURE 2 | Genes involved in regulating T cell/B cell collaboration are associated with autoimmunity. Manhattan plot of GWAS analysis for 10 selected autoimmune

diseases: alopecia areata, autoimmune thyroid diseases (Hashimoto’s thyroiditis and Graves’ disease), celiac disease, juvenile idiopathic arthritis, MS, primary biliary

cirrhosis, RA, SLE, T1D, and vitiligo. Statistical strength of association (-Log10P) is plotted against genomic position. Single nucleotide polymorphisms (SNPs) in

genes with known function in regulating T cell/B cell collaboration are marked with colored circles; other SNPs are marked with gray dots. More than 60% of the

highlighted genes are implicated in more than one of the 10 selected autoimmune diseases. The NHGRI-EBI Catalog of published genome-wide association studies

(98) was used to generate this figure (catalog version: gwas_catalog_v1.0.2-associations_e92_r2018-05-12; access date 17.05.2018). Only SNP traits with a p-value

of <1.0 × 10−5 in the overall (initial GWAS + replication) population are included in this catalog. For clarity, the y-axis scale used in this figure excludes HLA-DRB1

SNP associations with -Log10P values of 299, 250 (x2), 185.4 in RA and 224.4, 206, 183 in MS, and an insulin SNP association with -Log10P of 185 in T1D. This

figure only serves illustrative purposes and no direct comparisons should be made between associations taken from different studies.

(107), and IL4RA and IL21RA on chromosome 16 (108) also bear
a strong association with autoimmunity, potentially reflecting the
key roles of IL-21 and IL-4 in orchestrating collaboration between
Tfh and B cells within GC (109, 110). Also highlighted by GWAS
are IL6, IL6R, and BANK1 which controls IL-6 secretion (111).
While IL-12 is considered to be the major cytokine driving Tfh
formation in humans (67, 68), this differentiation fate can also be
promoted by IL-6. The demonstration that plasmablast-derived
IL-6 can promote Tfh differentiation, in a manner that can be
inhibited by treatment with the anti-IL-6R antibody tocilizumab
(112), highlights a further positive feedback loop between Tfh and
B cells.

ADDITIONAL GENES LINKED TO T CELL/B
CELL COLLABORATION

Other autoimmune-susceptibility genes featured in Figure 2

include the protein tyrosine phosphatase PTPN22, which
controls the number and activity of Tfh cells (113), and
PTPN2, deficiency of which leads to increased Tfh cells, GC
and autoimmune pathology (114). The chemokine receptors
CXCR5 and CXCR4, which play integral roles in regulating
cell distribution across GC and facilitating Tfh and GC
B cell interactions, are also highlighted (19, 115). The

GWAS data also highlight Gpr183, the gene encoding the
7α,25-dihydroxycholesterol receptor EBI-2, which must be
downregulated for appropriate B cell positioning in GC (116,
117). Indeed forced expression of EBI-2 was shown to diminish
the GC response and instead direct B cells to extrafollicular sites
(117) while transduction of T cells with an EBI-2 expression
vector impaired their capacity to localize to GC (118). Another
gene product associated with autoimmunity in this dataset is
SLAMF6, which co-operates with SAP to promote T cell/B cell
adhesion and is essential for formation of functional GC (119).
Importantly, in addition to surface molecules and soluble factors,
the GWAS data also draw attention to a number of transcription
factors associated with the GC response including BATF, IRF4,
Maf, Bob1 (Pou2af1), Rel and Blimp-1 (Prdm1) (36, 120–125),
further highlighting the link between T and B cell interactions
and autoimmune susceptibility.

T CELL/B CELL COLLABORATION
OUTSIDE SECONDARY LYMPHOID
TISSUES

Development of tertiary lymphoid structures is frequently
seen in chronically inflamed tissues (126), and T cell/B cell
collaboration at ectopic sites has been suggested to fuel ongoing
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autoimmunity (127). Recent findings suggest T cells providing
B cell help outside secondary lymphoid organs may bear a
distinct phenotype; accordingly Rao et al. described a PD-
1hiCXCR5−CD4+ “peripheral helper” T cell population in the
synovium of patients with RA which lacked Bcl6 but expressed
IL-21, CXCL13, ICOS, and Maf (128). These cells actively
promoted memory B cell differentiation into plasma cells in vitro
and were located adjacent to B cells both inside and outside
synovial lymphoid aggregates.

Similarly, in a murine model of airway inflammation, T cells
interacting with B cells in the lung exhibited a CXCR5−Bcl6−

phenotype despite possessing high B cell helper potential,
likely via their expression of CD40L, IL-21, and IL-4 (129).
Remarkably, around 40% of lung-infiltrating B cells in this
model showed a GC phenotype implying effective T cell/B
cell collaboration, even though the cells were present in loose
aggregates rather than well-organized structures.

The relationship of peripheral helper T cells to Tfh
cells is currently unclear. However, one study documenting
CXCR5−BCL6−CXCL13+ T cells in rheumatoid synovial fluid
postulated that these may derive from Tfh cells undergoing
progressive differentiation, and loss of CXCR5 and Bcl6 in the
synovium (130). The provenance of peripheral helper T cells
remains an important question for future clarification.

INTERRUPTING T CELL/B CELL
COLLABORATION BY B CELL DEPLETION

Since autoimmunity may arise through over-exuberant T and B
cell interactions leading to autoantibody production, depletion
of the B cell population has been explored as a treatment
strategy. Surprisingly, this has only a moderate effect on serum
autoantibody levels, which does not correlate with efficacy,
implying an alternative mechanism underlies the beneficial
impact (131, 132). Given the interdependence of Tfh and B
cell responses highlighted above, one possibility is that B cell
depletion affects Tfh cells. Indeed, it has been shown in mice
that deletion of GC B cells substantially impairs Tfh homeostasis
(4, 133).

In human studies, Xu et al. reported a significant reduction
in circulating Tfh frequencies and serum IL-21 levels following B
cell depletion with rituximab in patients with T1D, emphasizing
Tfh and B cell interdependence in this disease setting (134).
Similarly, the elevation in circulating Tfh seen in individuals
with Sjögren’s syndrome was shown to be normalized by B cell
depletion (135).

However, a study by Wallin et al. found no reduction in Tfh
numbers in lymph nodes and blood from patients treated with

rituximab prior to kidney transplantation (136). This finding
may reflect “setting-dependent” roles for B cells in Tfh cell
maintenance in humans. Of note, this study identified Tfh cells
using CD57 expression which was initially reported to mark GC-
resident functionally mature Tfh (137, 138), but was subsequently
shown to be expressed by less than a third of GC-resident Tfh
cells (139). Therefore, investigating the dynamics of CD57- Tfh
cells may be of interest here.

More recently, B cell depletion with ocrelizumab, a humanized
anti-CD20 antibody, has been shown to slow disease progression
in patients with some forms of MS when compared to placebo or
interferon beta-1a treatment (140, 141). Whether B cell depletion
impacts Tfh homeostasis in this disease setting is currently
unclear, however treatment has been associated with a decrease in
cerebrospinal fluid (CSF) T cells as well as B cells and a reduction
in CSF levels of the chemokine CXCL13 (142) which can be
produced by Tfh cells. Overall, effects on Tfh homeostasis may
offer an additional explanation for the efficacy of B cell depletion
in certain settings.

CONCLUSION

Cooperation between T cells and B cells has been fine-tuned by
evolutionary pressures to optimize rapid immune defense. These
interactions ensure successful long-term immunity, exemplified
by the development of effective T cell and B cell memory.
Given that chronic autoimmune diseases may be sustained by
the perpetuation, rather than initiation, of self-directed immune
responses, the bi-directional interaction between T and B cells
may be key to this and may therefore constitute an important
therapeutic target.
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