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Evidence accumulated over the past few years has documented a critical role for

adipose tissue (AT)-resident immune cells in the regulation of local and systemic

metabolic homeostasis. In the lean state, visceral adipose tissue (VAT) is predominated

by anti-inflammatory T-helper 2 (Th2) and regulatory T (Treg) cell subsets. As obesity

progresses, the population of Th2 and Treg cells decreases while that of the T-helper

1 (Th1) and T-helper 17 (Th17) cells increases, leading to augmented inflammation

and insulin resistance. Notably, recent studies also suggest a potential role of CD4+

T cells in the control of thermogenesis and energy homeostasis. In this review, we

have summarized recent advances in understanding the characteristics and functional

roles of AT CD4+ T cell subsets during obesity and energy expenditure. We have also

discussed new findings on the crosstalk between CD4+ T cells and local antigen-

presenting cells (APCs) including adipocytes, macrophages, and dendritic cells (DCs)

to regulate AT function and metabolic homeostasis. Finally, we have highlighted the

therapeutic potential of targeting CD4+ T cells as an effective strategy for the treatment

of obesity and its associated metabolic diseases.

Keywords: obesity, CD4+T cells, antigen-presenting cells, inflammation, insulin resistance, energy homeostasis

INTRODUCTION

Obesity, which is associated with various metabolic and cardiovascular diseases such as insulin
resistance, type 2 diabetes, hypertension, and stroke, is among the most severe health threats to
modern society (1, 2). With excessive nutrient intake and/or reduced energy expenditure, obesity
triggers a state of chronic low-grade inflammation in the adipose tissue (AT). Specifically, visceral
adipose tissue (VAT) is more prone to obesity-induced inflammation (3). Under the condition of
overnutrition, the composition, number, and function of AT-resident immune cells are significantly
altered, especially in white adipose tissue (WAT). Recent studies have demonstrated a dynamic
crosstalk between adipocytes and immune cells, including both innate and adaptive immune
cells, within AT. In response to nutritional or other environmental stimuli, altered AT-resident
immune cells may initiate a low-grade inflammatory process, leading to insulin resistance and
impairedmetabolic homeostasis. Understanding themechanisms underlying immune cell-initiated
inflammatory responses in AT of obese individuals is thus of great clinical importance.
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Naïve CD4+ T cells are developed in the thymus and
then reside in secondary lymphoid organs such as spleen and
lymphocytes and non-lymphoid organs such as AT (4). After
activation by antigen-presenting cells (APCs), naïve CD4+ T
cells may differentiate into one of the several lineages of T
helper (Th) cells, including T-helper 1 (Th1), T-helper 2 (Th2),
T-helper 17 (Th17), and regulatory T (Treg) cells, as defined
by their specific patterns of cytokine production and function.
Compared with secondary lymphoid tissues, AT contains few
naïve CD4+ T cells but a large proportion of effect memory T
cells that can regulate adaptive immunity based on interactions
with APCs (5, 6). Indeed, AT-resident CD4+ T cells are one of
the immune cells that rapidly respond to HFD challenge (7).
However, the roles of AT-resident CD4+ T cells in metabolic
homeostasis are not well established. In the lean state, WAT
is dominated by anti-inflammatory Th2 and Treg cells, which
help to maintain an anti-inflammatory milieu and metabolic
homeostasis. The total number of CD4+ T cells in WAT is
significantly increased after HFD feeding. However, as obesity
progresses, the populations of Th2 and Treg cells are decreased
(8), concurrently with increased Th1 and Th17 cells (9, 10).While
accumulative studies have demonstrated a critical role of CD4+

T cells in obesity-induced inflammation, their roles in adaptive
thermogenesis in subcutaneous WAT (SAT) and brown adipose
tissue (BAT) remain in its infancy.

It is well documented that CD4+ T cell activation is initiated
by antigen presentation. However, howAT-resident CD4+ T cells
are activated during obesity remains controversial. There is some
evidence suggesting that adipocytes, macrophages, and dendritic
cells all could act as APCs to promote CD4+ T cell activation in
AT (11–13).

In this review, we discuss recent findings on how AT-resident
CD4+ T cells are involved in the regulation of local and
systemic metabolic homeostasis. We also attempt to highlight the
therapeutic potentials of targeting CD4+ T cells to treat obesity
and its associated metabolic syndrome.

ORCHESTRATION OF CD4+ T CELL
SUBSETS IN IMMUNE RESPONSES

As an important component of adaptive immunity, CD4+ T
cells play critical roles in defending against a large variety of
pathogens. Besides, they are also involved in the pathogenesis
of autoimmune diseases, asthma, and allergic responses.
Naïve CD4+ T cells are activated by two signals including
Class II major histocompatibility complex (MHCII)-mediated
antigen presentation and co-stimulatory molecule- mediated co-
stimulation, both provided by APCs. After activation, CD4+ T
cells are differentiated into distinct subsets, depending on the
cytokine signals in the microenvironment.

The four major lineages of CD4+ T cells, including the
classical Th1 and Th2 cells, as well as Th17 and Treg cells,
each have a characteristic cytokine profile (14). IL-12 and IFN-
γ induce high expression levels of the Th1 master regulator
T-box expressed in T cells (T-bet) and signal transducer and
activator of transcription 4 (STAT4), promoting the naïve CD4+

T cells to differentiate into Th1 cells. With robust production of
IFN-γ, Th1 cells mediate immune responses against intracellular
pathogens (15). On the other hand, IL-4 induces high-level
expression of STAT6 and GATA binding protein 3 (GATA3) in
naïve CD4+ T cells, facilitating the differentiation of naïve CD4+

T cells to Th2 cells. With high expression levels of IL-4, IL-5,
and IL-13, Th2 cells mediate host defense against extracellular
parasites including helminths (15). Inappropriate Th2 responses
are the major cause of allergic diseases such as asthma (16). IL-
17-producing Th17 cells, induced by TGF-β, IL-6, IL-23, and IL-
1β, contribute to the host defense against fungi and extracellular
bacteria, with the high expression of their master regulator
retinoic acid receptor-related orphan receptor-γt (RORγt) (15).
The pathogenicity of Th1 and Th17 cells has been recognized
in various autoimmune diseases, such as multiple sclerosis and
rheumatoid arthritis (17, 18). Treg cells represent a subset of
CD4+ T cells characterized by high suppressive capacity. As a
key transcription factor of Treg cells, Foxp3 is indispensable for
Treg cell development. Treg populations have also been identified
and characterized in other non-lymphoid tissues such as skin,
intestine, lung, liver, fat, muscle and placenta, clearly indicating
an important role of Treg cells in the maintenance of tissue
homeostasis (2, 19).

Cross-regulation among CD4+ T cell subsets by specific
cytokine networks and transcription factors is critical for
determining CD4+ T cell fates (14). Indeed, T-bet−/−mice
exhibit a severe disease after virus infection and display asthma-
like phenotype independent of allergen exposure (20). In
addition, T cell-specific deletion of Gata3 results in impaired
Th2 differentiation, permitting Th1 differentiation in the absence
of IFN-γ and IL-12 (21). Similar to the crosstalk between Th1
and Th2 cells, cross-regulation has also been reported between
Th17 and Th1 or Th2 cells. Both Th1-specific cytokine IFN-γ
and Th2-specific cytokine IL-4 inhibit Th17 differentiation and
induction of IL-17 (22). The immune homeostasis of Th1, Th2,
and Th17 cells has also been found to be regulated by Treg cells
via production of TGF-β and IL-10 (14).

ROLES OF VAT-RESIDENT CD4+ T CELLS
IN OBESITY

Treg Cells
Treg cells are thought to be one of the most crucial
defenses against inappropriate immune responses including
autoimmunity, allergy, inflammation, and infection (23). Treg
cells are highly enriched in the VAT of lean mice, but their
numbers in this fat depot are markedly and specifically reduced
in animal models of obesity and insulin resistance (2, 8). Treg
cells contribute to the maintenance of insulin sensitivity in WAT
by limiting inflammation and producing insulin-sensitizing
factors such as IL-10 (24). IL-10 suppresses the expression of
monocyte chemotactic protein-1 (MCP-1) in adipocytes to limit
M1 macrophage infiltration of WAT. Besides, IL-10 could inhibit
the ability of TNF-α to downregulate glucose transporter 4
(GLUT-4) expression and impair insulin action in adipocytes
(25). A loss-of-function experiment by diphtheria toxin receptor
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(DTR)-mediated depletion of Treg cells and a gain of function
experiment by injection of recombinant IL-2 and particular an
IL-2-specific monoclonal antibody (mAb) have revealed that
manipulating Treg cells can affect the inflammatory state of AT
(2, 26).

Treg cell homeostasis in VAT is regulated by iNKT
cells via the production of IL-2 (27). Besides, IL-33, which
is mainly secreted by a number of different stromal cell
types including Cadherin11+ (Cdh11+) mesenchymal cells,
podoplanin+ (Pdpn+) fibroblasts, and CD31+ endothelial cells,
is required for Treg cell accumulation in VAT through binding to
its receptor Interleukin 1 receptor-like 1, also known as IL1RL1
or ST2 (28, 29). In addition, IL-33 and IFN-γ counter-regulate
group 2 innate lymphoid cells (ILC2) activation to control
Treg cell numbers (30). The control of Treg cells by ILC2 is
independent of the cytokines of ILC2 but mediated by a direct
interaction of co-stimulatory molecules inducible co-stimulator
(ICOS) and ICOS ligand (ICOSL) (30).

What is the origin of AT-resident Treg cells? It is reported
that the AT-resident Treg and conventional T (Tconv) cell
populations have different repertoires, suggesting that the
accumulation of Foxp3+ Treg cells in VAT is not due to the local
conversion of Tconv cells (2). The VAT-resident Treg cells are also
found not to be originated from circulating Treg cells. On the
other hand, there is strong evidence suggesting that VAT-resident
Treg compartment comes from thymus and their accumulation
depends on interactions with local APCs (28).

VAT-resident Treg cells have a distinct transcriptome and
antigen-receptor repertoire from those of their counterparts
in the spleen and lymph nodes (31). Notably, peroxisome
proliferator-activated receptor (PPAR-γ), the master regulator
of adipocyte differentiation, is identified as a crucial molecular
orchestrator of VAT Treg cell accumulation, phenotype, and
function (31). Specifically, knockout of PPAR-γ in Treg cells
significantly lowered the fractions and numbers of Treg cells in
VAT but not in lymphoid organs. The thiazolidinedione (TZD)
drug pioglitazone (Pio), a well-known insulin-sensitizing agent,
is a synthetic agonist for PPAR-γ. Pio treatment specifically
promotes VAT-resident Treg cell numbers and phenotype in
HFD-fed wild-type (WT) mice but not in PPAR-γ mutant mice
(31).

Th2 Cells
Similar to VAT-resident Treg cells, the IL-4- and IL-13-expressing
Th2 cells accumulate in VAT of older animals. Compared with
VAT-resident Treg cells, the numbers of VAT-resident Th2 cells
are relatively rare and their function in obesity progression is
much less studied. VAT Th2 cells also express ST2 and treatment
of ob/ob mice with IL-33 leads to the production of strong
Th2 cytokines in WAT, resulting in improved insulin sensitivity
(32, 33).

Adoptive transfer of CD4+ T cells into HFD-fed Rag1-null
mice has normalized obesity-associated insulin resistance (34).
Interestingly, the beneficial effects of CD4+ T cells in the adoptive
transfer model are found to be contributed by Th2 cells but not
Treg cells, since mice transferred with Foxp3−−/− or IL-10−−/−

CD4+ T cells show no obvious changes in the phenotypes

compared with mice transferred with WT CD4+ T cells. By
contrast, reconstitution with STAT6−/− CD4+ T cells leads to
the loss of the insulin-sensitizing effects of the WT CD4+ T cells,
suggesting that Th2 cells are important controllers of obesity and
insulin resistance (34).

Th1 Cells
Under over-nutrition conditions, VAT expansion creates
an environmental milieu that potentiates the influx of
proinflammatory cells and the production of type 1 cytokines
such as IL-6, TNF-α, IL-1β, and IFN-γ (35, 36). The immune
homeostasis in VAT is consequently disrupted with a decrease of
Treg and Th2 cell populations, concurrently with a significant
increase of proinflammatory T cells, especially IFN-γ-producing
Th1 cells, CD8+ T cells, and Th17 cells (9, 10, 12, 37, 38).
Consistent with these findings, T-bet deficient mice display
enhanced insulin sensitivity though increased VAT mass (39),
suggesting that deficiency of Th1 cells may lead to metabolic
restoration. Increasing Th1 cells accelerate insulin resistance by
producing TNF-α and IFN-γ in WAT (11). IFN-γ is a robust
proinflammatory cytokine that activates M1 macrophages (40),
promotes Th1 cell polarization (41), and induces inflammatory
mediators such as MHCII (9, 42). The mRNA level of IFN-γ
rapidly increases even after just 1-week HFD feeding (42). High
level of IFN-γ in human VAT is also associated with increased
waist circumference (7). IFN-γ-deficient mice show a significant
decrease in inflammatory gene expression and accumulation
of leukocytes, as well as improved glucose tolerance (9). Taken
together, these findings reveal that decreased IFN-γ levels
and/or Th1 cell expansion in AT are beneficial for suppressing
inflammation and improving insulin sensitivity.

Th17 Cells
Th17 cells are usually regarded as proinflammatory cells.
However, the role of AT-resident Th17 cells in obesity remains
largely elusive. One study shows that, although the total number
of Th17 cells in VAT remains unchanged, the percentage of
Th17 cells is decreased during the development of obesity
(34). To the contrary, other studies show that the numbers
or percentages of Th17 cells are increased in AT of obese
humans compared to their lean controls (12, 43). Th17 cells
have been suggest to block insulin receptor signaling and
contribute to metabolic dysfunction via promoting the secretion
of IL-17 and IL-22 (43–45). HFD feeding is also able to
stimulate splenic Th17 cell development, thus accelerating
the onset of autoimmune diseases such as experimental
autoimmune encephalomyelitis (EAE) and collagen-induced
arthritis (CIA) (10, 46). Mechanistically, obesity boosts Th17
cell polarization by upregulating Acetyl-CoA carboxylase 1
(ACC1) expression, which promotes the binding of RORγt
to the IL-17 gene locus (10). RORγt−/− mice fed a normal-
chow diet display glucose intolerance hyperinsulinemia, and
slightly insulin resistance. However, RORγt−/− mice fed a HFD
rapidly lost weight and die within 1 month, probably due to a
deleterious effect of the lipotoxicity. Of note, after HFD feeding,
heterozygous RORγt+/−− mice have impaired glucose tolerance
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and increased insulin resistance compared withWT control mice
(47).

IL-17, a major effector cytokine produced by Th17 cells,
functions as a negative regulator of adipogenesis (48, 49). IL-17
deficiency enhances diet-induced obesity in mice and accelerates
fat mass accumulation even in mice fed a low-fat diet (49).
It has been shown that γδ T cells, but not Th17 cells, are
the predominant cells that produce IL-17 in WAT under both
ND and HFD conditions (49, 50). Thus, the role of IL-17 is
not equal to the role of Th17 cells under either ND or HFD
conditions. Mice lacking γδT cells or IL-17A had impaired ability
to regulate core body temperature at thermoneutrality and after
cold challenge due to the decreased ST2+ Treg cells and IL-33
abundance in AT (50). Nevertheless, the function of Th17 cells
in obesity-related WAT inflammation is complex and requires
further investigation.

CD4+ T CELLS CROSSTALK WITH APCS

CD4+ T cells in VAT are increasingly recognized as a key
regulator of AT inflammation and systemic insulin action. APCs
are indispensable for the activation and differentiation of CD4+ T
cells (11, 51). Importantly, VAT resident CD4+ T cells, regardless
of their specific lineages, demonstrate distinct and selective T
cell receptor (TCR) repertoires compared with their circulating
counterparts, suggesting an AT-specific antigen expansion (2, 31,
34). This finding further strengthens the view that APCs also exist
in AT and are required for AT-resident CD4+ T cell polarization.
Although the exact nature of the antigens is still largely unknown,
recent studies have revealed different types of APCs including
macrophages, adipocytes and dendritic cells in the course of
obesity-related AT inflammation (11, 42, 52).

Adipose Tissue Macrophages (ATMs)
Macrophages have been implicated as one of the important
types of APCs found in AT (11). Based on their characteristics
and functions, adipose tissue macrophages (ATMs) can be
categorized into “classically activated” M1 macrophages and
“alternatively activated” M2 macrophages (36). Obesity is
accompanied by a switch in macrophage activation from
the protective M2 macrophages to the proinflammatory M1
macrophages (53). ATMs are thought to be the predominant
MHCII-expressing cells in VAT under both ND andHFD feeding
conditions (51). MHCII-deficient mice are protected from HFD-
induced insulin resistance with the reduction of ATMs and
CD4+ T cells accumulation in VAT (11, 42). It is believed that
AT-resident M2 macrophages are the predominant APCs in
lean mice and humans (11, 36). MHCII in M2 macrophages
is required to translate obesogenic cues into CD4+ T cell
immune responses at the initial stage of obesity (11). During
the development of obesity, M2 macrophages may progressively
obtain a proinflammatory phenotype and induces Th1 cell
polarization, accelerating the development of insulin resistance
(54). Immunofluorescence and intravital imaging analysis show
that ATMs physically interact with CD4+ T cells in an antigen-
dependent manner (11). Macrophage-specific deletion of MHCII
has no effect on AT-resident T cells in the lean state, but

significantly prevents the generation of effector memory AT-
resident CD4+ T cells and insulin resistance in AT (11). Diet-
induced obesity also promotes the expression of T-cell co-
stimulatory molecules, such as CD80 and CD40, on the surface
of ATMs in VAT (55). CD40 deficiency affects ATM infiltration
into VAT and decreases T cell accumulation during diet-induced
obesity.

In contrast to the classical view of ATMs being grouped into
M1 and M2 macrophages, a recent study shows that CD9 and
Ly6c define unique populations of ATMs in obese AT, with CD9
ATMs predominating in crown-like structures (CLS) and Ly6c
ATMs uniformly distributed in AT (56). CD9 ATMs contain
high levels of intracellular lipid and express proinflammatory
transcriptomes while Ly6c ATMs express factors that support
angiogenesis and tissue organization (56). In addition, adoptive
transfer of CD9 ATMs, but not Ly6c ATMs, from obese donor
mice to lean recipients confers an inflammatory response to the
AT of lean mice (56). Nevertheless, whether these two subsets
of ATMs function distinctively in antigen presentation is not
explored. Since MHCII expression ATMs are concentrated in
CLS in obese AT (51), There is a possibility that CD9 ATMs,
rather than Ly6c ATMs, may be the main ATMs that activate
CD4+ T cells in AT. Further studies are needed to address this
possibility.

Adipocytes
While the role of ATMs in AT inflammation is well documented,
several studies report that macrophages do not infiltrate into
AT until 10 weeks after HFD feeding (7, 42). Indeed, CD8+

effector T cells are believed to contribute to the later macrophage
recruitment (37). On the other hand, an early infiltration
of lymphocytes is observed soon after HFD feeding (7, 37,
42). The early presence of T cells in VAT at the time of
manifest insulin resistance raises a possibility that there may
be other APCs that initiate T cell activation in AT. Consistent
with this view, adipocytes are recently implicated as APCs
that influence T cell activation in obesity (42). Expression of
MHCII in adipocytes begins to increase within 2 weeks of HFD
challenge, paralleled with early changes of AT-resident CD4+ T
cells which show enhanced expression of the proinflammatory
Th1 marker genes (42). HFD-fed MHCII−/− mice show less
adipose inflammation and insulin resistance (42). Mechanically,
it is suggested that, as obesity advances, leptin secreted by
adipocytes stimulates IFN-γ production from CD4+ T cells,
which further promotes adipocyte MHCII expression and thus
Th1 differentiation, leading to a vicious cycle of AT inflammation
(42). The specific contribution of this vicious cycle to metabolic
dysfunction is further verified by adipocyte-specific disruption of
MHCII. AT-specific knockout of MHCII suppresses AT IFN-γ
production and increases Treg accumulation, leading to reduced
AT inflammation and insulin resistance in obese mice (13).
Inhibition ofMHCII expression in adipocytes by adrenomedullin
2 treatment restores the HFD-induced early insulin resistance
due to decreased CD4+ T cell activation (57). It is suggested that
IL-10 produced by adipocytes may dampen the APC function of
ATMs, thus showing the superiority of adipocytes over ATMs
as APCs at the early stage of obesity (42). Indeed, recruitment
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of M1 macrophages into WAT is induced by inflammatory
mediators such as MCP1, C-X-C motif chemokine 12 (CXCL12)
produced by dead and neighboring adipocytes (58, 59). While
APCs may shape CD4+ T cells, CD4+ T cells can also influence
the recruitment and activation of APCs. CD40L is induced in
AT CD4+ T cells after HFD feeding, which can further stimulate
activation of ATMs as well as adipokine production of adipocytes
through ligation with CD40 (55, 60).

Adipocytes secret various adipokines such as leptin,
adiponectin, and resistin, which are implicated in the regulation
of CD4+ T cell immune responses. Leptin receptor is expressed
in human AT T cells and its expression increases with obesity
(61). Impairment of leptin receptor signaling improves Treg
cell immune responses (62, 63). However, how does leptin
signaling regulate Treg responses remains elusive. Although both
IL-33 and ILC2 are found to promote AT Treg accumulation
(30), studies show that IL-33 expression positively correlates
with leptin expression in human AT (64). Obesity-associated
elevation of leptin also contributes to the increased susceptibility
of asthma via modulation of Th2 and ILC2 response (65).
These findings suggest that leptin may regulate Treg immune
response independent of IL-33 and ILC2. On the other hand,
leptin receptor signals are required for Th17 differentiation via
activation of signal transducer and activator of transcription 3
(STAT3) and through cooperate with IL-6 (45, 66, 67). Leptin
can also stimulate Th1 cell differentiation through promoting
IFN-γ secretion (42, 68). Adiponectin is another adipokine
that has been shown to directly enhance Th1 differentiation by
activating the p38-STAT4-T-bet axis (69). Adiponectin activates
DCs leading to enhanced Th1 and Th17 responses (70). Lastly,
resistin has been found to stimulate CD4+ T cell chemotaxis in a
concentration-dependent manner (71).

During obesity, bioactive lipids released by adipocytes also
involve in the regulation of CD4+ T cells. Ceramide synthesis
is elevated under obesity conditions, correlating positively with
the degree of insulin resistance (72). Ceramides are localized
predominantly within the cell membrane and are suggested to
enhance Th1 cell differentiation together with IL-12 (73). Many
ceramide derivatives have been found to inhibit IL-4 production
in T cells (74). n-3 polyunsaturated fatty acids (PUFA), such as
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
can alter the biochemical and biophysical properties of CD4+ T
cell plasma membranes, thus modulating cytoskeletal dependent
CD4+ T cell activation and differentiation (75). It is also
suggested that n-3 PUFA suppress Th1/Th17 immune responses
in diverse tissues in obese mice following the induction of colitis
(76).

Whether adipocytes in WAT of lean mice also play a role as
APCs is not clear. VAT Adipocytes of lean mice show low but
detectable MHCII expression. When cocultured with CD4+ T
cells in vitro, adipocytes of lean mice could stimulate CD4+ T
cells IFN-γ and IL-2 production though to a much less extent
than that of obese mice (42). The antigen-presentation capacity
of adipocytes from lean AT-specific MHCII knockout mice is
remarkably reduced compared with lean WT mice (13). It is
possible that adipocytes of lean mice with low-level MHCII
expression could also act as APCs. However, whether and how

adipocytes of lean mice function as APCs to regulate CD4+ T cell
activation in vivo remain to be further determined.

Adipose Tissue Dendritic Cells (ATDCs)
Dendritic cells (DCs) are professional APCs and play an
important role in promoting CD4+ T cell activation and
polarization (77). However, it has been difficult to clarify
the contribution of ATDCs to AT inflammation since clear
discrimination between ATDCs and ATMs in AT is limited.
It is suggested that, in lean mice, the majority of CD11c+

cells are ATDCs but not ATMs (78). HFD feeding for 16
weeks led to a substantial increase in CD11c+ infiltrating M1
macrophages and the maintenance of a prominent population
of CD11c+ ATDCs (78). Since ATMs and ATDCs are both
CD11c+ cells in WAT of obese mice, macrophage-specific
marker CD64 is thus adopted to distinguish the two populations,
with CD11c+CD64+ identified as infiltrating M1 macrophages
and CD11c+CD64− identified as ATDCs (11). Both populations
have similar capacities to stimulate CD4+ T cell proliferation
(78).

Another study defines CD11b−CD11c+ cells as ATDCs,
which express higher levels of MHCII than CD11b+CD11c+

ATMs (28). Confocal analysis reveals that both Treg and
Tconv cells are in close contact with ATMs and ATDCs
(28). The distance between T cells and APCs is dramatically
increased in mice treated with an anti-MHCII mAb, suggesting
that ATMs and ATDCs may contact with T cells through
MHCII. (28). Ablation of CD11c+ cells by DTR normalizes
insulin sensitivity in obese and insulin resistant mice (79).
Since CD11c is commonly recognized as a marker of DCs,
this finding suggests that the deletion of DCs, at least
in part, may contribute to the increased insulin sensitivity
(80).

The majority of ATDCs in the lean state are thought to be
CD11chighF4/80−CD103+ cells. Since CD103+ DCs are able
to induce the development of Treg cells (81), it is suggested
that this CD11chighF4/80−CD103+ ATDCs play a role in
the induction of AT Treg cells to restrain AT inflammation
(12). Some atypical CD11chighF4/80lowCX3CR1+ ATDCs
are also detectable at a very low frequency (<1%) in the AT
of lean mice. Both the frequencies and absolute numbers
of these two ATDCs populations are increased after HFD
feeding, accompanied by enhanced antigen-presenting abilities
to induce Th17 differentiation (12). It’s worth mentioning
that the increased atypical CD11chighF4/80lowCX3CR1+

ATDCs, regarded as inflammatory DCs in AT, are the
major contributors to the induction of Th17 cells in
AT of obese mice possibly via expressing high levels of
IL-6, TGF-b, and IL-23 (12, 52). This observation is in
accordance with previous studies that demonstrate the
importance of obesity in the expansion of Th17 cells
(10, 46).

Althoughmuch progress has beenmade on our understanding
of the role of AT-resident CD4+ T cells in regulating metabolism,
it is still unclear which cells are the major APCs at different
stages of obesity and whether these APCs cooperate to
activate CD4+ T cells. To define distinct populations within
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each APCs with unique transcriptomes and functions is of
great importance, which will help to develop APCs-based
therapies for the treatment of obesity and related inflammatory
comorbidities.

THE ROLES OF CD4+ T CELLS IN ENERGY
HOMEOSTASIS IN SAT AND BAT

Despite extensive studies on the functional roles of adipose-
immune crosstalk in VAT, the role and regulation of CD4+

T cells in adaptive thermogenesis are much less clear. Several
recent studies have uncovered a potential function of Treg cells
in SAT and BAT in regulating energy homeostasis (4, 82).
BAT-resident Treg cells share many similar characteristics with
VAT-resident Treg cells, although BAT harbors more Treg cells
than VAT (82). Systemic depletion of Treg cells impairs oxygen
consumption under cold stimulation conditions (82). In fact,
treatments known to enhance sympathetic tone and promote
BAT thermogenesis such as cold exposure, short-term high-
calorie input, and β-adrenergic stimulation, greatly increase Treg
cells in WT but not in β-less mice in which all of the three
β-adrenergic receptors are deleted (4). These results indicate
an essential role for thermogenic response in BAT Treg cell
accumulation. Indeed, UCP-1−/− mice exhibit reduced Treg
cells in BAT and SAT compared with WT control mice (4).
Furthermore, loss-of-function and gain-of-function experiments
all suggest that Treg cells are critical for BAT thermogenic
capacity and lipolytic function (4). The T cell-specific Stat6/Pten
axis is believed to link beta3-adrenergic stimulation to Treg
cell induction in BAT and SAT, which is consistent with a
previous report that inhibition of PI3K/AKT could promote Treg
differentiation (4, 83). Interestingly, IL-17-producing γδ T cells
are recently reported to regulate thermogenesis via BAT Treg
cells, further supporting an important role of Treg cells in energy
expenditure (50).

In contrast to the role of Treg cells, the role of Th2 cells in
energy expenditure is largely unknown. However, given that both
the transcription factors and cytokines are functionally similar
between Th2 cells and ILC2s (32, 84), it is possible that the
Th2 cells may also play a part in energy expenditure. Further
investigations will be needed to address this question.

Rag1−/− mice that lack both T and B lymphocytes display
excess weight gain under HFD-feeding conditions, which is
at least in part due to decreased energy expenditure resulted
from decreased UCP-1 expression in BAT (85). In contrast,
another study showed that even in the lean state, Rag1−/−

mice display more energy expenditure and upregulated of
UCP1 expression in SAT than WT mice at room temperature
(86). Decreased CD8+ T cells, but not CD4+ T cells, are
believed to contribute to promote beige fat development,
mainly due to the decreased IFN-γ secretion (86). However,
given that Th1 cells are also major producers of IFN-γ
and that HFD feeding increases both the percentage and
the total number of Th1 cells in SAT, it is possible that
Th1 cells may also be involved in the regulation of energy
expenditure.

THERAPEUTIC IMPLICATIONS OF
TARGETING CD4+ T CELLS

Targeting Chemokines and Their
Receptors
Infiltration of proinflammatory CD4+ T cells into VAT is now
recognized as one of the primary events in obesity-induced
chronic inflammation. Chemokines and their receptors play
crucial roles in the trafficking of leukocytes to lesions and areas
of inflammation (87, 88). Antagonizing chemokines and/or their
receptors by small molecules or antibodies have been shown to
be another promising approach to suppress inflammation and
potentially, improve metabolic dysfunction.

Indeed, CD4+ T cells, as well as CD8+ T cells and B cells,
from ob/ob mice had a greater propensity to migrate specifically
to inflamed tissues (89). The regulated on activation normal T
cell expressed and secreted (RANTES), also known as CCL5, is a
chemokine that plays an active role in recruiting leukocytes into
inflammatory sites. RANTES and its chemokine receptor CCR5
have been implicated in T cell trafficking to VAT in the setting
of murine and human obesity (88). The expression of RANTES
and CCR5 in WAT, especially the SVF fraction, is increased in
a gender-dependent fashion in obese mice (88). Interestingly,
monoclonal antibodies against RANTES have been shown to
significantly reduce T-cell chemotaxis (88, 90).

The CCR5/RANTES axis also plays an important role in the
progression of hepatic inflammation and fibrosis. Maraviroc,
a CCR5 antagonist that has already been approved by FDA
for the treatment of human immunodeficiency Virus (HIV)
(91), ameliorates hepatic steatosis in an experimental model
of NAFLD (87). Another CCR5 ligand, CCL3, is also secreted
at significantly high levels in the omentum of patients with
an obesity and inflammation-driven cancer oesophagogastric
adenocarcinoma (OAC). Antagonizing CCL3 receptor, including
CCR5 and CCR1, significantly reduces T cell migration to the
omentum of OAC patients (92). As obesity develops, human
adipocytes release the chemokine CCL20 and promote T cell
migration into VAT via its receptor CCR6 (61).

Pharmacological inhibition of chemokines may exert
beneficial pleiotropic effects in several metabolically active
organs since these organs are likely to be affected by similar
cellular, molecular, or endocrine pathways (93). Elucidation of
the mechanisms that recruit inflammatory CD4+ T cell to AT
should improve our knowledge for developing novel therapeutics
for inflammation-associated metabolic dysfunctions.

Promoting Treg Cell Accumulation in AT
Induction of Treg cells is one of the major goals in
immunotherapy of autoimmune diseases and transplantation.
The emerging notion that Treg cells in AT are important for
immune homeostasis and thermogenesis has evoked an exciting
possibility to expand Treg cells as a therapeutic strategy for
the treatment of obesity-induced metabolic dysfunctions (94)
(Figure 1). In some studies, mitogenic anti-CD3 antibody is
utilized to promote T cell self-tolerance through a global but
transient T cell depletion, which leads to a selective increase
of Treg cell pools at sites of tissue inflammation (95, 96).
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FIGURE 1 | Approaches to promote AT Treg cell accumulation in vivo.

Injection of IL-33, the anti-CD3 antibody, or a complex consisting of

recombinant IL-2 and a particular anti-IL-2 monoclonal antibody all show a

long-lasting effect on Treg cell expansion in both lymphoid tissues and VAT.

β-glucosylceramide induces iNKT cells activation which promotes Treg cells

expansion via IL-2 production. In addition, adoptive transfer of Treg cells into

recipient mice is recognized as a straight way to increase Treg populations.

PPAR-γ agonist Pio treatment also specifically promotes VAT Treg cell

accumulation.

Injection of an anti-CD3 antibody to HFD-fed mice for 5 days
greatly improves glucose tolerance and insulin sensitivity (34).
In addition, the normalizing effects on insulin resistance and
glucose tolerance last for over 4 months even under the condition
of sustained HFD feeding, suggesting a long-lasting therapeutic
effect (34). Oral administration of an anti-CD3 antibody plus
β-glucosylceramide displays a decrease in pancreatic islet cell
hyperplasia, fat accumulation in the liver, and inflammation in
adipose tissue via induction of Treg cells (24). In addition, a
complex consisting of recombinant IL-2 and a particular anti-IL-
2 mAb is used to induce in situ expansion of Treg cells (2, 97).
IL-33 injection shows a long-lasting effect on Treg cell expansion
in both lymphoid tissues and VAT (28), while PPAR-γ agonist
Pio treatment specifically promoted VAT Treg cell accumulation
(31). In some studies, adoptive transfer of Treg cells into recipient
mice is recognized as a straight way to increase Treg populations
(4).

Targeting Gut Microbiota
Profound gut microbiota alterations are found to be closely
associated with obesity and metabolic syndrome in recent
years (98). HFD feeding induces prominent alterations in
the gut microbiota composition by increasing the Firmicutes
to Bacteroidetes ratio, which positively correlates with body
weights in humans (99–101). The development and maturation
of CD4+ T cells are influenced by gut microbiota. Eating
purified probiotic microbe alone, namely Lactobacillus reuteri,
prevented weight gain irrespective of the baseline diet due to the

TABLE 1 | Summary of the timeline of appearance or changes of the major cell

types or factors that contribute to the proinflammatory status of adipose tissue

after HFD feeding.

Major cell types or factors Timeline of appearance or

changes

References

Leptin Within 1 week (42)

Adipocyte MHCII Within 2 weeks (42)

T-bet 2 weeks (42)

GATA3 3 weeks (42)

Foxp3 12 weeks (42)

IFN-γ 2 weeks (42)

M1 10–12 weeks (42), (7)

CD3 5 weeks (7)

CD11c highF4/80 low 15 weeks (12)

promotion of IL-10-producing Treg cells (102). HFD-fed mice
supplemented with a mixture of foodborne lactic acid bacteria
show reduced VAT mass with increased Treg cells (103). There
is some evidence showing that HFD-derived ileum microbiota is
responsible for a decrease of Th17 cells in the lamina propria,
while microbiota from synbiotic-treated obese mice increases the
number of intestinal Th17 cells and improves glucose tolerance
(47). In addition, delivery of Th17 cells to the intestines of
obese mice leads to expansion of commensal microbes that
maintain metabolic homeostasis (104). However, the precise
mechanisms by which microbiome regulates CD4+ T cells and
thus metabolic homeostasis remain largely unknown and require
further investigations.

CONCLUSIONS AND PERSPECTIVES

New evidence accumulated over the past several years strongly
implicates an important role of AT-resident immune cells such as
Th2 and Treg cells in the housekeeping functions of animals or
humans via regulation of inflammation. During the progression
of obesity, specific antigens in VAT are produced, captured, and
presented to CD4+ T cells by APCs, leading to decreased Th2 and
Treg cell populations and a shift to increased proinflammatory
Th1 and Th17 cell populations. The timeline of appearance or
changes of the major cell types or factors that contribute to the
proinflammatory status of adipose tissue after HFD feeding is
summarized in Table 1. Although the roles of CD4+ T cells in
obesity have been largely investigated, more efforts will be needed
to elucidate the function of CD4+ T cells in the regulation of
energy expenditure in AT.

It remains to be controversial as to which cell types are
the major APCs in the AT. Both ATMs and adipocytes show
enhanced MHCII gene expression under obesity conditions.
Deficiency of MHCII in either macrophages or adipocytes shows
improved metabolic phenotypes in mice (11, 13). However,
several studies report that macrophages do not infiltrate into
AT until 10 weeks after HFD feeding while MHCII family
genes are upregulated at 2 weeks after HFD, indicating that
adipocytes but not ATMs are the APCs that initiate T cells
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FIGURE 2 | Th2 and Treg cell-mediated immune responses in VAT under the

lean state. In the lean state, activation and proliferation of AT-resident Th2 and

Treg cells are mediated by APCs including M2 macrophages, CD11c
highF4/80− ATDCs, and maybe adipocytes with low MHCII expression.

Activated Th2 cells produce type 2 cytokines including IL-4, IL-5, and IL-13,

which together with iNKT and Treg cell-produced IL-10 further stimulate M2

activation. IL-10 also acts directly on adipocytes to promote insulin sensitivity.

The homeostasis of Th2 and Treg cells is promoted by constitutively produced

IL-33 from Cdh11+ mesenchymal cells, Pdpn+ fibroblasts, and CD31+

endothelial cells via high expression of ST2 on the surface of both cells. In

addition, IL-33 and IFN-γ counter-regulate ILC2 activation to control Treg cell

numbers. Besides, iNKT cells are necessary to sustain Treg cells via the

production of IL-2. Together, these pathways contribute to metabolically

healthy VAT.

activation (7, 42). On the other side, several studies suggest
that ATMs are the predominant MHCII-expressing cells in
VAT under both ND and HFD feeding conditions, arguing
that non-macrophage cells such as adipocytes play a minor
role in MHCII expression in adipose tissue (11, 28, 36, 53).
Thus, it is possible that different cell types may act as APCs
at different stages of obesity. At early stages, adipocytes of
lean mice with a low expression of MHCII, AT-resident M2
macrophages, and CD11chighF4/80− ATDCs may act as APCs,
leading to the homeostatic proliferation of Th2 and Treg cells.
As obesity develops, adipocytes of obese mice with markedly
increased MHCII expression, infiltrating M1 macrophages,
as well as CD11chighF4/80− and CD11chighF4/80low ATDCs
become dominant in the AT that act as APCs instead [Figures 2,
3). This notion, to a certain extent, has conciliated different views
on the regulation and function of APCs in AT.

It’s also debatable about the phenotypes and function of
Th17 cells in obesity development. Most studies suggest that

FIGURE 3 | Th1 and Th17 cell-mediated immune responses in VAT under the

obese state. Overnutrition causes adipocyte hypertrophy, leading to the

release of chemokines such as RANTES, which recruit proinflammatory CD4+

T cell accumulation in VAT via its receptor CCR5. Leptin secreted by

adipocytes stimulates IFN-γ production from CD4+ T cells, which further

promotes adipocyte MHCII expression and antigen-presentation to induce Th1

cell differentiation, leading to a vicious cycle of AT inflammation. Dead and

neighboring adipocytes recruit M1 macrophages to WAT by producing

inflammatory mediators such as MCP1 and CXCL12. Likewise, the expression

of MHCII in M1 macrophages is promoted by IFN-γ, thus facilitating M1

macrophage-mediated antigen-presentation to induce Th1 cell differentiation.

In addition, diet-induced obesity also promotes the expression of inflammatory

receptor CD40 expression on ATMs and adipocytes as well as CD40L on

CD4+ T cells, which reinforce the crosstalk between CD4 + T cells and these

APCs. CD11c highF4/80 low ATDCs are also regarded as APCs to induce

Th17 reactivation via production of TGF-β, IL-6, and IL-23. Type 1 cytokines

such as TNF-α and IFN-γ, act directly on adipocytes to impair insulin action.

Together with IL-6 and IL-1β, these cytokines elicit sustained chronic

inflammation that eventually leads to insulin resistance.

HFD feeding promotes the percentages of Th17 cells in AT
and periphery, which contributes to the acceleration of obesity
and some autoimmune diseases in which obesity is recognized
as a risk factor (10, 45, 46, 52). However, HFD-derived gut
microbiota decreases Th17 cells in the lamina propria (47).
Heterozygous RORγt+/−− mice promote diet-induced obesity
and insulin resistance compared with WT mice (47). Delivery of
Th17 cells to the intestines of obese mice results in expansion
of commensal microbes that maintain metabolic homeostasis
(104). One explanation for the discrepancies may be due to the
differences in the functions of local APCs. HFD-induced gut
microbiota impairs the gene expression profile and function of
lamina propria APCs required for Th17 Cell Differentiation (47),
whereas the APCs in AT of obese mice show higher levels of
cytokines secretion or surface markers expression that facilitate
Th17 cell differentiation (12, 52). Still, there is a possibility that
Th17 cells in distinct organs may function differently.

The recent groundbreaking research on the roles of AT-
resident CD4+ T cells in the regulation of insulin sensitivity and
energy homeostasis has shed new light on our understanding
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of the communication between immune cells and adipocytes,
paving a road to the development of novel therapeutic strategies

for the treatment of obesity and its associated diseases.

However, many important questions remain to be addressed.
Identifying the molecular nature of antigens associated with
AT inflammation during obesity is of great importance, which
can help to restrain proinflammatory CD4+ T cell immune
responses. A future challenge will also involve ascertaining
the possibilities and molecular mechanisms of the functional
interplay between other immune cells and CD4+ T cells,
especially in SAT and BAT. Unlike their circulating counterparts,
Treg cells express an AT specific marker PPAR-γ (31) and show
a high degree of adaptation to the surrounding milieu. Thus, it is
assumable that the metabolic microenvironment in AT may also
endow other CD4+ T cells with specific characters. An answer to
this question would provide new insights into developing organ-
specific therapies for obesity and its related metabolic disorders.
Nevertheless, translating the preclinical findings into clinical

applications remains a great challenge, waiting for a further
understanding of the mechanisms regulating the interaction
between AT-resident immune cells and adipocytes under both
physiological and pathological conditions.
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