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Influenza viruses (IVs) are a continual threat to global health. The high mutation rate

of the IV genome makes this virus incredibly successful, genetic drift allows for annual

epidemics which result in thousands of deaths and millions of hospitalizations. Moreover,

the emergence of new strains through genetic shift (e.g., swine-origin influenza A) can

cause devastating global outbreaks of infection. Neuraminidase inhibitors (NAIs) are

currently used to treat IV infection and act directly on viral proteins to halt IV spread.

However, effectivity is limited late in infection and drug resistance can develop. New

therapies which target highly conserved features of IV such as antibodies to the stem

region of hemagglutinin or the IV RNA polymerase inhibitor: Favipiravir are currently in

clinical trials. Compared to NAIs, these treatments have a higher tolerance for resistance

and a longer therapeutic window and therefore, may prove more effective. However,

clinical and experimental evidence has demonstrated that it is not just viral spread, but

also the host inflammatory response and damage to the lung epithelium which dictate

the outcome of IV infection. Therapeutic regimens for IV infection should therefore also

regulate the host inflammatory response and protect epithelial cells from unnecessary

cell death. Anti-inflammatory drugs such as etanercept, statins or cyclooxygenase

enzyme 2 inhibitors may temper IV induced inflammation, demonstrating the possibility

of repurposing these drugs as single or adjunct therapies for IV infection. IV binds to sialic

acid receptors on the host cell surface to initiate infection and productive IV replication

is primarily restricted to airway epithelial cells. Accordingly, targeting therapies to the

epithelium will directly inhibit IV spread while minimizing off target consequences, such

as over activation of immune cells. The neuraminidase mimic Fludase cleaves sialic

acid receptors from the epithelium to inhibit IV entry to cells. While type III interferons

activate an antiviral gene program in epithelial cells with minimal perturbation to the IV

specific immune response. This review discusses the above-mentioned candidate anti-IV

therapeutics and others at the preclinical and clinical trial stage.

Keywords: influenza, therapeutics, treatment, antiviral, immunomodulation

INTRODUCTION

Influenza viruses (IVs) are a continual and re-emerging threat to human health. Annual epidemics
infect approximately 1 billion individuals, leading to three to five million cases of severe illness and
up to half a million fatalities worldwide (1, 2). Influenza A Virus (IAV), Influenza B Virus (IBV)
and Influenza C Virus (ICV) are all members of the Orthomyxoviridae family. IV genomes are
segmented, which allows for reassortment within, but not between, family groups. Although IBV
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and ICV do cause disease in humans (IBV being responsible for
approximately 25% of seasonal influenza infections) IAV strains
are responsible for the majority of human infections and are
most likely to cause severe disease. IAV are further classified into
subtypes based on the antigenic properties of two viral surface
glycoproteins, hemagglutinin (HA) and neuraminidase (NA), to
date 18 HA (H1–H18) and 10 NA (N1–N10) antigenic subtypes
been identified (3, 4). Unlike IBV and ICV, IAV infects a broad
range of species including humans, pigs, horses, wild mammals,
and birds (5). Due to different preferences for sialic acid moieties
direct zoonosis of IAV between birds and humans is rare,
however when it does occur, the mortality rate is staggeringly
high, approximately 60% for H5N1 and 30% for H7N9 (6). In
worrying contrast, transmission of IAV strains from swine to
humans is common (7).

In healthy humans, IV infection induces a robust immune
memory response, in spite of this the average adult will
experience two IV infections per decade throughout their
lifetime (8). IVs are able to evade IV-specific host immunity
through two mechanisms: antigenic drift and shift. Antigenic
drift occurs as IV genomes do not have RNA proofreading
enzymes and consequently, point mutations accumulate in the
genome through successive replication. This leads to alterations
in the appearance of viral antigens and eventual emergence
of new IV strains which are unrecognizable to pre-existing
host immunity (9). Significantly more dramatic and, within
the Orthomyxoviridae family, believed to be specific to IAV
is antigenic shift. Infection of a single host cell with two or
more strains of IAV results in the reassortment of genomic
segments. IAV genome segments are packaged into viral particles
by the host cell without respect to the original strains, leading
to progeny virions which possess new HA and/or HA and NA
proteins, such as those of avian or swine origin, but may retain
the ability to effectively infect humans. Antigenic shift gives
IAV pandemic potential, indeed it is thought that the majority
of pandemics of the Twenty-First century have been caused by
reassortment events that resulted in avian or swine IAV being able
to stably infect humans (10).

The severity of IV induced disease is a function of the
interplay between viral virulence and the host immune response.
In a mild infection the inflammatory response is controlled and
cleared rapidly. However, in highly pathogenic IV infections
the host immune response can become excessive. Termed the
cytokine storm, severe IV infection in humans is characterized
by aberrant cytokine and chemokine responses that associate
with infiltration of inflammatory cells, particularly monocytes
and neutrophils. This inflammation coincides with destruction of
the epithelial layer and consequently, respiratory dysfunction or
acute respiratory distress syndrome (ARDS) (11). Ex vivo analysis
of clinical samples, experimental infection models and clinical
trials all indicate that the cytokine storm positively correlates with
tissue injury and severe IV induced disease (12–17).

To add to the multifarious nature of IV infection, it
can be complicated by secondary bacterial infection. Bacteria
which normally colonize the upper respiratory tract such
as Streptococcus pneumoniae or Staphylococcus aureus can
cause pneumonia and septicaemia in IV infection (18). It is

thought that opportunistic bacteria take advantage of changes
in the pulmonary environment wrought by IV infection. Many
mechanisms have been proposed to explain this phenomenon,
for example IV infection induces a robust type I interferon
(IFNαβ) response, which blocks the recruitment of neutrophils,
a cell type particularly important for clearance of bacterial
infection (19). Furthermore, monocytes and monocyte-derived
cells recruited to the lung during IV infection induce the
apoptosis of airway epithelial cells via TNF-related apoptosis-
inducing ligand (TRAIL), this facilitates bacterial colonization
and systemic dissemination by compromising epithelial layer
ntegrity (20).

Undeniably, there is a real and present need for effective
broad spectrum anti-IV therapies. Given the high mutagenicity
of the IV genome vaccine development is fraught with difficulty,
current IV vaccines are strain specific and therefore a new
immunization is required for each new season (21). Moreover,
the rapid emergence of the 2009 H1N1 pandemic strain
demonstrated how under prepared we are for a serious IAV
pandemic. This review reports current treatments for IV and
discusses new therapies at clinical or pre-clinical stage. As IAV
has pandemic potential and is most likely to cause severe disease
in humans many of the treatments discussed are primarily
directed at this virus, however they may be effective against other
Orthomyxoviridae family members. For clarity, therapies are
categorized based on point of action in IV infection, specifically,
(1) IV: proteins and genomes, (2) Host immune response:
cytokines/chemokines and other inflammatory modulators, and
(3) Target cells for IV replication: respiratory epithelium.

DIRECT TARGETING OF IV

Current Treatment
IV surface proteins HA and NA are responsible for virion
attachment to and detachment from sialic acid moieties on the
host cell surface. HA attaches to cell surface sialic acid receptors
to initiate viral entry and promote fusion of viral and cellular
membranes, while NA acts as a sialidase, cleaving the α-ketosidic
bond linking a terminal neuraminic acid residue to the adjacent
oligosaccharide moiety. This enzymatic action of NA releases
IV particles from infected cells and thereby allows the spread
of IV to naive cells (22). NA sialidase activity also facilitates
the movement of IV through the sialic acid-rich mucous of the
human respiratory tract (23). NA is essential for productive IV
infection and the catalytic sites of NA are conserved across IAV
and IBV strains, making this glycoprotein an attractive target for
antiviral therapy (24). Accordingly, in the 1990s Neuraminidase
inhibitors (NAIs) were developed. NAIs are sialic acid analogs
which competitively bind to the active site on NA molecules to
inhibit the release of IV progeny from the cell surface (25).

NAIs are the only antivirals currently recommended to treat
IV infection, oseltamivir and zanamivir are used worldwide,
laninamivir is approved in Japan and peramivir is approved
in China, Japan, South Korea, and the United States (26).
Oseltamivir (Table 1) is most commonly used and has been
shown in vitro to have activity against human and avian IAV
subtypes and IBV strains (27). NAIs have been employed
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TABLE 1 | Summary of key treatments discussed.

Therapy Stage Activity Specificity Effect on

IV replication

Effect on host

inflammatory

response

Effect on

epithelial

Cells

Viability

IV MHAA4549A Phase II Antibody to HA stem region, induces

cellular cytotoxicity of infected cells

IAV only Inhibitory Inhibitory Not

reported

Good

MEDI8852 Phase II Antibody to HA stem region, induces

cellular cytotoxicity of infected cells

IAV only Inhibitory Not reported Not

reported

Good

VIS-410 Phase II Antibody to HA stem region, induces

cellular cytotoxicity of infected cells

Select IAV

strains

Inhibitory Not reported Not

reported

Good

JNJ63623872 Phase II Inhibits IV replication by binding PB2

and preventing 7-methyl GTP docking

IAV only Inhibitory Not reported Not

reported

Moderate

Favipiravir Approved/phase II Inhibits generation of viable IV

particles by driving mutations in IV

genome

None Inhibitory Not reported Not

reported

Good

JJ3297 Preclinical Inhibits NS1 activity None Inhibitory Stimulatory Not

reported

Unknown

Immune

response

Etanercept Clinically approved

for other

TNF receptor decoy, blocks TNFα

signaling

None Inhibitory Inhibitory Not

reported

Unknown

IFNαβ Clinically approved

for other

Induces expression of antiviral and

inflammatory genes in epithelial cells

and immune cells

None Inhibitory Stimulatory Increased

cell death

Low

AAL-R Preclinical Inhibits inflammatory cytokine and

chemokine secretion and immune cell

recruitment by agonism of S1PRs: 1,

3, 4, and 5

None No effect Inhibitory Decreased

cell death

Low

CYM-5442 Preclinical Inhibits inflammatory cytokine and

chemokine secretion and immune cell

recruitment by agonism of S1PR1

None No effect Inhibitory Decreased

cell death

Moderate

RP-002 Preclinical Inhibits inflammatory cytokine and

chemokine secretion and immune cell

recruitment by agonism of S1PR1

None No effect Inhibitory Decreased

cell death

Moderate

Celecoxib Clinically approved

for other (Phase III

for IV)

COX-2 inhibitor, may blunt

immunopathology through induction

of PGE2

None No effect Inhibitory/no

effect

Not

reported

Moderate

Statins Clinically approved

for other

Competitive inhibitors for HMG-CoA

reductase, blunts inflammation and

viral replication in some settings

None Inhibitory Inhibitory Not

reported

Moderate

Pioglitazone Clinically approved

for other

PPARγ agonist, decreases

recruitment of tipDCs

None No effect Inhibitory Not

reported

Moderate

Epithelial

cells

Fludase Phase II Removes IV entry point into epithelial

cells by cleaving sialic acid receptors

None Inhibitory Not reported Not

reported

Good

IFNλ Phase II (other) Induces expression of antiviral and

inflammatory genes primarily in

epithelial cells

None Inhibitory No effect Decreased

cell death

Good

Anti-TRAIL Preclinical mAb to TRAIL, blocks interaction

between TRAIL and its cognate

receptors to inhibit extrinsic apoptosis

None No effect No effect Decreased

cell death

Unknown

A-1155463 Preclinical Bcl-2 family inhibitor, drives apoptosis

of IV infected cells

None Inhibitory Not reported Not

reported

Unknown

Potential therapeutics for human IV infection are summarized. Treatments are separated based on which aspect of IV infection is targeted. Viability of each therapeutic is rated based

on data discussed in this review.

successfully for over decade, however between 2007 and 2009
resistance to oseltamivir in seasonal IAV strains surged from
less than 1% to over 90% (28–31). IV strains resistant to NAIs
typically contain mutations in the NA which reduce the inhibitor
binding ability by altering the shape of the NA catalytic site.
Although several resistance conferring mutations have been
reported, the most common for IAV is H274Y. In order for
oseltamivir to bind correctly, NA must undergo rearrangements
to form a binding pocket. Key to these rearrangements, is the

amino acid E276 rotating and binding to R224 (32, 33). In
vitro modeling and X ray crystallography revealed that H274Y
inhibits this rotation of the E276 residue thereby preventing
pocket formation (32, 34). Such a dramatic uptake of the H274Y
mutation at the population level is unlikely to be driven by
individual patient use, instead H274Y-mutant IAV strains may
have acquired advantageous epidemiologic fitness, allowing for
rapid global transmission (35, 36). Fortunately, the 2009 H1N1
IAV pandemic strain did not carry this mutation when it
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emerged, and as this is the current dominant seasonal strain,
the frequency of NAI resistance in circulating IAV strains is
now low. However, localized clusters of oseltamivir-resistant IAV
have been detected (37), and mutations which confer decreased
sensitivity to oseltamivir in IBV strains have also been reported
(38). The rapid emergence of oseltamivir-resistance observed
between 2008 and 2009 demonstrates that NAI-resistance can
develop at no cost to viral fitness and these mutations can easily
spread throughout the population.

Aside from concerns regarding resistance, the effectiveness
of NAIs is limited when delivered over 48 h after symptom
onset. Indeed, multiple systematic reviews have concluded that
oseltamivir does not reduce IV related hospitalizations, and
that there is little evidence of reduction in complications
of IV infection (39–42). Although, another meta-analysis did
demonstrate that oseltamivir was effective for prevention of
influenza at the individual and household levels (43). Use
of oseltamivir and other NAIs has demonstrated the need
for development of anti-IV drugs that improve treatment
effectiveness, particularly when delivered late in the progression
of disease, and have a low propensity for driving the emergence
of viral resistance.

Potential IV Targeted Therapies
The IV surface protein HA binds to host cell receptors to initiate
infection. This glycoprotein consists of a globular head and a
stem region that are folded within six disulfide bonds, plus several
N-glycans that produce a homotrimeric complex structure (44).
The majority of IV neutralizing antibodies elicited by vaccination
or infection bind to the globular head of HA and recognize
homologous strains within a given subtype (45). Antibodies
to the HA head neutralize virus infectivity by blocking sialic
acid receptor binding either directly, by interacting with the
receptor binding site at the tip of the molecule, or indirectly,
by projecting over the binding site and rendering it inaccessible
(46–48). However, N-linked glycosylation sites on the HA
globular head are highly variable across different IV subtypes
and some IAV strains can further avoid host antibody responses
by acquiring additional N-glycan modifications in the HA head
region (49, 50). In contrast, N-linked glycosylation sites in
the HA stem region are relatively well conserved among IAV
strains. Antibodies to IAV HA stem motifs occur naturally and
have activity against a broad range of IAV subtypes, however
they are immune-subdominant and are only induced in very
low titres during natural infection. Mechanistically, anti-stem
antibodies control IAV by inducing antibody-dependent cellular
cytotoxicity of infected cells (51–53). Given their potential,
several monoclonal antibodies targeting the highly conserved
stem region of the HA molecule are being evaluated in
clinical trials. In particular, MHAA4549A and MEDI8852 have
demonstrated high-affinity binding to 16 IAV HA subtypes
and VIS410 has confirmed binding to 7 (54–56) (Table 1).
MHAA4549A, MEDI8852, and VIS410 were all shown to be
effective in protecting IV infected hosts by inhibiting pulmonary
viral load in preclinical animal models (55–59). VIS410 was
found to be safe and well tolerated in a phase 1 study and is now
under phase 2 investigation (60). MHAA4549A and MEDI8852

were both reported to control viral shedding in humans in
phase 2a clinical trials (58, 59). Furthermore, MHAA4549A
was reported to lower patient influenza symptom scores and
significantly, levels of inflammatory cytokines in serum and
nasopharyngeal samples compared to placebo controls (58).

In a clinical trial setting MHAA4549A and MEDI8852 both
performed comparably to oseltamivir, yet neither antibody
improved oseltamivir effectiveness when used in combination
(clinical trials: NCT02293863 and NCT02603952), indicating
that these antibodies do not offer better protection than NAIs.
However, compared to oseltamivir, which must be given twice
daily (61), HA stem antibodies have superior pharmacokinetics,
the half-life of MHAA4549A is approximately 3 weeks in
humans (58) and MHAA4549A, MEDI8852 and VIS410 all have
demonstrated protection against IV induced disease with only
one to two doses (55–59). Furthermore, both MHAA4549A and
MEDI8852 have been shown to confer protection beyond 48 h
post infection, a point at which oseltamivir has lost effectivity in
small animal models (55, 56, 58, 59). Excellent pharmacokinetics
and a longer therapeutic window make HA stem antibodies
strong candidates for treatment of IV infection.

The IV RNA-dependent RNA-polymerase (RdRp), is
responsible for transcription and replication of IV’s genome and
is highly conserved across different strains. It is a heterotrimeric
protein containing three virally encoded subunits: PB1, PB2, and
PA. PB1 has polymerase activity, PB2 is involved in cap-binding
of host cell pre-mRNAs and PA cleaves capped host pre-mRNAs
and initiates transcription (62). Cap-snatching by PB2 essential
for RNA transcription, PB2 first binds to the 5′-methyl cap of
host pre-mRNA which is then cleaved by PA’s endonuclease
site to produce a capped primer for IV transcription initiation
(62). JNJ63623872 (formerly known as VX-787) (Table 1) is a
compound that binds to key residues in the PB2 cap binding
domain preventing the docking of the natural ligand: 7-methyl
GTP. Preclinical in vivo and in vitro studies have demonstrated
that JNJ63623872 has varying degrees of activity against a range
of IAV strains, however due to the differences in IAV and
IBV PB2 protein JNJ63623872 is ineffective against IBV (63).
When directly compared in a mouse model of IAV infection
JNJ63623872 was more effective than oseltamivir in controlling
IV induced disease severity (64). A placebo-controlled phase IIa
study showed JNJ63623872 to be well tolerated and resulted in
a 94% reduction in viral shedding and quicker resolution of flu-
like symptoms compared to controls (65). However, the dosing
regime of JNJ63623872 is similar to oseltamivir and variant
strains with reduced susceptibility to JNJ63623872 have been
isolated from in vitro culture (66), indicating that this therapy
in its current form may not supersede NAIs. JNJ63623872 is
now in phase II trials alone (NCT02342249) and in combination
with oseltamivir (NCT02532283). Interestingly, a phase I trial
has been initiated to evaluate the safety and pharmacokinetic
interaction of JNJ63623872 with AL-974, a PA inhibitor that is in
early-stage development (NCT02888327).

Favipiravir (also known as T705) (Table 1) is a ribonucleotide
analog (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) that
inhibits viral RdRps. However, the mechanism by which
this inhibition occurs is not understood, indeed, even the
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viral proteins targeted by Favipiravir are not yet defined. In
vitro studies have revealed that serial passage with increasing
concentrations of Favipiravir drives guanosine to adenine
nucleotide mutations in IV, essentially resulting in the
production of non-viable IV particles (67). Several studies
in mice have demonstrated Favipiravir administration up to 72 h
post infection with seasonal IAV strains such as H1N1 and avian
strains: H5N1 and H7N9 result in a dose-dependent reduction
lung viral titres and host mortality (68–71). Favipiravir has been
shown to be to have potent inhibitory activity against several
RNA viruses in vitro and appears especially effective for IVs
(72). This acute susceptibility of IV may be due to IV’s lack of
RNA proofreading enzymes. Furthermore, Favipiravir appears to
have an exceptionally high barrier for drug resistance, currently
only one mutation (V43I in PB1; obtained in virus-infected cell
cultures under selection) was found to confer a slight increase in
resistance to Favipiravir (73). Favipiravir is highly promising as a
broad acting anti-IV therapy and as such, has been approved for
select use in Japan and has completed phase III trials in the USA
and Europe.

Along with proteins for replication, assembly and infection,
IV genomes also code for a protein which can inhibit the
host immune response: non-structural protein (NS1). NS1 is
a highly conserved multifunctional protein which inhibits host
antiviral responses, particularly, induction of types I and III IFNs
(IFNαβ and IFNλ). NS1 antagonism of host immunity varies
between IV strains; NS1 can prevent IV-mediated activation of
key inflammatory transcription factors such as IFN Regulatory
Factor 3 (IRF-3) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) (74–76). NS1 limits host recognition
of IV through the pattern recognition receptor (PRR): retinoic
acid inducible gene-I (RIG-I) by sequestering dsRNA (which is a
RIG-I agonist) and inhibiting RIG-I ubiquitination and therefore
activation (77–83). NS1 is key to viral fitness, strains deficient for
NS1 inducemarkedly higher secretion of antiviral IFNs from cells
in vitro and are non-pathogenic in mouse models of IV infection
(84–87). Thus, the NS1 protein is a suitable target for anti-IV
therapeutics. JJ3297 (Table 1) is a second-generation chemical
inhibitor of NS1 function that has been shown in an in vitro
assay to restore levels of IFNαβ-mRNA to those seen when
cells were infected with a NS1 deleted mutant (88). While the
exact mechanism of action is not understood, JJ3297 mediated
inhibition of NS1 absolutely requires the function of cellular
RNase L, indicating that an intact interferon system is essential
for function of the compound (88). Further development of
JJ3297 has resulted in the generation of another compound: A22
and NS1 inhibitors are now being investigated in in vivo models
of infection (89). Additionally, SP600125, a C-Jun-N-terminal
kinase inhibitor reduces the replication of IV in vitro and in vivo
by indirect inhibition of NS1-mediated functions in the early
stages of infection (90) and small molecules such as polyphenol
and quinoxaline derivatives have also been proposed to inhibit
NS1 (91). More study is required to determine if NS1 inhibitors
are suitable for clinical use. However, given the direct correlation
between host inflammatory response and IV-induced disease
severity, use of NS1 inhibitors, particularly late in infection,
should be cautiously evaluated.

STEPPING INTO THE STORM

Limiting IV replication curbs disease severity not only by
decreasing number of virions able to propagate the infection,
but also by limiting immune stimulation. All cell types will
secrete cytokines and chemokines to varying degrees upon
recognition of IV pathogen associated molecular patterns.
Cytokines and chemokines drive the recruitment and activation
of both innate and adaptive immune cells which, while vital
for resolution of infection, can also exacerbate disease through
tissue damage. Therefore, at later time points in infection
when viral load is already limited, it is more important to
control the inflammatory response. Use of interventions which
target the host response is an excellent strategy to combat
severe IV infection. Host directed therapeutics are unlikely to
drive the emergence of resistant strains and their effectivity
is not strain specific. However, which immune drives are the
most appropriate to target remains an open question. Severe
IV infection induces many cytokines; IFNαβ, TNFα, IFNγ,
C-X-C motif chemokine (CXCL) 10 (CXCL10), CXCL9, C-C
motif ligand (CCL) 2 (CCL2), CCL4, CCL5 and interleukin
(IL)−6 (IL-6), IL-2, IL-8, and IL-10 have all be observed to
be upregulated during severe IV infection in humans (14,
15, 17, 92, 93). Yet studies in animal models demonstrate
that there is yet to be a setting where complete absence of
a specific cytokine or its cognate receptor entirely ablates IV
induced cytokine storm. As TNFα and IFNαβ correlate well with
disease severity in both clinical and experimental IV infection
and are potent immunomodulators, known to be upstream
of proinflammatory cytokine and chemokine secretion from
many cell types, multiple studies have proposed treatment with
these cytokines to promote viral clearance, or blockade of these
cytokines to minimize host mediated tissue damage (12, 15, 94–
101).

TNFα drives the activation of multiple intracellular signaling
pathways through the activation of NF-κB (102). In response
to IV infection TNFα promotes the secretion of the antiviral
cytokine families: type I, II, and III IFNs through upregulating
RIG-I and toll-like receptor 3, Myeloid differentiation primary
response 88 (MyD88), TIR-domain-containing adapter-inducing
interferon-β (TRIF), and IRF7 genes. TNFα drives IV clearance
via induction of apoptosis, stimulation of reactive oxygen species
and activation of Nicotinamide Adenine Dinucleotide Phosphate
Hydrogen (NADPH) oxidases in neutrophils and macrophages,
such as NADPH oxidase 2 (NOX2), resulting in the generation
of superoxide (103). Yet, TNFα is dispensable for control
and clearance of IV, TNF deficient mice exhibited comparable
mortality to controls upon H5N1 infection (104). Anti-TNF
therapy in a murine H1N1 infection model reduced pulmonary
recruitment of inflammatory cells, cytokine production by T cells
and the severity of IV induced disease without preventing virus
clearance (96). Similarly, treatment of mice lethally infected with
H1N1 IAV with etanercept (Table 1), a soluble TNF receptor
decoy, significantly reduced inflammatory cell infiltration,
production of inflammatory cytokines and downregulated NFκB
signaling, yet enhanced host control of virus replication, resulting
in a 30% increase in host survival (105).
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Interestingly, etanercept is used to treat a range of
inflammatory conditions such as Rheumatoid Arthritis (RA).
While patients with RA do exhibit an increased risk of IAV
infection, treatment with etanercept does not contribute to this.
In a retrospective cohort study Blumentals et al. found that
etanercept or use of other biologics did not significantly affect
the rate of influenza infection or its complications in RA patients
(106). Yet whether or not etanercept lowered IV induced disease
burden in treated patients compared to controls could not be
assessed, as this data was not consistently recorded. Conversely,
there is also evidence that TNFα is required for controlling the
extent of IV induced immunopathology and tissue injury. In a
mouse model of H1N1 infection Damjanovic et al. found that
TNF-/- mice exhibited prolonged expression of inflammatory
chemokines such as CCL2 leading to an exaggerated immune
response and consequent damage to pulmonary epithelial cells
(107). Further investigation by DeBerge et al. revealed that it
is soluble, and not membrane bound, TNFα that is required
to limit the IV induced immune response and tissue damage
(108). Therefore, it is unclear if TNFα blockade is a suitable
treatment for severe IV induced disease, however given the
multiple components of the TNFα signaling system, TNFR1
vs. TNFR2 and the differing activities of membrane bound
and soluble TNFα, there is the possibility to specifically inhibit
certain aspects of TNFα signaling while not interfering with
others.

IFNαβ are the canonical antiviral cytokine family in fact,
they were discovered in the context of IV. IFNαβ induces the
expression of hundreds of genes, such as MX dynamin like
GTPase 1 (Mx1) and interferon induced transmembrane protein
3 (IFITM3) which have direct anti-IV activity. As such, IFNαβ

has been periodically suggested as a therapy for IV (94, 97, 100,
101). Prophylactic or very early on treatment with IFNαβ in
rhesus macaques, ferrets, guinea pigs and mice experimentally
infected with IAV controls virus replication and spread thereby
protecting against severe IV induced disease (101, 109–114).
However, it appears the therapeutic window is short, later
treatment with IFNαβ during infection still controls viral load
but exacerbates disease by driving the cytokine storm and TRAIL
mediated airway epithelial cell death (101, 109, 115). While there
have been no studies directly assessing the effectiveness of IFNαβ

blockade during IV infection in humans, IFNαβR deficient mice
exhibit a range of susceptibility to IV induced disease depending
on the virulence of the infecting IV strain and the genetic
background of the mice (86, 115–118), demonstrating that the
activity of IFNαβ on host immune response to IV is too complex
to extract the immunopathogenic from the protective effects on
the host.

Due to the pleiotropic actions of TNFα and IFNαβ direct
targeting of these cytokines may not be the most suitable
approach. Instead, a general dampening on the immune response
may be more effective. Recently, chemical agonism of the
sphingosine-1-phosphate (S1P) receptor (S1PR) pathway has
been shown to blunt IV induced inflammation. The sphingosine
analog: AAL-R (Table 1) agonizes S1P receptors 1, 3, 4, and 5.
Treatment of IV infected mice with AAL-R during infection
resulted in reduced release of proinflammatory cytokines

and chemokines including IFNαβ and inhibited inflammatory
cell infiltration and thereby decreased damage to pulmonary
tissue. AAL-R treatment did not affect antibody responses and
pulmonary viral load was comparable between treatment and
control groups, however AAL-R did suppress dendritic cell
maturation and inhibited IV specific T-cell responses (119, 120).
Although the IV T cell response is dispensable for clearance
of IV, it provides the host with herterosubtypic immunity,
thus AAL-R is too immunosuppressive to be applied as an
anti-IV therapy. But based on the promise of AAL-R, two
agonists specific S1P1R: CYM-5442 and RP-002 (Table 1) were
tested. Like AAL-R, CYM-5442 and RP-002 significantly reduced
cytokine and chemokine responses associated with IV induced
lung injury without effecting viral load. Yet, unlike AAL-R,
neither CYM-5442 and RP-002 effected dendritic cell and T-
cell responses (120, 121). Teijaro et al. proposed that agonism
of S1PRs on endothelial cells was responsible for the blunted
proinflammatory cytokine levels in the lung (121, 122). However,
in follow up studies this group also found that S1P1R agonists
act directly on plasmacytoid dendritic cells to block their
secretion of IFNα (123, 124). Furthermore, these results defined
signaling downstream of MyD88 in multiple cell types to be
a key amplifier of IAV induced cytokine storm which could
be inhibited by S1P1R agonism. Further characterization of
S1PR agonists as IV-therapeutics is ongoing in mouse and ferret
models (123).

Cyclooxygenase enzymes (COX) catalyze the conversion
of arachidonic acid to prostaglandins, which can modulate
the inflammatory response (125). Interestingly, there are two
isoforms of COX: the constitutively expressed COX-1 and
the inducible COX-2 which have divergent roles in influenza
infection. Carey et al. demonstrated that in H3N2 IAV infection
COX-2 deficient mice, compared to wild type controls, had
lower levels of proinflammatory cytokines (IL-6, TNFα, IL-
1β, and IFNγ) and inflammatory cells recruited to the lung
during infection, and this correlated to a moderate increase
in survival. While in contrast, COX-1 deficient mice in the
same study exhibited a higher pulmonary inflammatory burden
compared to wild type controls. The cost of this blunted
inflammation in COX-2-/- mice was a higher viral burden
early in infection, however by day six all three mouse strains
had comparably low pulmonary titres of H3N2 IAV (126). In
another study, COX-2 deficiency correlated to higher levels
of the prostaglandin: PGE2 which has an inhibitory effect on
proinflammatory cytokine expression, the adaptive immune
response and macrophage apoptosis in mice infected with
H1N1 (127). Furthermore, COX-2 expression is elevated in
autopsy tissue samples from patients infected by H5N1 IAV and
induction of proinflammatory cytokines such as IL-6, TNFα,
IFNα, and IFNβ by H5N1 in monocyte derived macrophages
could be blocked by a COX-2 inhibitor (nimesulide) (128). Thus,
there is strong evidence that COX-2 is an upstream driver of
IV induced inflammation, however, the specific mechanism of
action remains to be determined. In a follow up study, Carey et al.
found that treatment of wild type mice with COX-1 inhibitor
(SC-560) or a COX-2 inhibitor [celecoxib (Table 1)] prior to and
during IAV infection resulted in the same pattern of susceptibility
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(COX-2 inhibition being protective and COX-1 inhibition being
detrimental) yet, neither treatment drastically altered pulmonary
cytokine profiles, viral load or inflammatory cell recruitment
(129). Furthermore, another in vivo study found that celecoxib
alone did not protect H5N1 infected mice from mortality,
although the authors did observe a protective effect of celecoxib
administration when used in combination with zanamvir and
mesalazine (a PPARγ agonist, see below) in mice challenged
with H5N1 IAV. Significantly, combination treatment was
administered post IAV infection. This protection did correlate to
amoderate decrease in proinflammatory cytokine concentrations
and a modest elevation PGE2 in the lung late in infection
however, it also correlated to decreased viral loads at this time
point which may explain the change in pulmonary cytokine
profile (130).

Currently, a phase III clinical trial is running to assess efficacy
and safety of celecoxib used in combination with oseltamivir in
patients with severe IAV infection (NCT02108366). While this
is an exciting development for the use of immunomodulating
drugs in the treatment of IV, in high concentrations celecoxib
can also inhibit COX-1 (131), which may prove problematic. As
demonstrated by Carey et al. COX-1 plays an anti-inflammatory
and protective role in IV infection (126). Moreover, treatment
with nonselective COX inhibitors such as aspirin and diclofenac
confer an increased risk of mortality in animal models of
infection and it has been proposed that an increase in aspirin use
during the 1918 pandemic contributed to the October death spike
(132, 133).

In 2006 Fedson proposed the use of statins to modulate IV
induced cytokine storm (134). Statins (Table 1) block cholesterol
synthesis by competitively inhibiting the enzyme 3-hydroxy-
3-methylglutaryl coenzyme A (HMG-CoA) reductase (135).
Commonly employed to reduce the risk of cardiovascular disease
by lowering cholesterol levels, statins are inexpensive and widely
available, therefore making them an attractive candidate for
IV treatment. Statins can inhibit IV induced disease through
multiple mechanisms, in vitro studies have shown that statins can
interfere with viral replication (136, 137), block the induction
of proinflammatory cytokines and chemokine such as IL-6 and
TNFα and inhibit the activation of key signaling molecules
including Signal transducer and activator of transcription 3
(STAT3) (138, 139). Animal studies have shown promise, Haidari
et al. demonstrated statin treatment lowered pulmonary viral
load and hostmortality inmurineH3N2 andH1N1 IAV infection
models and An et al. demonstrated combination treatment with a
statin, a NAI and a fibrate, protected mice from H5N1 mediated
mortality (136, 140). In an intriguing study Liu et al. combined
statins with another readily available drug: caffeine, and found
that combination therapy lowered pulmonary viral load and
ameliorated lung damage in H5N1-, H3N2-, and H1N1-infected
mice (141). However, other studies conducted in mice have
reported little to no effect of statins on IV clearance or cytokine
profile (142, 143).

As statins are so widely used in the human population, there
is a substantial amount of data on their use in the context of IV
infection. Five retrospective studies conducted in four separate
countries (Netherlands, United Kingdom, USA and Mexico)

reported that to varying degrees, statin treatment associated with
reduced IV-related pneumonia and a lower IV induced mortality
rate (144–147). In contrast, Fleming et al. and Kwong et al.
conducted retrospective studies over a 6 and 10 year periods
(respectively) and found no association between statin treatment
and decrease IV induced disease burden (148, 149). There are
many caveats to these studies, including what other treatments
patients were on during the study period and a lack of defined IV
specific outcomes. Furthermore, the use of different statins and
strains of infecting IVs likely contributes to the varied results.
Overall, there is evidence that statins can ameliorate severe
IV induced disease, and the availability of this class of drugs
certainly makes it an attractive therapeutic option. Further study
is required to delineate the specific actions of statins which block
viral replication and inhibit over activation of the innate immune
response, thereby allowing us to capitalize on these properties.
Excitingly, a phase II trial has begun to test the effectivity of
atorvastatin inminimizing IV induced disease severity in patients
infected with seasonal IV (NCT02056340).

Peroxisome proliferator-activated receptors (PPARs) are
nuclear receptors and ligand-activated transcription factors
that control a number of target genes upon assembly of
a transcriptional complex. PPARs regulate energy balance,
including glucose homeostasis, fatty acid oxidation, and lipid
metabolism (150). PPAR agonists are commonly used to treat
patients with cardiovascular diseases and diabetesmellitus. Drugs
which specifically antagonize PPARγ appear to be the most
promising as therapeutics for IV. Treatment of mice, prior to
and during IAV infection, with PPARγ agonist: pioglitazone
(Table 1) was shown to temper recruitment of Ly6Chigh myeloid
cells termed: TNF-α/inducible nitric oxide synthase (iNOS)-
producing DCs (tipDCs), although likely these are comparable
to what other studies have reported as inflammatory monocytes
or exudate macrophages (20, 115, 151). Pioglitazone lowered
pulmonary concentrations of chemokines known to attract
tipDCs to the lung (CCL2 and CCL7) and this associated
with a decrease in IAV induced morbidity and mortality.
Importantly, pioglitazone treatment did not alter the rate of
IAV clearance from the lung, as was observed when tipDC
recruitment was entirely ablated through the genetic deletion of
CCR2 (152). In a follow up study, this group also demonstrated
that rosiglitazone (another PPARγ agonist) mediated better
protection than pioglitazone (or vehicle control) in mice infected
with H1N1 IAV (153). Finally, treatment of mice with 15-
deoxy-112,14-prostaglandin J2 (15d-PGJ2), 1 day post infection
blunted IV induced proinflammatory cytokine secretion in
the lung and increased host survival in a PPARγ dependent
manner (154). As with statins, PPARγ agonists could be easily
employed an adjunct therapy for IV induced disease, however
human studies must be performed. Indeed, there is a somewhat
surprisingly little amount of data about immunomodulating
agents and IV infections. Although imperfect, retrospective
studies on patients treated with immunomodulating agents
such as IFNαβ for multiple sclerosis or hepatitis C, or any
number of anti-inflammatory agents for heart disease may
provide informative preliminary data in terms of effectivity and
safety.
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TARGETING THE EPITHELIUM

In general, productive IV replication is restricted to airway
epithelial cells, as these cells exclusively express proteases
required for HA maturation (155). Damage to the respiratory
tract in the form of virally induced necrosis, immune mediated
apoptosis or other forms of cell death leads to ARDS. Finding
a way to directly target the cells which support IV replication
is highly desirable in anti IV treatment design. As such, many
of the treatments discussed in this review are delivered via
inhalation. However, by focusing on features relatively specific to
the epithelial cells therapies can directly protect the epithelium
during infection or promote healing post viral clearance.
For example, Fludase (Table 1), is a recombinant fusion
protein consisting of a sialidase catalytic domain derived from
Actinomyces viscosus fused with the epithelial anchoring domain
of human amphiregulin. Fludase is effectively a neuraminidase
mimic, it tethers to, and cleaves both α(2,6)-linked and α(2,3)-
linked sialic acid receptors, thereby removing IV’s entry point
into epithelial cells (156). This drug is administered as an inhaled
dry powder with microparticles of 5–10µm in size, enabling the
drug to access the upper and central, but not the lower respiratory
tract. In vitro studies on human airway epithelial cells have shown
that Fludase removed approximately 90% of sialic acid receptors
within 15min of treatment and desialylation lasted at least 2 days
(157). Serial passage of IAV and IBV under increasing selective
pressure of Fludase selected for several mutations in HA (G137R,
S136T, S186I) and NA (W438L, L38P) which resulted in IVs with
increased receptor binding, coupled with significantly reduced
NA on the cell surface. These mutations lead to an attenuated
phenotype in vitro and no change in virulence in a mouse
model of IV infection. Furthermore, the resistance phenotype
was unstable and was reversed after withdrawal of Fludase (158).

As it targets the common entry point of IVs Fludase has
been shown to be effective at inhibiting a broad range of IAV
and IBV strains in vitro (159–161). Prophylactic treatment of
mice with Fludase inhibited establishment of infection by IAV
strains H1N1, H5N1, H7N9 and therefore protected against
host mortality. Furthermore, these studies reported that Fludase
inhibited IV replication and therefore host mortality when
given up to 3 days post infection, albeit with less effectivity
than prophylactic treatment (156, 162, 163). Malakhov et al.
also demonstrated effectivity of Fludase in a ferret model of
H1N1 infection (156). Fludase has begun clinical trials and was
generally well tolerated in phase I trial (164). A phase II trial
performed over three influenza seasons (2009–2011) in otherwise
healthy IV-infected participants demonstrated that Fludase was
well tolerated and patients under a multi-dose treatment regime
exhibited a significant decrease viral load and viral shedding
(165).

While Fludase is a promising anti-IV therapy there are
potential pitfalls to broad use. Sialic acid is catabolized by
S. pneumonia, IV-mediated release of this metabolite is thought
to facilitate bacterial colonization and consequent pneumonia
(166). In a preclinical study Hedlund et al. demonstrated that
Fludase treatment did not alter S. pneumonia colonization in an
in vitro model of a human lung cell line (A549) or in healthy

mice. This study also reported that Fludase treatment 24 h post
infection with H1N1 or H3N2 strains of IAV protected mice
from S. pneumonia colonization and therefore morbidity and
mortality (167). However, it is important to note that Hedlund
et al. administered the secondary bacterial infection 2 days after
a single dose of Fludase in IAV infected mice, which, given
that airway epithelial cells begin to recover sialylation by 2 days
post treatment (157) may be too late to see direct effects of
Fludase treatment on bacterial colonization in the context of
IV infection. Furthermore, the authors employed a lethal dose
of IV, with all vehicle control mice exhibiting highly similar
morbidity and mortality regardless of secondary S. pneumonia
infection. It is therefore unclear whether or not the inoculum of
S. pneumonia used in this study actually increases disease burden
(167). Further studies are required to understand if Fludase alters
host susceptibility to secondary bacterial infection.

IFNαβ signal to all cell types in the body and, as discussed,
are therefore too inflammatory to be used as anti-influenza
therapeutics. However, type III IFNs (IFNλ) (Table 1) are an
intriguing alternative. Discovered in 2003, IFNλ are induced
during IV infection via the same pathways as IFNαβ and utilize
an almost identical signaling cascade to activate transcription
of ISGs (168–170). However, IFNλ engages a separate receptor
complex with a limited tissue distribution, compared to the
ubiquitously expressed IFNαβR. IFNλ receptor expression is
predominantly restricted to mucosal surfaces, such as that of
the lung, and only select immune cells, primarily neutrophils
(86, 169, 171, 172). There is some evidence to suggest IFNλ

may be more critical for protection against IV infection than
IFNαβ. In vitro and in vivo analysis has revealed that IFNλ

is produced more rapidly and in higher concentrations than
IFNαβ by epithelial cells in response to IV infection (101, 170,
172), however this could be attributed to the sensitivity of the
assays employed to detect various IFNs. More convincingly,
Klinkhammer et al. have recently demonstrated in mice that
prophylactic treatment with IFNλ, but not IFNα, confers
sustained antiviral protection in the upper airways and blocks IV
transmission to uninfected animals (173). In terms of employing
IFNλ as in anti-IV therapy, IFNλ treatment consistently
administered from 48 to 120 h post infection did not enhance
proinflammatory cytokine signaling in the lung but did inhibit IV
replication, lowered airway epithelial cell death and consequently
promoted host survival (101). Kim et al. reported similar
findings and Galani et al. further demonstrated IFNλ signaling
to neutrophils also promotes IV clearance (172, 174). Pegylated
recombinant IFNλ (PEG-IFNλ) was originally developed to
treat Hepatitis C infection, however it was superseded by
more specialized treatment options for the disease. Yet during
development, PEG-IFNλ passed Phase I and II clinical trials,
demonstrating desirable pharmacological properties and a safer
drug profile than IFNαβ (175). PEG-IFNλ therefore constitutes
a highly promising new broad-spectrum candidate for the
treatment IV.

Apoptosis is an important process for resolution of IV
infection, not only for elimination of infected cells but also
for removing inflammatory cells such as CD8+ T cells,
from the pulmonary environment once IV has been cleared.
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Death-inducing members of the TNF superfamily, including
TRAIL and first apoptosis signal (Fas) ligand (FasL) have been
shown to induce apoptosis of cells during IV infection (176–
180). DNA microarray analysis performed by Kash et al. found
that FasL/Fas signaling related genes in the lung are associated
with IAV induced mortality in mice (181). Additionally, ex
vivo assessment of human macrophages has shown that TRAIL
expression and secretion is enhanced in severe IV induced disease
and human peripheral blood mononuclear cells upregulate
TRAIL upon IV infection. Furthermore, IAV infection of a
human lung epithelial cell line increases cell susceptibility
to TRAIL mediated apoptosis (182, 183). Blocking extrinsic
apoptosis by inhibition of Fas/FasL interaction though treatment
with a recombinant decoy receptor for FasL or interruption
of TRAIL signaling, either by genomic deletion or monoclonal
antibody (mAb) blockade (Table 1) during IAV infection can
increase the survival rate of mice after IV infection (115, 151,
179, 182–184). Furthermore, mAb blockade of TRAIL signaling
protects against secondary bacterial infection (20). Protecting
airway epithelial cells from death during IV infection associates
with better prognosis. However, it is a fine balance, as mentioned
FasL and TRAIL are also used to control inflammatory cells
in the lung. Indeed, in severe IAV infection TRAIL deficient
mice are more susceptible to IAV induced disease due to
accumulation of cytotoxic CD8+ T cells in the lung (180). As
yet, blockade of apoptosis in human IV infection has not been
assessed.

An alternative approach to entirely blocking apoptosis is to
try to target it specifically to infected cells. B-cell lymphoma
2 (Bcl-2) family members such as Bcl-xL, are key regulators
of apoptosis and as such Bcl-2 inhibitors have been developed
to treat cancer. It was recently proposed that Bcl-2 inhibitors
could also be repurposed for antiviral drug development (185).
A series of compounds (ABT-737, ABT-263, ABT-199, WEHI-
539, A-1331852) have been show to induce premature death
of IAV-infected cells at concentrations that were not toxic
for non-infected cells in vitro (186). Furthermore, Bulanova
et al. showed that A-1155463 (Table 1) limited viral spread
(186). The authors hypothesize that recognition of IV infection
by the cell causes the release of proapoptotic proteins from
Bcl-xL to initiate mitochondrial membrane permeabilization,
ATP degradation, and caspase-3 activation. Subsequent addition
of Bcl-2 inhibitors in low concentrations acts synergistically,
further driving apoptosis of IV infected cells. It appears this
phenomenon is not specific to IV, as transfection with plasmid
DNA elicited similar effects (186, 187). As ABT-199 (as known
as Venetoclax) is approved for use in humans for treatment
of chronic lymphocytic leukemia, this class of drugs may have
potential to be used as anti-IV therapeutics. However, Kakkola
et al. did report that ABT-263 treatment of IV-infected mice
resulted in an altered pro-inflammatory cytokine profile in the
lung and a slightly higher viral load, which associated with
decreased host survival, indicating that these treatments may
need to be supplemented with other therapeutics whichmodulate
the inflammatory response or promote viral clearance (187).

CONCLUDING REMARKS

Globalisation and the continual growth of the world population
means that we are living closer together and traveling further
distances with greater ease and speed. Emerging strains of IV can
transverse the globe in a matter of days. Furthermore, increased
demand of fowl and swine products has enlarged the interface
between humans and animal reservoirs of IAV, elevating the
likelihood of zoonotic transmission. Under these circumstances it
is not a case of “if ” another IV pandemic emerges but “when.” To
combat future IV pandemics we need therapeutics to supplement
or replace oseltamivir and other NAIs. Of trials registered on
clinicaltrials.gov assessing combination therapies to treat IV (25
results, July 2018), all involve a NAI (primarily oseltamivir)
and another therapeutic targeted to IV, with the exception of a
single celecoxib/oseltamivir trial (NCT02108366). Combinations
of antivirals which inhibit different aspects of IV’s replication
cycle such as inhibitors for PB and PA (NCT02888327) may have
synergistic effects and reduce the likelihood of resistant strains
developing. However, trials combining anti-HA stem antibodies
and NAIs (NCT02293863 and NCT02603952) have reported
no decrease in symptom severity and duration compared to
monotherapies. As discussed, severity of IV induced disease is
a function of the host immune response, therefore combining
antivirals with immunomodulatory drugs will likely prove more
effective in treating IV infection. Host directed therapies are
less likely to drive drug resistance, are more apt for protecting
the delicate epithelium from immune mediated cell death and
consequently, may be superior at decreasing disease burden.
Repurposing of clinically approved immunomodulators is a
simple solution. More trials are needed to assess the feasibility
of other immunomodulatory drugs to be used as adjuncts
to oseltamivir or other antivirals. Selection of appropriate
candidates should be based on in vivo models and retrospective
studies. Furthermore, taking advantage of inhalers to deliver
drugs directly to the site of infection and tailoring therapeutics
to epithelial cells, where IV replication occurs will also
improve effectivity of treatment while minimizing harmful side
effects.
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